1
|
Dai S, Liu Y, Zhao F, Wang H, Shao T, Xu Z, Shou L, Chen S, Zhang GCX, Shu Q. Aqueous extract of Taxus chinensis var. mairei targeting CD47 enhanced antitumor effects in non-small cell lung cancer. Biomed Pharmacother 2022; 154:113628. [PMID: 36058145 DOI: 10.1016/j.biopha.2022.113628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 12/20/2022] Open
Abstract
Immunoglobulin protein CD47 is overexpressed in malignant tumor cells, allowing them to evade host immunity mainly by inhibiting macrophage-mediated phagocytosis. Taxus chinensis var. mairei (TC) exhibits high antitumor efficacy with low toxicity and notable cost-effectiveness. However, it is unknown whether aqueous extract of TC (AETC) is an immunomodulator that mediates antitumor efficacy. In this study, we aimed to elucidate the critical role of CD47 degradation in the treatment of AETC in non-small cell lung cancer (NSCLC) cells. A mouse Lewis lung carcinoma model was developed to determine whether the administration of AETC, as an anti-CD47 antibody, in combination with anti-PD-1 could synergistically inhibit tumor growth and promote a peripheral immune response. AETC treatment downregulated CD47 levels in NSCLC cells and Lewis tumor xenograft mice. Furthermore, treatment enhanced immunity against NSCLC by triggering CD47 ubiquitination and degradation, promoting macrophage-mediated tumor cell phagocytosis, and activating CD8+ T cells. The present study empirically demonstrated, for the first time, that AETC exerts antitumor properties as an immunomodulator. Our findings present AETC as a promising alternative or adjuvant treatment in lung cancer therapy.
Collapse
Affiliation(s)
- Shuying Dai
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Yi Liu
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Fangmin Zhao
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Haibing Wang
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, No. 54 Youdian Road, Hangzhou 310006, China
| | - Tianyu Shao
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Zeting Xu
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou 310053, China
| | - Liumei Shou
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, No. 54 Youdian Road, Hangzhou 310006, China
| | - Shuyi Chen
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, No. 54 Youdian Road, Hangzhou 310006, China
| | - Gao-Chen-Xi Zhang
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, No. 54 Youdian Road, Hangzhou 310006, China.
| | - Qijin Shu
- Department of Oncology, Zhejiang Provincial Hospital of Traditional Chinese Medicine, No. 54 Youdian Road, Hangzhou 310006, China.
| |
Collapse
|
2
|
Plants in Anticancer Drug Discovery: From Molecular Mechanism to Chemoprevention. BIOMED RESEARCH INTERNATIONAL 2022; 2022:5425485. [PMID: 35281598 PMCID: PMC8906971 DOI: 10.1155/2022/5425485] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 02/17/2022] [Indexed: 12/18/2022]
Abstract
Cancer is one of the primary causes of mortality globally, and the discovery of new anticancer drugs is the most important need in recent times. Natural products have been recognized as effective in fight against various diseases including cancer for over 50 years. Plants and microbes are the primary and potential sources of natural compounds to fight against cancer. Moreover, researches in the field of plant-based natural compounds have moved towards advanced and molecular level understandings from the last few decades, leading to the development of potent anticancer agents. Also, plants have been accepted as abundant and prosperous sources for the development of novel therapeutic agents for the management and prevention of different cancer types. The high toxicity of some cancer chemotherapy drugs, as well as their unfavorable side effects and drugs resistance, drives up the demand for natural compounds as new anticancer drugs. In this detailed evidence-based mechanistic review, facts and information about various medicinal plants, their bioactive compounds with their potent anticancer activities against different cancers have been gathered, with further approach to represent the molecular mechanism behind the anticancer activity of these plants. This review will be beneficial for investigators/scientists globally involved in the development of natural, safe, effective, and economical therapeutic agents/drugs against various cancers. This might be an important contribution in the field of drug discovery, where drugs can be used alone or in combination to increase the efficacy of newly synthesized drugs.
Collapse
|
3
|
Zhang G, Dai S, Chen Y, Wang H, Chen T, Shu Q, Chen S, Shou L, Cai X. Aqueous extract of Taxus chinensis var. mairei regulates the Hippo-YAP pathway and promotes apoptosis of non-small cell lung cancer via ATF3 in vivo and in vitro. Biomed Pharmacother 2021; 138:111506. [PMID: 33740524 DOI: 10.1016/j.biopha.2021.111506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 01/21/2023] Open
Abstract
Taxus chinensis var. mairei (TC) is a traditional Chinese ornamental and medicinal plant, the leaves and twigs of which are used in anti-tumor therapy in southern China. However, the mechanism and role of aqueous extract of TC (AETC) in promoting apoptosis in non-small cell lung cancer (NSCLC) cell lines has remained unclear. In this research, we observed that AETC inhibited the suppression of the proliferation of NSCLC cells and highly inhibited the proliferation of NCI-1975 cells. Furthermore, AETC exerted minimal inhibitory effects on normal human lung epithelial cells and induced apoptosis in NCI-1975 and A549 cells. The findings of RNA sequencing, qRT-PCR, western blotting, and immunofluorescence showed that upregulated ATF3 expression and ATF3 gene knockdown, respectively, increased and decreased the anti-tumor effects of AETC associated with Hippo pathway inhibition and decreased YAP degradation. Furthermore, AETC reduced the tumor volume and weight in nude mice; upregulated ATF3, p-MOB1, and p-YAP (Ser397); and actively regulated cleaved PARP and cleaved caspase-9/8/3. These findings suggest that AETC induced NSCLC cell apoptosis via the ATF3-Hippo-YAP pathway in vivo and in vitro. We also found that AETC is non-toxic to normal cells and nude mice. Thus, AETC might represent a promising adjuvant for anti-tumor therapy against NSCLC.
Collapse
MESH Headings
- A549 Cells
- Activating Transcription Factor 3/antagonists & inhibitors
- Activating Transcription Factor 3/metabolism
- Adaptor Proteins, Signal Transducing/antagonists & inhibitors
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Female
- Hippo Signaling Pathway
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Mice
- Mice, Inbred BALB C
- Protein Serine-Threonine Kinases/antagonists & inhibitors
- Protein Serine-Threonine Kinases/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Taxus
- Water/pharmacology
- Xenograft Model Antitumor Assays/methods
- YAP-Signaling Proteins
Collapse
Affiliation(s)
- Gaochenxi Zhang
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Shuying Dai
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yiyi Chen
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haibin Wang
- Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Chen
- Department of Neurology, the Second People's Hospital of Fuyang City, Hangzhou, China
| | - Qijin Shu
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China; Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuyi Chen
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Liumei Shou
- Department of Oncology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolu Cai
- The First Clinical College, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
4
|
Madkour MM, Anbar HS, El-Gamal MI. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors. Eur J Med Chem 2021; 213:113216. [PMID: 33524689 DOI: 10.1016/j.ejmech.2021.113216] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/08/2021] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
P38α (which is also named MAPK14) plays a pivotal role in initiating different disease states such as inflammatory disorders, neurodegenerative diseases, cardiovascular cases, and cancer. Inhibitors of p38α can be utilized for treatment of these diseases. In this article, we reviewed the structural and biological characteristics of p38α, its relationship to the fore-mentioned disease states, as well as the recently reported inhibitors and classified them according to their chemical structures. We focused on the articles published in the literature during the last decade (2011-2020).
Collapse
Affiliation(s)
- Moustafa M Madkour
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, 19099, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, 35516, Egypt.
| |
Collapse
|
5
|
Jiang P, Zhang Q, Zhao Y, Xiong J, Wang F, Zhang T, Zhang C. Extraction, Purification, and Biological Activities of Polysaccharides from Branches and Leaves of Taxus cuspidata S. et Z. Molecules 2019; 24:molecules24162926. [PMID: 31412567 PMCID: PMC6720281 DOI: 10.3390/molecules24162926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 01/11/2023] Open
Abstract
Taxus cuspidata S. et Z. is an excellent natural source of bioactive polysaccharides and has various biological activities. The objective of this study was to evaluate the effect of antidiabetic and antitumor activities of polysaccharides from Taxus cuspidata branches and leaves (TCBL) and to determine the optimum extraction technology of TCBL using a low-temperature and high-efficiency enzyme and ultrasound-assisted coupled extraction (EUCE) method. Optimal technology parameters were determined as follows: an extraction temperature of 51 °C, an extraction time of 33 min, a ratio of material to liquid of 1:19 (g:mL), and an enzyme concentration of 0.10 mg·mL−1. Under the optimized conditions, the polysaccharide yield from TCBL obtained by EUCE was 4.78% ± 0.18%. The four purified polysaccharides (Pe1, Pe2, Pe3, Pe4) from TCBL are mainly composed of arabinose, galactose, glucose, a small amount of xylose, and mannose. This composition was assessed by HPIC analysis. The antidiabetic activity and antitumor activity of polysaccharides from TCBL were assayed in vitro. Among the four purified polysaccharides from TCBL, purified Pe4 had the highest inhibitory capacity against α-glucosidase, and its IC50 value was 123.0 µg·mL−1. Pe1 had the highest antitumor capacity against MCF7 cells and HepG2 cells, with IC50 values of 169.0 and 132.0 µg·mL−1. Pe4 had the highest antitumor effect on human cervical cancer cells (Hela), and its IC50 value was 89.9 µg·mL−1. Pe4 polysaccharide demonstrated a good α-glucosidase inhibitory activity and antitumor capacity against Hela cells. Therefore, Pe4 polysaccharide from TCBL is a beneficial source of potential inhibitors of type II diabetes and human cervical cancer activity.
Collapse
Affiliation(s)
- Ping Jiang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qian Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yajie Zhao
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Xiong
- Plants for Human Health Institute, Food Bioprocessing and Nutritional Sciences, North Carolina State University, North Carolina Research Campus, Kannapolis, NC 28081, USA
| | - Fei Wang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Ting Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenmeng Zhang
- Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Mubeen S, Li ZL, Huang QM, He CT, Yang ZY. Comparative Transcriptome Analysis Revealed the Tissue-Specific Accumulations of Taxanes among Three Experimental Lines of Taxus yunnanensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:10410-10420. [PMID: 30208705 DOI: 10.1021/acs.jafc.8b03502] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Taxus yunnanensis (Yew) is known for natural anticancer metabolite paclitaxel (Taxol) and its biosynthesis pathway in yew species still needs to be completely elucidated. In the current study, productions of paclitaxel and 10-DAB III from three different tissues (needle, branch, and root) of T. yunnanensis wild type (WT) and two new cultivars Zhongda-1 (Zd1) and Zhongda-2 (Zd2) were determined, and significant tissue differences in contents of the taxanes were observed among the three experimental lines. The much higher 10-DAB III and lower paclitaxel contents in needle of Zd2 when compared with that of Zd1 indicated the low conversion from 10-DAB III to paclitaxel in the needle of Zd2. In order to uncover the mechanisms of the tissue-specific biosynthesis of the taxanes, transcriptome analysis of cultivar Zd2 was conducted, and the previously reported transcriptome data of Zd1 and WT were used to perform a comparison. The enhancement of TDAT and T10βH side biosynthetic pathway in roots of Zd2 in early taxane synthesis might lead to the biosynthesis of other toxoids, while the preference of T13αH route in the needle and branch of Zd2 was mainly responsible for the tissue-specific reinforced biosynthesis of 10-DAB III and paclitaxel in Zd2. Different from Zd1, the tissue-specific pattern of paclitaxel biosynthesis genes in Zd2 was similar to WT. However, the lower transcript abundance of final steps genes (TBT, DBAT, BAPT, and DBTNBT) of the paclitaxel biosynthesis pathway in Zd2 than in Zd1 might further promote 10-DAB III accumulation in Zd2.
Collapse
Affiliation(s)
- Samavia Mubeen
- State Key Laboratory for Biocontrol, School of Life Sciences , Sun Yat-Sen University , Xingang Xi Road 135 , Guangzhou 510275 , China
| | - Zhi-Liang Li
- MeiZhou ZhongTian Medicinal Research Institute , Meizhou 514021 , China
| | - Qiao-Ming Huang
- MeiZhou ZhongTian Medicinal Research Institute , Meizhou 514021 , China
| | - Chun-Tao He
- State Key Laboratory for Biocontrol, School of Life Sciences , Sun Yat-Sen University , Xingang Xi Road 135 , Guangzhou 510275 , China
| | - Zhong-Yi Yang
- State Key Laboratory for Biocontrol, School of Life Sciences , Sun Yat-Sen University , Xingang Xi Road 135 , Guangzhou 510275 , China
| |
Collapse
|
7
|
5-Nitro-5′-hydroxy-indirubin-3′-oxime (AGM130), an indirubin-3′-oxime derivative, inhibits tumor growth by inducing apoptosis against non-small cell lung cancer in vitro and in vivo. Eur J Pharm Sci 2015; 79:122-31. [PMID: 26342773 DOI: 10.1016/j.ejps.2015.08.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 08/11/2015] [Accepted: 08/26/2015] [Indexed: 12/17/2022]
|
8
|
Simultaneous determination of seven taxoids in rat plasma by UPLC–MS/MS and pharmacokinetic study after oral administration of Taxus yunnanensis extracts. J Pharm Biomed Anal 2015; 107:346-54. [DOI: 10.1016/j.jpba.2015.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/01/2015] [Indexed: 11/21/2022]
|