1
|
Guo Y, Ashrafizadeh M, Tambuwala MM, Ren J, Orive G, Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov Today 2024; 29:104161. [PMID: 39245345 DOI: 10.1016/j.drudis.2024.104161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/07/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024]
Abstract
Drug resistance has compromised the efficacy of chemotherapy. The dysregulation of drug transporters including P-glycoprotein (P-gp) can mediate drug resistance through drug efflux. In this review, we highlight the role of P-gp in cancer drug resistance and the related molecular pathways, including phosphoinositide 3-kinase (PI3K)-Akt, phosphatase and tensin homolog (PTEN) and nuclear factor-κB (NF-κB), along with non-coding RNAs (ncRNAs). Extracellular vesicles secreted by the cells can transport ncRNAs and other proteins to change P-gp activity in cancer drug resistance. P-gp requires ATP to function, and the induction of mitochondrial dysfunction or inhibition of glutamine metabolism can impair P-gp function, thus increasing chemosensitivity. Phytochemicals, small molecules and nanoparticles have been introduced as P-gp inhibitors to increase drug sensitivity in human cancers.
Collapse
Affiliation(s)
- Yang Guo
- Department of Respiratory and Critical Care Medicine, Shenyang Tenth People's Hospital (Shenyang Chest Hospital), No. 11 Beihai Street, Dadong District, Shenyang 110044, Liaoning, China
| | - Milad Ashrafizadeh
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Murtaza M Tambuwala
- Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital Fudan University, Shanghai 200032, China; National Clinical Research Center for Interventional Medicine, Shanghai, 200032, China
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology-UIRMI (UPV/EHU-Fundación Eduardo Anitua), 01007 Vitoria-Gasteiz, Spain; Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore.
| | - Guiping Yu
- Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, No. 163 Shoushan Road, Jiangyin, China.
| |
Collapse
|
2
|
Robinson K, Tiriveedhi V. Perplexing Role of P-Glycoprotein in Tumor Microenvironment. Front Oncol 2020; 10:265. [PMID: 32195185 PMCID: PMC7066112 DOI: 10.3389/fonc.2020.00265] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022] Open
Abstract
Development of multidrug resistance (MDR) still remains a major obstacle to the long-term success of cancer therapy. P-glycoprotein (P-gp) is a well-identified membrane transporter with capability to efflux drug molecules out of the cancer cell leading to reduced efficiency of chemotherapy. Cancer cells upregulate P-gp expression as an adaptive response to evade chemotherapy mediated cell death. While several P-gp inhibitors have been discovered by in silico and pre-clinical studies, very few have successfully passed all phases of the clinical trials. Studies show that application of P-gp inhibitors in cancer therapy regimen following development of MDR achieved limited beneficial outcomes. While, the non-specific substrate binding to P-gp has made the drug-design a challenge, a bigger perplexing challenge comes from its role in tumor immunology. Expression of P-gp was noted immune cell phenotypes with apparently antagonistic functionality. Both pro-tumor MΦ2-macrophages and, anti-tumor NK-cell and Th17/CD4+T cell subsets have shown enhanced expression of P-gp. While drug based inhibition of P-gp in pro-tumor immune cell phenotypes could promote tumor elimination, however, it would not be a rational choice to exert inhibition of P-gp on anti-tumor immune cell phenotypes. This mutually exclusive paradigm of P-gp functionality requires a more comprehensive and detailed understanding of its role in tumor microenvironment with active interplay of cancer and immune cells in the tumor mileu. In this review, we focus on the current understanding of the role of P-gp in cancer cells and immune cells and finally attempt to highlight some caveats in the current understanding of its role in comprehensive tumor microenvironment along with challenges in the development of P-gp inhibitors toward anti-cancer therapy.
Collapse
Affiliation(s)
- Kianna Robinson
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, Tennessee State University, Nashville, TN, United States.,Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
3
|
van de Ven R, Oerlemans R, van der Heijden JW, Scheffer GL, de Gruijl TD, Jansen G, Scheper RJ. ABC drug transporters and immunity: novel therapeutic targets in autoimmunity and cancer. J Leukoc Biol 2009; 86:1075-87. [PMID: 19745159 DOI: 10.1189/jlb.0309147] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
ABC transporters were identified originally for their contribution to clinical MDR as a result of their capacity to extrude various unrelated cytotoxic drugs. More recent reports have shown that ABC transporters can play important roles in the development, differentiation, and maturation of immune cells and are involved in migration of immune effector cells to sites of inflammation. Many of the currently identified, endogenous ABC transporter substrates have immunostimulating effects. Increasing the expression of ABC transporters on immune cells and thereby enhancing immune cell development or functionality may be beneficial to immunotherapy in the field of oncology. On the contrary, in the treatment of autoimmune diseases, blockade of these transporters may prove beneficial, as it could dampen disease activity by compromising immune effector cell functions. This review will focus on the expression, regulation, and substrate specificity of ABC transporters in relation to functional activities of immune effector cells and discusses implications for the treatment of cancer on the one hand and autoimmune diseases on the other.
Collapse
Affiliation(s)
- Rieneke van de Ven
- Department of Pathology, VU University Medical Center/Cancer Center Amsterdam, Amsterdam, Zuid Holland 1081 HV The Netherlands
| | | | | | | | | | | | | |
Collapse
|
4
|
Galski H, Sivan H, Lazarovici P, Nagler A. In vitro and in vivo reversal of MDR1-mediated multidrug resistance by KT-5720: Implications on hematological malignancies. Leuk Res 2006; 30:1151-8. [PMID: 16542724 DOI: 10.1016/j.leukres.2006.02.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 02/06/2006] [Accepted: 02/08/2006] [Indexed: 11/19/2022]
Abstract
Multidrug resistance (MDR) due to over-expression of the MDR1 (ABCB1) gene and its P-glycoprotein (Pgp) product is an obstacle in the treatment of hematological malignancies. In this study, we have evaluated the potency of KT-5720 to reverse Pgp-dependent MDR in vitro and in vivo. KT-5720 (but not its close derivatives, K252a and K252b) reversed multidrug resistance of LM1/MDR cell line at non-toxic concentrations and increased accumulation of rhodamine 123 (Rh123). KT-5720 significantly reversed MDR1-dependent resistance of primary malignant cells from patients with chronic myelogenous leukemia in blast crisis (CML-BC) and advanced multiple myeloma (MM). Moreover, KT-5720 (at 5 mg/kg) sensitized the bone marrow of MDR1 transgenic mice model towards daunorubicin (at 8 mg/kg) without general toxic effects. Therefore, KT-5720 can be considered as candidate for combination therapy in various hematological malignancies where Pgp activity is a major impediment for cure.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Blast Crisis/drug therapy
- Blast Crisis/pathology
- Carbazoles/pharmacology
- Carbazoles/therapeutic use
- Cell Line, Tumor
- Daunorubicin/pharmacology
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Humans
- Indoles/pharmacology
- Indoles/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Multiple Myeloma/drug therapy
- Multiple Myeloma/pathology
- Pyrroles/pharmacology
- Pyrroles/therapeutic use
Collapse
Affiliation(s)
- Hanan Galski
- Laboratory of Molecular Immunobiology, Department of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel Hashomer, Israel.
| | | | | | | |
Collapse
|
5
|
Dines I, Rumjanek VM, Persechini PM. What Is Going on with Natural Killer Cells in HIV Infection? Int Arch Allergy Immunol 2004; 133:330-9. [PMID: 15031606 DOI: 10.1159/000077352] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2002] [Accepted: 10/30/2003] [Indexed: 11/19/2022] Open
Abstract
Natural killer (NK) cells represent 10-15% of circulating lymphocytes and are important mediators of both natural and adaptive immunity. They participate in immune surveillance against malignancies and virus infection and are involved in the complex immune responses of transplantation, autoimmune diseases and immunosuppression. They can also mediate physiological regulation of hematopoiesis, homeostasis of reproduction and placentation. In recent years new advances have been achieved in understanding the mechanisms whereby NK cells exert their cytotoxic and regulatory roles. Here, we review the physiology of NK cells with special attention to its role in HIV infection.
Collapse
Affiliation(s)
- Ilana Dines
- Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
| | | | | |
Collapse
|
6
|
Park SW, Lomri N, Simeoni LA, Fruehauf JP, Mechetner E. Analysis of P-glycoprotein-mediated membrane transport in human peripheral blood lymphocytes using the UIC2 shift assay. Cytometry A 2003; 53:67-78. [PMID: 12766968 DOI: 10.1002/cyto.a.10039] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND During transport-associated adenosine triphosphate hydrolysis, P-glycoprotein (Pgp) undergoes conformation transitions detected by UIC2, a functional anti-Pgp monoclonal antibody. A newly developed UIC2 shift assay is based on increased UIC2 reactivity in the presence of Pgp substrates. All peripheral blood leukocytes express low Pgp levels. The existing antibody-based detection methods are limited in their sensitivity and require additional techniques to simultaneously analyze Pgp expression and efflux, making it difficult to ascertain the physiologic role of Pgp-mediated transport. METHODS We validated the UIC2 shift assay against UIC2 immunostaining and DiOC(2) efflux. The UIC2 shift assay was then used to characterize Pgp functional expression and its physiologic substrates in peripheral blood leukocytes. RESULTS A strong correlation was observed between the UIC2 shift assay versus immunostaining and dye efflux tests. The UIC2 shift assay showed improved sensitivity (compared with conventional UIC2 staining) and allowed for simultaneous detection of Pgp expression and function. Using this assay, we identified several new Pgp substrates, including monensin and retinol, and confirmed that interleukin-2 and interferon-gamma can be transported by Pgp. CONCLUSIONS Our findings validate the use of the UIC2 shift assay in MDR1 detection and support the idea that Pgp plays a physiologic role in immunoregulation.
Collapse
Affiliation(s)
- Suk W Park
- Ingenex, Inc., Menlo Park, California, USA
| | | | | | | | | |
Collapse
|
7
|
Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000. [DOI: 10.1182/blood.v96.8.2703.h8002703_2703_2711] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unrelated cord blood (UCB) is being used as a source of alternative hematopoietic stem cells for transplantation with increasing frequency. From November 1994 to February 1999, 30 UCB transplant procedures were performed for both malignant and nonmalignant diseases in 27 children, aged 0.4 to 17.1 years. Patients received either HLA-matched (n = 3) or 1- or 2-antigen–mismatched (n = 27) UCB following 1 of 2 standardized preparative and graft-versus-host disease regimens (hyperfractionated total body irradiation, cyclophosphamide, and antithymocyte globulin [ATG] with cyclosporine A and methotrexate; or busulfan, melphalan, and ATG with cyclosporine A and prednisone). The median time to neutrophil and platelet engraftment was 27 days (12-60 days) and 75 days (33-158 days) posttransplantation, respectively. No correlation was noted between neutrophil and platelet engraftment and nucleated cells per kilogram, CD34+ cells per kilogram infused, or cytomegalovirus status of recipient. The cumulative probability of acute grade 2 or greater graft-versus-host disease (GVHD) was 37.2%, and of grade 3 or greater GVHD was 8.8%. No patients developed chronic GVHD. CD4, CD19, and natural killer cell recovery was achieved at a median of 12, 6, and 2 months, respectively. CD8 recovery was delayed at a median of 9 months. Normal mitogen response was achieved at 6 to 9 months. The probability of survival, disease-free survival, and event-free survival at 1 year was 52.3% (34.1%-70.5%), 54.7% (34.5%-74.9%) and 49.6% (29.9%-69.4%), respectively. This series of 30 UCB transplants suggests that although CD8 cell recovery is delayed, the pattern of immune reconstitution with UCB is similar to that reported for other stem cell sources.
Collapse
|
8
|
Analysis of engraftment, graft-versus-host disease, and immune recovery following unrelated donor cord blood transplantation. Blood 2000. [DOI: 10.1182/blood.v96.8.2703] [Citation(s) in RCA: 183] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Unrelated cord blood (UCB) is being used as a source of alternative hematopoietic stem cells for transplantation with increasing frequency. From November 1994 to February 1999, 30 UCB transplant procedures were performed for both malignant and nonmalignant diseases in 27 children, aged 0.4 to 17.1 years. Patients received either HLA-matched (n = 3) or 1- or 2-antigen–mismatched (n = 27) UCB following 1 of 2 standardized preparative and graft-versus-host disease regimens (hyperfractionated total body irradiation, cyclophosphamide, and antithymocyte globulin [ATG] with cyclosporine A and methotrexate; or busulfan, melphalan, and ATG with cyclosporine A and prednisone). The median time to neutrophil and platelet engraftment was 27 days (12-60 days) and 75 days (33-158 days) posttransplantation, respectively. No correlation was noted between neutrophil and platelet engraftment and nucleated cells per kilogram, CD34+ cells per kilogram infused, or cytomegalovirus status of recipient. The cumulative probability of acute grade 2 or greater graft-versus-host disease (GVHD) was 37.2%, and of grade 3 or greater GVHD was 8.8%. No patients developed chronic GVHD. CD4, CD19, and natural killer cell recovery was achieved at a median of 12, 6, and 2 months, respectively. CD8 recovery was delayed at a median of 9 months. Normal mitogen response was achieved at 6 to 9 months. The probability of survival, disease-free survival, and event-free survival at 1 year was 52.3% (34.1%-70.5%), 54.7% (34.5%-74.9%) and 49.6% (29.9%-69.4%), respectively. This series of 30 UCB transplants suggests that although CD8 cell recovery is delayed, the pattern of immune reconstitution with UCB is similar to that reported for other stem cell sources.
Collapse
|