1
|
Zuo L, Hai Y, Zhang R, Zuo B, Tian J, Li P, Ke X, Wang M, Ren L, Li X, Huang X, Wang J. Therapeutic potential of icariin in rats with letrozole and high-fat diet-induced polycystic ovary syndrome. Eur J Pharmacol 2023:175825. [PMID: 37269973 DOI: 10.1016/j.ejphar.2023.175825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/19/2023] [Accepted: 05/30/2023] [Indexed: 06/05/2023]
Abstract
Polycystic ovary syndrome (PCOS) is characterized by reproductive, endocrine, and metabolic disorders. Icariin has been shown to regulate endocrine and metabolic imbalances. This study aimed to determine the therapeutic effect and pharmacological mechanism of icariin in PCOS rats. Rats were fed a high-fat diet and gavaged with letrozole to induce PCOS. Thirty-six female rats were randomly divided into four groups: control, model, low-dose, and high-dose icariin. After 30 days of treatment, we evaluated the therapeutic effects on weight and diet, sex hormone levels, ovarian morphology, estrous cycle, inflammatory factors, and indicators of glucolipid metabolism. Combined with the ovarian transcriptome, we verified the key markers of apoptosis and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway by RT-qPCR for mRNA level, western blot, and immunohistochemistry for protein expression. Icariin significantly improved ovarian function and reproductive endocrine disorders by regulating sex hormones, restoring the estrous cycle, and reducing ovarian morphological damage in PCOS rats. Icariin-treated rats had lower weight gain and reduced triglycerides, fasting insulin, HOMA-IR, TNF-α, and interleukin-6 with higher high-density lipoprotein cholesterol levels than PCOS rats. TUNEL staining showed icariin improved apoptosis in the ovaries. This was supported by an increase in Bcl2 and a decrease in Bad and Bax. Icariin decreased the ratios of p-JAK2/JAK2, p-STAT1/STAT1, p-STAT3/STAT3, and p-STAT5a/STAT5a, decreased IL-6, gp130 expression, and increased cytokine-inducible SH2-containing protein (CISH) and suppressor of cytokine signaling 1 (SOCS1) expression. The pharmacological mechanism may be related to the reduction in ovarian apoptosis and inhibition of the IL-6/gp130/JAK2/STATs pathway.
Collapse
Affiliation(s)
- Ling Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Yang Hai
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Basic Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Ruoyu Zhang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Biao Zuo
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Jiayu Tian
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Pan Li
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Xiumei Ke
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Meng Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Li Ren
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuezhi Li
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xuekuan Huang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianwei Wang
- Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing, 400016, China; College of Traditional Chinese Medicine, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
2
|
Astaxanthin-s-allyl cysteine diester against high glucose-induced neuronal toxicity in vitro and diabetes-associated cognitive decline in vivo: Effect on p53, oxidative stress and mitochondrial function. Neurotoxicology 2021; 86:114-124. [PMID: 34339762 DOI: 10.1016/j.neuro.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/24/2021] [Accepted: 07/28/2021] [Indexed: 02/08/2023]
Abstract
Neuroprotective effect of astaxanthin-s-allyl cysteine diester (AST-SAC) against high glucose (HG)-induced oxidative stress in in vitro and cognitive decline under diabetes conditions in in vivo has been explored. Pretreatment of AST-SAC (5, 10 and 15 μM) dose-dependently preserved the neuronal cells (SH-SY5Y) viability against HG toxicity through i) decreasing oxidative stress (decreasing reactive oxygen species generation and increasing endogenous antioxidants level); ii) protecting mitochondrial function [oxidative phosphorylation (OXPHOS) complexes activity and mitochondrial membrane potential (MMP)]; and iii) decreasing p53 level thereby subsequently decreasing the level of apoptotic marker proteins. Male Spraque-Dawley rats were orally administered AST-SAC (1 mg/kg/day) for 45 days in streptozotocin-induced diabetes mellitus (DM) rats. AST-SAC administration prevented the loss of spatial memory in DM rats as determined using the novel object location test. AST-SAC administration alleviated the DM-induced injury in brain such as increased cholinesterases activity, elevated oxidative stress and mitochondrial dysfunction. Altogether, the results from the present study demonstrated that AST-SAC averted the neuronal apoptosis and preserved the cognitive function against HG toxicity under DM conditions.
Collapse
|