1
|
Hu M, Wang F, Li N, Xing G, Sun X, Zhang Y, Cao S, Cui N, Zhang G. An antigen display system of GEM nanoparticles based on affinity peptide ligands. Int J Biol Macromol 2021; 193:574-584. [PMID: 34699894 DOI: 10.1016/j.ijbiomac.2021.10.135] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/08/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Gram-positive enhancer matrix (GEM) nanoparticles are often used in mucosal immunity, preparation of subunit vaccines or as an immune adjuvant due to its good immunological activities in recent years. Here, we designed and screened out a high affinity peptide ligand PL23, which could specifically target the non-epitope region of Classic Swine Fever Virus (CSFV) E2 protein, by virtual screening technology, enzyme linked immunosorbent assay (ELISA) and surface plasmon resonance (SPR) test. The OD value of PL23 at 450 nm was reached 1.982, and the KD value of it was 90.12 nM. Its binding capacity to protein was verified by SDS-PAGE as well. PL23 was subsequently conjugated to GEM nanoparticles by dehydration synthesis generating GEM-PL23 particles, and the GEM-PL-E2 particles were assembled after incubated with CSFV E2 protein. The cytotoxic test indicated that PL23, CSFV E2 protein, GEM nanoparticles, GEM-PL23 particles and GEM-PL-E2 particles were not toxic to cells and GEM nanoparticles could significantly promote the growth of APCs at high concentration for 1 h, p<0.001. In addition, GEM nanoparticles could promote the uptake of antigen by APCs. The cytokines tests suggested that GEM-PL-E2 particles could promote innate immune responses, regulate adaptive immune responses generated by T cells and APCs, and promote the differentiation and maturation of dendritic cells without producing inflammasomes. The results of immunological activity identification showed GEM-PL-E2 particles induced higher levels of both neutralizing antibodies and anti-CSFV antibodies than CSFV E2 protein in mice. This strategy provided a new, simpler, faster and cheaper method for assembling GEM nanoparticles, using an affinity peptide ligand replaced the protein anchor (PA), and provided a better application prospect for the application of GEM particles.
Collapse
Affiliation(s)
- Man Hu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China; Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Fangyu Wang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Ning Li
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guangxu Xing
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Xuefeng Sun
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Yunshang Zhang
- Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Shuai Cao
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Ningning Cui
- College of Food Science and Technology, Henan Agricultural University, Zhengzhou, Henan, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China; Key Laboratory for Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Attia MA, Essa EA, Elebyary TT, Faheem AM, Elkordy AA. Brief on Recent Application of Liposomal Vaccines for Lower Respiratory Tract Viral Infections: From Influenza to COVID-19 Vaccines. Pharmaceuticals (Basel) 2021; 14:1173. [PMID: 34832955 PMCID: PMC8619292 DOI: 10.3390/ph14111173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination is the most effective means of preventing infectious diseases and saving lives. Modern biotechnology largely enabled vaccine development. In the meantime, recent advances in pharmaceutical technology have resulted in the emergence of nanoparticles that are extensively investigated as promising miniaturized drug delivery systems. Scientists are particularly interested in liposomes as an important carrier for vaccine development. Wide acceptability of liposomes lies in their flexibility and versatility. Due to their unique vesicular structure with alternating aqueous and lipid compartments, liposomes can enclose both hydrophilic and lipophilic compounds, including antigens. Liposome composition can be tailored to obtain the desired immune response and adjuvant characteristics. During the current pandemic of COVID-19, many liposome-based vaccines have been developed with great success. This review covers a liposome-based vaccine designed particularly to combat viral infection of the lower respiratory tract (LRT), i.e., infection of the lung, specifically in the lower airways. Viruses such as influenza, respiratory syncytial virus (RSV), severe acute respiratory syndrome (SARS-CoV-1 and SARS-CoV-2) are common causes of LRT infections, hence this review mainly focuses on this category of viruses.
Collapse
Affiliation(s)
- Mohamed Ahmed Attia
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Ebtessam Ahmed Essa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Toka Tarek Elebyary
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta 31511, Egypt; (E.A.E.); (T.T.E.)
| | - Ahmed Mostafa Faheem
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| | - Amal Ali Elkordy
- School of Pharmacy and Pharmaceutical Sciences, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (M.A.A.); (A.M.F.)
| |
Collapse
|
3
|
Artzy-Schnirman A, Arber Raviv S, Doppelt Flikshtain O, Shklover J, Korin N, Gross A, Mizrahi B, Schroeder A, Sznitman J. Advanced human-relevant in vitro pulmonary platforms for respiratory therapeutics. Adv Drug Deliv Rev 2021; 176:113901. [PMID: 34331989 PMCID: PMC7611797 DOI: 10.1016/j.addr.2021.113901] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/20/2021] [Accepted: 07/24/2021] [Indexed: 02/08/2023]
Abstract
Over the past years, advanced in vitro pulmonary platforms have witnessed exciting developments that are pushing beyond traditional preclinical cell culture methods. Here, we discuss ongoing efforts in bridging the gap between in vivo and in vitro interfaces and identify some of the bioengineering challenges that lie ahead in delivering new generations of human-relevant in vitro pulmonary platforms. Notably, in vitro strategies using foremost lung-on-chips and biocompatible "soft" membranes have focused on platforms that emphasize phenotypical endpoints recapitulating key physiological and cellular functions. We review some of the most recent in vitro studies underlining seminal therapeutic screens and translational applications and open our discussion to promising avenues of pulmonary therapeutic exploration focusing on liposomes. Undeniably, there still remains a recognized trade-off between the physiological and biological complexity of these in vitro lung models and their ability to deliver assays with throughput capabilities. The upcoming years are thus anticipated to see further developments in broadening the applicability of such in vitro systems and accelerating therapeutic exploration for drug discovery and translational medicine in treating respiratory disorders.
Collapse
Affiliation(s)
- Arbel Artzy-Schnirman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Sivan Arber Raviv
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | | | - Jeny Shklover
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Netanel Korin
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Adi Gross
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Boaz Mizrahi
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Avi Schroeder
- Department of Chemical, Technion - Israel Institute of Technology, 32000 Haifa, Israel
| | - Josué Sznitman
- Department of Biomedical, Technion - Israel Institute of Technology, 32000 Haifa, Israel.
| |
Collapse
|
4
|
Mihalik NE, Wen S, Driesschaert B, Eubank TD. Formulation and In Vitro Characterization of PLGA/PLGA-PEG Nanoparticles Loaded with Murine Granulocyte-Macrophage Colony-Stimulating Factor. AAPS PharmSciTech 2021; 22:191. [PMID: 34169366 DOI: 10.1208/s12249-021-02049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has demonstrated notable clinical activity in cancer immunotherapy, but it is limited by systemic toxicities, poor bioavailability, rapid clearance, and instability in vivo. Nanoparticles (NPs) may overcome these limitations and provide a mechanism for passive targeting of tumors. This study aimed to develop GM-CSF-loaded PLGA/PLGA-PEG NPs and evaluate them in vitro as a potential candidate for in vivo administration. NPs were created by a phase-separation technique that did not require toxic/protein-denaturing solvents or harsh agitation techniques and encapsulated GM-CSF in a more stable precipitated form. NP sizes were within 200 nm for enhanced permeability and retention (EPR) effect with negative zeta potentials, spherical morphology, and high entrapment efficiencies. The optimal formulation was identified by sustained release of approximately 70% of loaded GM-CSF over 24 h, alongside an average size of 143 ± 35 nm and entrapment efficiency of 84 ± 5%. These NPs were successfully freeze-dried in 5% (w/v) hydroxypropyl-β-cyclodextrin for long-term storage and further characterized. Bioactivity of released GM-CSF was determined by observing GM-CSF receptor activation on murine monocytes and remained fully intact. NPs were not cytotoxic to murine bone marrow-derived macrophages (BMDMs) at concentrations up to 1 mg/mL as determined by MTT and trypan blue exclusion assays. Lastly, NP components generated no significant transcription of inflammation-regulating genes from BMDMs compared to IFNγ+LPS "M1" controls. This report lays the preliminary groundwork to validate in vivo studies with GM-CSF-loaded PLGA/PEG-PLGA NPs for tumor immunomodulation. Overall, these data suggest that in vivo delivery will be well tolerated.
Collapse
|
5
|
A liposome-displayed hemagglutinin vaccine platform protects mice and ferrets from heterologous influenza virus challenge. Proc Natl Acad Sci U S A 2021; 118:2025759118. [PMID: 34050027 DOI: 10.1073/pnas.2025759118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Recombinant influenza virus vaccines based on hemagglutinin (HA) hold the potential to accelerate production timelines and improve efficacy relative to traditional egg-based platforms. Here, we assess a vaccine adjuvant system comprised of immunogenic liposomes that spontaneously convert soluble antigens into a particle format, displayed on the bilayer surface. When trimeric H3 HA was presented on liposomes, antigen delivery to macrophages was improved in vitro, and strong functional antibody responses were induced following intramuscular immunization of mice. Protection was conferred against challenge with a heterologous strain of H3N2 virus, and naive mice were also protected following passive serum transfer. When admixed with the particle-forming liposomes, immunization reduced viral infection severity at vaccine doses as low as 2 ng HA, highlighting dose-sparing potential. In ferrets, immunization induced neutralizing antibodies that reduced the upper respiratory viral load upon challenge with a more modern, heterologous H3N2 viral strain. To demonstrate the flexibility and modular nature of the liposome system, 10 recombinant surface antigens representing distinct influenza virus strains were bound simultaneously to generate a highly multivalent protein particle that with 5 ng individual antigen dosing induced antibodies in mice that specifically recognized the constituent immunogens and conferred protection against heterologous H5N1 influenza virus challenge. Taken together, these results show that stable presentation of recombinant HA on immunogenic liposome surfaces in an arrayed fashion enhances functional immune responses and warrants further attention for the development of broadly protective influenza virus vaccines.
Collapse
|
6
|
Naghibi L, Yazdani M, Momtazi-Borojeni AA, Razazan A, Shariat S, Mansourian M, Arab A, Barati N, Arabsalmani M, Abbasi A, Saberi Z, Badiee A, Jalali SA, Jaafari MR. Preparation of nanoliposomes containing HER2/neu (P5+435) peptide and evaluation of their immune responses and anti-tumoral effects as a prophylactic vaccine against breast cancer. PLoS One 2020; 15:e0243550. [PMID: 33301467 PMCID: PMC7728212 DOI: 10.1371/journal.pone.0243550] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/23/2020] [Indexed: 11/18/2022] Open
Abstract
HER2/neu is an immunogenic protein inducing both humoral and cell-mediated immune responses. The antigen-specific cytotoxic T lymphocytes (CTLs) are the main effector immune cells in the anti-tumor immunity. To induce an effective CTL specific response against P5+435 single peptide derived from rat HER2/neu oncogene, we used a liposome delivery vehicle. In vivo enhancement of liposome stability and intracytoplasmic delivery of peptides are the main strategies which elevate the liposome-mediated drug delivery. Liposomes containing high transition temperature phospholipids, such as DSPC, are stable with prolonged in vivo circulation and more accessibility to the immune system. Incorporation of DOPE phospholipid results in the effective delivery of peptide into the cytoplasm via the endocytotic pathway. To this end, the P5+435 peptide was linked to Maleimide-PEG2000-DSPE and coupled on the surface of nanoliposomes containing DSPC: DSPG: Cholesterol with/without DOPE. We observed that mice vaccinated with Lip-DOPE-P5+435 formulation had the highest number of IFN-γ- producing CTLs with the highest cytotoxic activity that consequently led to significantly smallest tumor size and prolonged survival rate in the TUBO mice model. In conclusion, our study indicated that the liposomal form of P5+435 peptide containing DOPE can be regarded as a promising prophylactic anti-cancer vaccine to generate potent antigen-specific immunity.
Collapse
Affiliation(s)
- Laleh Naghibi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Razazan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Shariat
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mercedeh Mansourian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Atefeh Arab
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nastaran Barati
- Vice Chancellor for Research and Technology, Hamadan University of Medical Science, Hamadan, Iran
| | - Mahdieh Arabsalmani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azam Abbasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Saberi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- * E-mail: (MRJ); (SAJ); (AB)
| |
Collapse
|
7
|
Even-Or O, Avniel-Polak S, Barenholz Y, Nussbaum G. The cationic liposome CCS/C adjuvant induces immunity to influenza independently of the adaptor protein MyD88. Hum Vaccin Immunother 2020; 16:3146-3154. [PMID: 32401698 PMCID: PMC8641586 DOI: 10.1080/21645515.2020.1750247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/26/2020] [Indexed: 02/07/2023] Open
Abstract
Traditional non-living vaccines are often least effective in the populations that need them most, such as neonates and elderly adults. Vaccine adjuvants are one approach to boost the immunogenicity of antigens in populations with reduced immunity. Ideally, vaccine adjuvants will increase the seroconversion rates across the population, lead to stronger immune responses, and enable the administration of fewer vaccine doses. We previously demonstrated that a cationic liposomal formulation of the commercial influenza split virus vaccine (CCS/C-HA) enhanced cellular and humoral immunity to the virus, increased seroconversion rates, and improved survival after live virus challenge in a preclinical model, as compared to the commercial vaccine as is (F-HA). We now evaluated vaccine efficacy in different strains and sexes of mice and determined the role of innate immunity in the mechanism of action of the CCS/C adjuvant by testing the response of mice deficient in Toll-like receptors or the TLR/IL-1 adaptor protein MyD88 following immunization with CCS/C-HA vs. F-HA. Although TLR2- and TLR4-deficient mice responded to F-HA immunization, F-HA immunization failed to engender a significant immune response in the absence of MyD88. In contrast, immunization with the CCS/C-HA vaccine overcame the requirement for MyD88 in the response to the commercial vaccine and improved the immune responses and seroconversion rates in all strains of mice tested, including those deficient in TLR2 and TLR4.
Collapse
Affiliation(s)
- Orli Even-Or
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Shani Avniel-Polak
- Institute of Dental Sciences, The Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| | - Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Department of Biochemistry, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Gabriel Nussbaum
- Institute of Dental Sciences, The Hebrew University-Hadassah Faculty of Dental Medicine, Jerusalem, Israel
| |
Collapse
|
8
|
Farzad N, Barati N, Momtazi-Borojeni AA, Yazdani M, Arab A, Razazan A, Shariat S, Mansourian M, Abbasi A, Saberi Z, Badiee A, Jalali SA, Jaafari MR. P435 HER2/neu-derived peptide conjugated to liposomes containing DOPE as an effective prophylactic vaccine formulation for breast cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:665-673. [DOI: 10.1080/21691401.2019.1576702] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Niloofar Farzad
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Nastaran Barati
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Department of Medical Biotechnology, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Yazdani
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atefeh Arab
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Atefeh Razazan
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sheida Shariat
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mercedeh Mansourian
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Azam Abbasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Saberi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| | - Seyed Amir Jalali
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad, Iran
| |
Collapse
|
9
|
Bernasconi V, Bernocchi B, Ye L, Lê MQ, Omokanye A, Carpentier R, Schön K, Saelens X, Staeheli P, Betbeder D, Lycke N. Porous Nanoparticles With Self-Adjuvanting M2e-Fusion Protein and Recombinant Hemagglutinin Provide Strong and Broadly Protective Immunity Against Influenza Virus Infections. Front Immunol 2018; 9:2060. [PMID: 30271406 PMCID: PMC6146233 DOI: 10.3389/fimmu.2018.02060] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 08/21/2018] [Indexed: 12/28/2022] Open
Abstract
Due to the high risk of an outbreak of pandemic influenza, the development of a broadly protective universal influenza vaccine is highly warranted. The design of such a vaccine has attracted attention and much focus has been given to nanoparticle-based influenza vaccines which can be administered intranasally. This is particularly interesting since, contrary to injectable vaccines, mucosal vaccines elicit local IgA and lung resident T cell immunity, which have been found to correlate with stronger protection in experimental models of influenza virus infections. Also, studies in human volunteers have indicated that pre-existing CD4+ T cells correlate well to increased resistance against infection. We have previously developed a fusion protein with 3 copies of the ectodomain of matrix protein 2 (M2e), which is one of the most explored conserved influenza A virus antigens for a broadly protective vaccine known today. To improve the protective ability of the self-adjuvanting fusion protein, CTA1-3M2e-DD, we incorporated it into porous maltodextrin nanoparticles (NPLs). This proof-of-principle study demonstrates that the combined vaccine vector given intranasally enhanced immune protection against a live challenge infection and reduced the risk of virus transmission between immunized and unimmunized individuals. Most importantly, immune responses to NPLs that also contained recombinant hemagglutinin (HA) were strongly enhanced in a CTA1-enzyme dependent manner and we achieved broadly protective immunity against a lethal infection with heterosubtypic influenza virus. Immune protection was mediated by enhanced levels of lung resident CD4+ T cells as well as anti-HA and -M2e serum IgG and local IgA antibodies.
Collapse
Affiliation(s)
- Valentina Bernasconi
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Beatrice Bernocchi
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Liang Ye
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany
| | - Minh Quan Lê
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Ajibola Omokanye
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rodolphe Carpentier
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France
| | - Karin Schön
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Peter Staeheli
- Institute of Virology, University Medical Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Didier Betbeder
- Lille Inflammation Research International Center - U995, University of Lille, INSERM and CHU Lille, Lille, France.,Faculté des Sciences du Sport, University of Artois, Arras, France
| | - Nils Lycke
- Mucosal Immunobiology and Vaccine Center, Department of Microbiology and Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
10
|
Huang X, Karabudak A, Comber JD, Philip M, Morcol T, Philip R. A novel immunization approach for dengue infection based on conserved T cell epitopes formulated in calcium phosphate nanoparticles. Hum Vaccin Immunother 2017; 13:2612-2625. [PMID: 28933657 DOI: 10.1080/21645515.2017.1369639] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Dengue virus (DV) is the etiologic agent of dengue fever, the most significant mosquito-borne viral disease in humans. Most DV vaccine approaches are focused on generating antibody mediated responses; one such DV vaccine is approved for use in humans but its efficacy is limited. While it is clear that T cell responses play important role in DV infection and subsequent disease manifestations, fewer studies are aimed at developing vaccines that induce robust T cells responses. Potent T cell based vaccines require 2 critical components: the identification of specific T cell stimulating MHC associated peptides, and an optimized vaccine delivery vehicle capable of simultaneously delivering the antigens and any required adjuvants. We have previously identified and characterized DV specific HLA-A2 and -A24 binding DV serotypes conserved epitopes, and the feasibility of an epitope based vaccine for DV infection. In this study, we build on those previous studies and describe an investigational DV vaccine using T cell epitopes incorporated into a calcium phosphate nanoparticle (CaPNP) delivery system. This study presents a comprehensive analysis of functional immunogenicity of DV CaPNP/multipeptide formulations in vitro and in vivo and demonstrates the CaPNP/multipeptide vaccine is capable of inducing T cell responses against all 4 serotypes of DV. This synthetic vaccine is also cost effective, straightforward to manufacture, and stable at room temperature in a lyophilized form. This formulation may serve as an effective candidate DV vaccine that protects against all 4 serotypes as either a prophylactic or therapeutic vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Tulin Morcol
- b Captivate Pharmaceuticals , Doylestown , PA , USA
| | | |
Collapse
|
11
|
Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer 2016; 4:56. [PMID: 27660710 PMCID: PMC5028954 DOI: 10.1186/s40425-016-0160-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022] Open
Abstract
Cancer therapies based on T cells have shown impressive clinical benefit. In particular, immune checkpoint blockade therapies with anti-CTLA-4 and anti-PD-1/PD-L1 are causing dramatic tumor shrinkage and prolonged patient survival in a variety of cancers. However, many patients do not benefit, possibly due to insufficient spontaneous T cell reactivity against their tumors and/or lacking immune cell infiltration to tumor site. Such tumor-specific T cell responses could be induced through anti-cancer vaccination; but despite great success in animal models, only a few of many cancer vaccine trials have demonstrated robust clinical benefit. One reason for this difference may be the use of potent, effective vaccine adjuvants in animal models, vs. the use of safe, but very weak, vaccine adjuvants in clinical trials. As vaccine adjuvants dictate the type and magnitude of the T cell response after vaccination, it is critical to understand how they work to design safe, but also effective, cancer vaccines for clinical use. Here we discuss current insights into the mechanism of action and practical application of vaccine adjuvants, with a focus on peptide-based cancer vaccines.
Collapse
Affiliation(s)
- Hiep Khong
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| | - Willem W Overwijk
- Department of Melanoma Medical Oncology, University of Texas - MD Anderson Cancer Center, South Campus Research Building 1, 1515 Holcombe Blvd, Houston, TX 77030 USA ; Immunology program - University of Texas - Graduate School of Biomedical Sciences at Houston, 6767 Bertner Ave, Houston, TX 77030 USA
| |
Collapse
|
12
|
Alipour Talesh G, Ebrahimi Z, Badiee A, Mansourian M, Attar H, Arabi L, Jalali SA, Jaafari MR. Poly (I:C)-DOTAP cationic nanoliposome containing multi-epitope HER2-derived peptide promotes vaccine-elicited anti-tumor immunity in a murine model. Immunol Lett 2016; 176:57-64. [PMID: 27260485 DOI: 10.1016/j.imlet.2016.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 05/07/2016] [Accepted: 05/30/2016] [Indexed: 01/22/2023]
Abstract
In the current study we aimed at developing a vaccine delivery/adjuvant system to enhance anti-tumor immunity against the natural multi-epitope HER2/Neu-derived P5 peptide. Polyriboinosinic: polyribocytidylic acid [Poly (I:C)] is a strong immunoadjuvant able to enhance specific antitumor immunity induced by peptide-based vaccines. Nevertheless, delivering the peptide and adjuvant intracellularly into their target site remains a challenging issue. We hypothesized this barrier could be overcome through the use of a cationic nanoliposome carrier system which can carry and protect the antigen and adjuvant in the extracellular environment and augment the induction of antitumor immunity. P5 was encapsulated in cationic nanoliposomes composed of 1,2-dioleoyl-3-trimethylammonium propane (DOTAP)-Cholesterol either alone or complexed with Poly (I:C). Immunocompetent BALB/c mice were immunized with the formulations 3 times in two-week intervals and the efficiency and type of immune response were then evaluated both in vitro and in vivo. The groups immunized with Lip-P5+PIC (DOTAP-Cholestrol-P5+Poly (I:C)) and Lip+PIC (DOTAP-Cholestrol+Poly (I:C)) enhanced the release of Interferon (IFN)-γ in comparison with other groups. Flow cytometry analysis revealed that Lip-P5+PIC formulation induced the highest level of IFN-γ in CD8(+) lymphocytes. Lip-P5+PIC, Lip+PIC and Lip-P5 (DOTAP-Cholestrol-P5) provided some extent of protection in terms of tumor regression in TUBO tumor mice model during the first 65days post tumor challenge but at the end only the tumors of mice immunized with Lip-P5+PIC were significantly smaller than all other groups. Furthermore, tumors of mice receiving Lip-P5+PIC grew at a significantly slower rate throughout the observation period. Our results showed that the combination of Poly (I:C) and DOTAP with the tumor antigen and without applying additional T-helper epitope induced strong antitumor responses. The observations presented here are of great interest for future vaccine studies.
Collapse
Affiliation(s)
- Ghazal Alipour Talesh
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Zahra Ebrahimi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Badiee
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mercedeh Mansourian
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Attar
- Department of Biochemical Engineering, Science & Research Branch Islamic Azad University, Tehran, Iran
| | - Leila Arabi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Amir Jalali
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
13
|
Ortiz de Lejarazu R, Tamames S. Vacunación antigripal. Efectividad de las vacunas actuales y retos de futuro. Enferm Infecc Microbiol Clin 2015; 33:480-90. [DOI: 10.1016/j.eimc.2015.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 01/09/2023]
|
14
|
Finch C, Li W, Perez DR. Design of alternative live attenuated influenza virus vaccines. Curr Top Microbiol Immunol 2015; 386:205-35. [PMID: 25005928 DOI: 10.1007/82_2014_404] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Each year due to the ever-evolving nature of influenza, new influenza vaccines must be produced to provide protection against the influenza viruses in circulation. Currently, there are two mainstream strategies to generate seasonal influenza vaccines: inactivated and live-attenuated. Inactivated vaccines are non-replicating forms of whole influenza virus, while live-attenuated vaccines are viruses modified to be replication impaired. Although it is widely believed that by inducing both mucosal and humoral immune responses the live-attenuated vaccine provides better protection than that of the inactivated vaccine, there are large populations of individuals who cannot safely receive the LAIV vaccine. Thus, safer LAIV vaccines are needed to provide adequate protection to these populations. Improvement is also needed in the area of vaccine production. Current strategies relying on traditional tissue culture-based and egg-based methods are slow and delay production time. This chapter describes experimental vaccine generation and production strategies that address the deficiencies in current methods for potential human and agricultural use.
Collapse
Affiliation(s)
- Courtney Finch
- Department of Veterinary Medicine, College Park and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | | | | |
Collapse
|
15
|
Christian DA, Hunter CA. Particle-mediated delivery of cytokines for immunotherapy. Immunotherapy 2012; 4:425-41. [PMID: 22512636 DOI: 10.2217/imt.12.26] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The ability of cytokines to direct the immune response to vaccination, infection and tumors has motivated their use in therapy to augment or shape immunity. To avoid toxic side effects associated with systemic cytokine administration, several approaches have been developed using particle-encapsulated cytokines to deliver this cargo to specific cell types and tissues. Initial work used cytokine-loaded particles to deliver proinflammatory cytokines to phagocytes to enhance antimicrobial and antitumor responses. These particles have also been used to create a cytokine depot at a local site to supplement prophylactic or antitumor vaccines or injected directly into solid tumors to activate immune cells to eliminate established tumors. Finally, recent advances have revealed that paracrine delivery of cytokines directly to T cells has the potential to enhance T-cell mediated therapies. The studies reviewed here highlight the progress in the last 30 years that has established the potential of particle-mediated cytokine immunotherapy.
Collapse
Affiliation(s)
- David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
16
|
Jalali SA, Sankian M, Tavakkol-Afshari J, Jaafari MR. Induction of tumor-specific immunity by multi-epitope rat HER2/neu-derived peptides encapsulated in LPD Nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2012; 8:692-701. [DOI: 10.1016/j.nano.2011.09.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 09/17/2011] [Accepted: 09/24/2011] [Indexed: 02/02/2023]
|
17
|
Zhao G, Yan R, Muleke CI, Sun Y, Xu L, Li X. Vaccination of goats with DNA vaccines encoding H11 and IL-2 induces partial protection against Haemonchus contortus infection. Vet J 2011; 191:94-100. [PMID: 21330170 DOI: 10.1016/j.tvjl.2010.12.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 12/16/2010] [Accepted: 12/19/2010] [Indexed: 11/25/2022]
Abstract
DNA vaccines expressing Haemonchus contortus H11 antigen with or without interleukin (IL)-2 were tested for protection against H. contortus infection in goats. Sixteen goats (8-10 months of age) were allocated into four trial groups. On days 0 and 14, group 1 was immunised with a DNA vaccine expressing H11 and IL-2 and group 2 was immunised with a DNA vaccine expressing H11 only. Group 3 was an unvaccinated positive control group challenged with H. contortus third stage larvae (L3). Group 4 was an unvaccinated negative control group that was not challenged with L3. Animals in groups 1-3 were challenged with 5000 infective H. contortus L3 14 days after the second immunisation. Transcription of H11 and IL-2 was demonstrated in muscle by reverse transcriptase-PCR 10 days after primary immunisation and translation of H11 was detected by Western blot analysis 7 days after the second immunisation. Following immunisation with a DNA vaccine expressing H11 and IL-2, high levels of specific serum immunoglobulin (Ig) G, non-specific serum IgA, mucosal IgA, CD4(+) T lymphocytes, CD8(+) T lymphocytes and B lymphocytes were produced. Following challenge with L3, cumulative mean faecal worm egg counts and worm burdens in group 1 were reduced by 56.6% and 46.7%, respectively, while corresponding reductions in group 2 were 44.8% and 38.0%. There was a small but significant difference in abomasal worm burdens in goats in groups 1 (395.3±37.6) and 2 (459.5±101.6) compared to group 3 (741.5±241.5; P<0.05). Use of a DNA vaccine expressing H11 and IL-2 conferred partial protection against Haemonchus contortus infection in goats.
Collapse
Affiliation(s)
- GuangWei Zhao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | | | | | | | | | | |
Collapse
|
18
|
Influenza antigen-sparing by immune stimulation with Gram-positive enhancer matrix (GEM) particles. Vaccine 2010; 28:7963-9. [DOI: 10.1016/j.vaccine.2010.09.066] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 09/14/2010] [Accepted: 09/20/2010] [Indexed: 01/25/2023]
|
19
|
Zhang SH, Liang JX, Dai SY, Qiu XL, Yia YR, Pan Y. Immunological effect of subunit influenza vaccine entrapped by liposomes. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2009; 22:388-393. [PMID: 20163063 DOI: 10.1016/s0895-3988(10)60016-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
OBJECTIVE To elevate the immunological effect of subunit influenza vaccine in infants and aged people (over 60) using liposomal adjuvant in the context of its relatively low immunity and to investigate the relation between vaccine antigens and liposomal characteristics. METHODS Several formulations of liposomal subunit influenza vaccine were prepared. Their relevant characteristics were investigated to optimize the preparation method. Antisera obtained from immunizinged mice were used to evaluate the antibody titers of various samples by HI and ELISA. RESULTS Liposomal trivalent influenza vaccine prepared by film evaporation in combinedation with freeze-drying significantly increased its immunological effect in SPF Balb/c mice. Liposomal vaccine stimulated the antibody titer of H3N2, H1N1, and B much stronger than conventional influenza vaccine. As a result, liposomal vaccine (mean size: 4.5-5.5 microm, entrapment efficiency: 30%-40%) significantly increased the immunological effect of subunit influenza vaccine. CONCLUSION The immune effect of liposomal vaccine depends on different antigens, and enhanced immunity is not positively correlated with the mean size of liposome or its entrapped efficiency.
Collapse
Affiliation(s)
- Shui-Hua Zhang
- College of Life Sciences and Technology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | | | | | | | | | | |
Collapse
|
20
|
Faisal SM, Yan W, McDonough SP, Chang CF, Pan MJ, Chang YF. Leptosome-entrapped leptospiral antigens conferred significant higher levels of protection than those entrapped with PC-liposomes in a hamster model. Vaccine 2009; 27:6537-45. [PMID: 19729088 DOI: 10.1016/j.vaccine.2009.08.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2009] [Revised: 07/08/2009] [Accepted: 08/16/2009] [Indexed: 12/18/2022]
Abstract
We prepared novel liposomes from total polar lipids of non-pathogenic Leptospira biflexa serovar Potac (designated leptosomes) and evaluated their vaccine delivery/adjuvant potential with novel protective antigens (Lp0607, Lp1118 and Lp1454) of L. interrogans serovar Pomona in a hamster model. The immune response induced by three individual antigens and protective efficacy were evaluated and compared to those induced by same antigens entrapped with PC-liposomes and E. coli lipid liposomes (escheriosomes). Four-week-old hamsters were immunized subcutaneously twice at a 3-week interval, bled at various time points to evaluate antibody response and sacrificed to isolate splenocytes for lymphocyte proliferation and cytokine profiles in response to recall antigen. For the challenge test, 10x MLD(50) (modified lethal dose 50%) of virulent L. interrogans serovar Pomona were administered intraperitoneally. Our results demonstrate that leptosome are better adjuvant than PC-liposomes as revealed by enhanced long term antibody response, lymphocyte proliferation and significant enhancement of both Th1 (IFN-gamma) and Th2 (IL-4 and IL-10) cytokines. Additionally, leptosomes and escheriosomes induced significantly higher level of memory responses than PC-liposome did. Moreover, the novel leptosomal vaccine induced significantly higher levels of protection than those prepared with PC-liposomes as revealed by enhanced survival, reduced histopathological lesions in vital organs and reduced leptospiral load in kidneys. Taken together, the results of the present study clearly reveal that both leptosomes and escheriosomes have emerged as promising delivery vehicles/adjuvants that can be widely exploited with newly discovered antigens in future leptospira vaccines.
Collapse
Affiliation(s)
- Syed M Faisal
- College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
21
|
Vorauer-Uhl K, Jeschek D, Lhota G, Wagner A, Strobach S, Katinger H. Simultaneous Quantification of Complex Phospholipid Compositions Containing Monophosphoryl Lipid-A by RP-HPLC. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070903163180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Karola Vorauer-Uhl
- a Department of Biotechnology , University of Natural Resources and Applied Life Sciences , Vienna, Austria
| | - Dominik Jeschek
- a Department of Biotechnology , University of Natural Resources and Applied Life Sciences , Vienna, Austria
| | - Gabriele Lhota
- a Department of Biotechnology , University of Natural Resources and Applied Life Sciences , Vienna, Austria
| | - Andreas Wagner
- b Polymun Scientific, Immunbiologische Forschung GmbH , Vienna, Austria
| | - Stefanie Strobach
- a Department of Biotechnology , University of Natural Resources and Applied Life Sciences , Vienna, Austria
| | - Hermann Katinger
- a Department of Biotechnology , University of Natural Resources and Applied Life Sciences , Vienna, Austria
- b Polymun Scientific, Immunbiologische Forschung GmbH , Vienna, Austria
| |
Collapse
|
22
|
Romanova J, Krenn BM, Wolschek M, Ferko B, Romanovskaja-Romanko E, Morokutti A, Shurygina AP, Nakowitsch S, Ruthsatz T, Kiefmann B, König U, Bergmann M, Sachet M, Balasingam S, Mann A, Oxford J, Slais M, Kiselev O, Muster T, Egorov A. Preclinical evaluation of a replication-deficient intranasal DeltaNS1 H5N1 influenza vaccine. PLoS One 2009; 4:e5984. [PMID: 19543385 PMCID: PMC2694350 DOI: 10.1371/journal.pone.0005984] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 05/21/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND We developed a novel intranasal influenza vaccine approach that is based on the construction of replication-deficient vaccine viruses that lack the entire NS1 gene (DeltaNS1 virus). We previously showed that these viruses undergo abortive replication in the respiratory tract of animals. The local release of type I interferons and other cytokines and chemokines in the upper respiratory tract may have a "self-adjuvant effect", in turn increasing vaccine immunogenicity. As a result, DeltaNS1 viruses elicit strong B- and T- cell mediated immune responses. METHODOLOGY/PRINCIPAL FINDINGS We applied this technology to the development of a pandemic H5N1 vaccine candidate. The vaccine virus was constructed by reverse genetics in Vero cells, as a 5:3 reassortant, encoding four proteins HA, NA, M1, and M2 of the A/Vietnam/1203/04 virus while the remaining genes were derived from IVR-116. The HA cleavage site was modified in a trypsin dependent manner, serving as the second attenuation factor in addition to the deleted NS1 gene. The vaccine candidate was able to grow in the Vero cells that were cultivated in a serum free medium to titers exceeding 8 log(10) TCID(50)/ml. The vaccine virus was replication deficient in interferon competent cells and did not lead to viral shedding in the vaccinated animals. The studies performed in three animal models confirmed the safety and immunogenicity of the vaccine. Intranasal immunization protected ferrets and mice from being infected with influenza H5 viruses of different clades. In a primate model (Macaca mulatta), one dose of vaccine delivered intranasally was sufficient for the induction of antibodies against homologous A/Vietnam/1203/04 and heterologous A/Indonesia/5/05 H5N1 strains. CONCLUSION/SIGNIFICANCE Our findings show that intranasal immunization with the replication deficient H5N1 DeltaNS1 vaccine candidate is sufficient to induce a protective immune response against H5N1 viruses. This approach might be attractive as an alternative to conventional influenza vaccines. Clinical evaluation of DeltaNS1 pandemic and seasonal influenza vaccine candidates are currently in progress.
Collapse
Affiliation(s)
| | | | - Markus Wolschek
- Avir Green Hills Biotechnology AG, Vienna, Austria
- Department of Surgery, University of Vienna Medical School, Vienna, Austria
| | - Boris Ferko
- Avir Green Hills Biotechnology AG, Vienna, Austria
| | | | | | - Anna-Polina Shurygina
- Influenza Research Institute, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | | | | | | | - Ulrich König
- Avir Green Hills Biotechnology AG, Vienna, Austria
| | - Michael Bergmann
- Department of Surgery, University of Vienna Medical School, Vienna, Austria
| | - Monika Sachet
- Department of Surgery, University of Vienna Medical School, Vienna, Austria
| | - Shobana Balasingam
- Retroscreen Virology Ltd., Centre for Infectious Diseases, Bart's and the London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - Alexander Mann
- Retroscreen Virology Ltd., Centre for Infectious Diseases, Bart's and the London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | - John Oxford
- Retroscreen Virology Ltd., Centre for Infectious Diseases, Bart's and the London, Queen Mary's School of Medicine and Dentistry, London, United Kingdom
| | | | - Oleg Kiselev
- Influenza Research Institute, Russian Academy of Medical Sciences, St. Petersburg, Russia
| | - Thomas Muster
- Avir Green Hills Biotechnology AG, Vienna, Austria
- Division of General Dermatology, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Andrej Egorov
- Avir Green Hills Biotechnology AG, Vienna, Austria
- * E-mail:
| |
Collapse
|
23
|
|
24
|
Mallick A, Singha H, Khan S, Anwar T, Ansari M, Khalid R, Chaudhuri P, Owais M. Escheriosome-mediated delivery of recombinant ribosomal L7/L12 protein confers protection against murine brucellosis. Vaccine 2007; 25:7873-84. [DOI: 10.1016/j.vaccine.2007.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2007] [Revised: 08/31/2007] [Accepted: 09/03/2007] [Indexed: 11/29/2022]
|
25
|
Ferko B, Kittel C, Romanova J, Sereinig S, Katinger H, Egorov A. Live attenuated influenza virus expressing human interleukin-2 reveals increased immunogenic potential in young and aged hosts. J Virol 2006; 80:11621-7. [PMID: 16971432 PMCID: PMC1642586 DOI: 10.1128/jvi.01645-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the reported efficacy of commercially available influenza virus vaccines, a considerable proportion of the human population does not respond well to vaccination. In an attempt to improve the immunogenicity of live influenza vaccines, an attenuated, cold-adapted (ca) influenza A virus expressing human interleukin-2 (IL-2) from the NS gene was generated. Intranasal immunization of young adult and aged mice with the IL-2-expressing virus resulted in markedly enhanced mucosal and cellular immune responses compared to those of mice immunized with the nonrecombinant ca parent strain. Interestingly, the mucosal immunoglobulin A (IgA) and CD8(+) T-cell responses in the respiratory compartment could be restored in aged mice primed with the IL-2-expressing virus to magnitudes similar to those in young adult mice. The immunomodulating effect of locally expressed IL-2 also gave rise to a systemic CD8(+) T-cell and distant urogenital IgA response in young adult mice, but this effect was less distinct in aged mice. Importantly, only mice immunized with the recombinant IL-2 virus were completely protected from a pathogenic wild-type virus challenge and revealed a stronger onset of virus-specific CD8(+) T-cell recall response. Our findings emphasize the potential of reverse genetics to improve the efficacy of live influenza vaccines, thus rendering them more suitable for high-risk age groups.
Collapse
Affiliation(s)
- Boris Ferko
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Muthgasse 18B, A-1190 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
26
|
Joseph A, Itskovitz-Cooper N, Samira S, Flasterstein O, Eliyahu H, Simberg D, Goldwaser I, Barenholz Y, Kedar E. A new intranasal influenza vaccine based on a novel polycationic lipid—ceramide carbamoyl-spermine (CCS). Vaccine 2006; 24:3990-4006. [PMID: 16516356 DOI: 10.1016/j.vaccine.2005.12.017] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2005] [Accepted: 12/07/2005] [Indexed: 11/17/2022]
Abstract
Although most pathogens use the mucosal routes for invasion, the majority of currently available vaccines are administered parenterally. Injectable vaccines induce good systemic immunity but often unsatisfactory mucosal immunity. A non-injectable mucosal vaccine, which can be self-administered intranasally, may provide both effective systemic and mucosal immunity and can be used for vaccination of large populations within a short period of time in case of a sudden epidemic. Here, we report on a new intranasal (i.n.) influenza vaccine, based on a novel polycationic sphingolipid, N-palmitoyl D-erythro-sphingosyl carbamoyl-spermine (ceramide carbamoyl-spermine = CCS), having combined carrier and adjuvant activities, which elicits, in mice, strong systemic (serum) and local (lung and nasal) humoral and cellular responses, and provides protective immunity. In a comparative study, we show that both unmodified commercial vaccine and vaccine formulated with neutral or anionic liposomes were poorly immunogenic upon i.n. administration. Of five vaccine formulations based on well-established monocationic lipids in the form of unsized liposomes, three (DC-Chol, DDAB, and DSTAP-based) resulted in low serum and local responses, while two others (DMTAP and DOTAP-based vaccines) induced both systemic and local vigorous Th1+Th2 immune responses. However, only the vaccine formulated with CCS was equivalent or superior to the commercial vaccine co-administered with cholera toxin as an adjuvant. Furthermore, the CCS-based influenza vaccine was highly efficacious following a single or a repeated (x2) i.n. or a single i.m. administration, without an added adjuvant, in both young (2 months) and old (18 months) mice. It elicited high titers of strain cross-reactive hemagglutination inhibition (HI) antibodies, and the high antibody titers and protective immunity persisted for at least 9 months. No systemic adverse effects, and only a mild local inflammatory response, were observed in mice and rabbits vaccinated i.n. with the CCS vaccine formulation. A similar approach may prove efficacious for i.n. vaccination against other pathogens.
Collapse
Affiliation(s)
- Aviva Joseph
- The Lautenberg Center for General and Tumor Immunology, The Hebrew University-Hadassah Medical School, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Huckriede A, Bungener L, Stegmann T, Daemen T, Medema J, Palache AM, Wilschut J. The virosome concept for influenza vaccines. Vaccine 2005; 23 Suppl 1:S26-38. [PMID: 16026906 DOI: 10.1016/j.vaccine.2005.04.026] [Citation(s) in RCA: 151] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
There is a need for more efficacious inactivated influenza vaccines, since current formulations show suboptimal immunogenicity in at-risk populations, like the elderly. More effective vaccines are also urgently needed for an improved influenza pandemic preparedness. In this context, there is considerable interest in virosomes. Virosomes are virus-like particles, consisting of reconstituted influenza virus envelopes, lacking the genetic material of the native virus. Virosomes are produced from influenza virus through a detergent solubilization and removal procedure. Properly reconstituted virosomes retain the cell binding and membrane fusion properties of the native virus, mediated by the viral envelope glycoprotein haemagglutinin. These functional characteristics of virosomes form the basis for their enhanced immunogenicity. First, the repetitive arrangement of haemagglutinin molecules on the virosomal surface mediates a cooperative interaction of the antigen with Ig receptors on B lymphocytes, stimulating strong antibody responses. In addition, virosomes interact efficiently with antigen-presenting cells, such as dendritic cells, resulting in activation of T lymphocytes. In a murine model system, virosomes, as compared to conventional subunit vaccine, which consists of isolated influenza envelope glycoproteins, induce a more balanced T helper 1 versus T helper 2 response, virosomes in particular eliciting stronger T helper 1 responses than subunit vaccine. Also, as a result of fusion of the virosomes with the endosomal membrane, part of the virosomal antigen gains access to the major histocompatibility class I presentation pathway, thus priming cytotoxic T lymphocyte activity. Finally, virosomes represent an excellent platform for inclusion of lipophilic adjuvants for further stimulation of vaccine immunogenicity. By virtue of these characteristics, virosomes represent a promising novel class of inactivated influenza vaccines, which not only induce high virus-neutralizing antibody titres, but also prime the cellular arm of the immune system.
Collapse
Affiliation(s)
- Anke Huckriede
- University Medical Center Groningen, Department of Medical Microbiology, Molecular Virology Section, University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
28
|
Kittel C, Ferko B, Kurz M, Voglauer R, Sereinig S, Romanova J, Stiegler G, Katinger H, Egorov A. Generation of an influenza A virus vector expressing biologically active human interleukin-2 from the NS gene segment. J Virol 2005; 79:10672-7. [PMID: 16051859 PMCID: PMC1182655 DOI: 10.1128/jvi.79.16.10672-10677.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engineering of the influenza A virus NS1 protein became an attractive approach to the development of influenza vaccine vectors since it can tolerate large inserts of foreign proteins. However, influenza virus vectors expressing long foreign sequences from the NS1 open reading frame (ORF) are usually replication deficient in animals due to the abrogation of their NS1 protein function. In this study, we describe a bicistronic expression strategy based on the insertion of an overlapping UAAUG stop-start codon cassette into the NS gene, allowing the reinitiation of translation of a foreign sequence. Although the expression level of green fluorescent protein (GFP) from the newly created reading frame was significantly lower than that obtained previously from an influenza virus vector expressing GFP from the NS1 ORF, the bicistronic vector appeared to be replication competent in mice and showed outstanding genetic stability. All viral isolates derived from mouse lungs at 10 days postinfection were still capable of expressing GFP in infected cells. Utilizing this bicistronic approach, we constructed another recombinant influenza virus, allowing the secretion of biologically active human interleukin-2 (IL-2). Although this virus also replicated to high titers in mouse lungs, it did not display any mortality rate in infected animals, in contrast to control viruses. Moreover, the IL-2-expressing virus showed an enhanced CD8+ response to viral antigens in mice after a single intranasal immunization. These results indicate that influenza viruses could be engineered for the expression of biologically active molecules such as cytokines for immune modulation purposes.
Collapse
Affiliation(s)
- Christian Kittel
- Institute of Applied Microbiology, Muthgasse 18B, A-1190 Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
This review outlines the applications of liposomal formulations in ophthalmology. In ophthalmology, liposomes have been used to treat disorders of both the anterior and posterior segments. These include dry eyes, keratitis, corneal transplant rejection, uveitis, endophthalmitis, and proliferative vitreoretinopathy. Liposomes also have shown promise as vectors for genetic transfection and monoclonal antibody-directed vehicles. Furthermore, heat-activated liposomes have spurred research in focal laser and heat-induced release of liposomal drugs and dyes for selective drug delivery. These techniques have been useful in selective tumor and neovascular vessel occlusion, angiography, and retinal and choroidal blood-flow studies. Although verteporfin is the only liposomal drug currently approved for use in the eye, the benefits of liposomes will likely be applied widely in all treatment, diagnostic, and research aspects of ophthalmology in the future.
Collapse
Affiliation(s)
- Shehab Ebrahim
- Department of Ophthalmology, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
30
|
Bardiya N, Bae JH. Influenza vaccines: recent advances in production technologies. Appl Microbiol Biotechnol 2005; 67:299-305. [PMID: 15660212 DOI: 10.1007/s00253-004-1874-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 11/16/2004] [Accepted: 11/16/2004] [Indexed: 12/01/2022]
Abstract
In spite of ongoing annual vaccination programs, the seasonal influenza epidemics remain a major cause of high morbidity and mortality. The currently used "inactivated" vaccines provide very short-term and highly specific humoral immunity due to the frequent antigenic variations in the influenza virion. These intra-muscularly administered vaccines also fail to induce protective mucosal immunity at the portal of viral entry and destruction of the virally infected cells by induction of cytotoxic T lymphocytes. Therefore, it is necessary to develop immunologically superior vaccines. This article highlights some of the recent developments in investigational influenza vaccines. The most notable recent developments of interest include the use of immunopotentiators, development of DNA vaccines, use of reverse genetics, and the feasibility of mammalian cell-based production processes. Presently, due to their safety and efficacy, the cold-adapted "live attenuated" vaccines are seen as viable alternatives to the "inactivated vaccines". The DNA vaccines are gaining importance due to the induction of broad-spectrum immunity. In addition, recent advances in recombinant technologies have shown the possibility of constructing pre-made libraries of vaccine strains, so that adequately preparations can be made for epidemics and pandemics.
Collapse
Affiliation(s)
- N Bardiya
- Department of Civil and Environmental Engineering, Inha University, 253 YoungHyun Dong, Nam Gu, Inchon 402751, South Korea
| | | |
Collapse
|
31
|
Chen WC, Huang L. Non‐Viral Vector as Vaccine Carrier. NON-VIRAL VECTORS FOR GENE THERAPY, SECOND EDITION: PART 2 2005; 54:315-37. [PMID: 16096017 DOI: 10.1016/s0065-2660(05)54013-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Over the last several years, advances in gene-based delivery technology arising from the field of gene therapy have helped revitalize the field of vaccine development. Genetic vaccination encoding antigen from bacteria, virus, and cancer has shown promise in protective humoral and cellular immunity; however, the potential disadvantages of naked DNA vaccine have reduced the value of the approach. To optimize antigen delivery efficiency as well as vaccine efficacy, the non-viral vector as vaccine carrier, for example, the cationic liposome, has shown particular benefits to circumvent the obstacles that both peptide/protein- and gene-based vaccines have encountered. Liposome-mediated vaccine delivery provides greater efficacy and safer vaccine formulation for the development of vaccine for human use. The success of the liposome-based vaccine has been demonstrated in clinical trials and further human trials are also in progress.
Collapse
Affiliation(s)
- Weihsu Claire Chen
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | |
Collapse
|
32
|
Demana PH, Fehske C, White K, Rades T, Hook S. Effect of incorporation of the adjuvant Quil A on structure and immune stimulatory capacity of liposomes. Immunol Cell Biol 2004; 82:547-54. [PMID: 15479441 DOI: 10.1111/j.0818-9641.2004.01276.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liposomes have been widely used as drug delivery systems for many years. However, they are of limited use as delivery systems for subunit vaccines due to their low immunogenicity. Here we examine the effect of incorporating the adjuvant Quil A into liposomes on the type of particles produced, on the ability of the different particles to incorporate antigen and on the ability of the different particles to stimulate murine bone-marrow-derived dendritic cells (DC) and lymphocytes. The incorporation of increasing amounts of Quil A, from 20% to 70% of the total lipid into liposomes, reduces the size of the particles that form in aqueous dispersion and decreases antigen incorporation and uptake by DC. Interestingly, the particles with 20% Quil A were more toxic to cells in culture than the particles containing 70% Quil A, and the 20% particles were also more immunostimulatory.
Collapse
Affiliation(s)
- Patrick H Demana
- School of Pharmacy, University of Otago, PO Box 913, Dunedin, New Zealand
| | | | | | | | | |
Collapse
|
33
|
Wales J, Baird M, Davies N, Buchan G. Fusion of interleukin-2 to subunit antigens increase their antigenicity in vitro due to an interleukin-2 receptor beta-mediated antigen uptake mechanism. Scand J Immunol 2003; 58:367-73. [PMID: 12950684 DOI: 10.1046/j.1365-3083.2003.01312.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Subunit vaccines, based on one or more epitopes, offer advantages over whole vaccines in terms of safety but are less antigenic. We investigated whether fusion of the cytokine interleukin-2 (IL-2) to influenza-derived subunit antigens could increase their antigenicity. The fusion of IL-2 to the subunit antigens increased their antigenicity in vitro. Encapsulation of the subunit antigen in liposomes also increased its antigenicity in vitro, yet encapsulation of the subunit IL-2 fusion did not. The use of anti-IL-2 receptor beta (IL-2Rbeta) antibody to block the receptor subunit on macrophages suggested that the adjuvancy exerted by IL-2 in our in vitro system is due to, at least in part, a previously unreported IL-2Rbeta-mediated antigen uptake mechanism.
Collapse
Affiliation(s)
- J Wales
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|
34
|
Signorelli KL, Hadden JW. T cell immunostimulation by methyl inosine 5'-monophosphate: application to infectious diseases. Int Immunopharmacol 2003; 3:1177-86. [PMID: 12860173 DOI: 10.1016/s1567-5769(03)00010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Methyl inosine 5'-monophosphate (MIMP) was designed and synthesized in an endeavor to generate compounds with immunostimulatory activity based on the precedent of purines, particularly inosine playing a central role in the development and function of the immune system. This review will summarize the immune-enhancing effects of MIMP on a variety of immunological responses both in vitro and in vivo. Among these studies, MIMP displays protective effects in several in vivo models of infectious disease following administration by one of several routes including oral. Furthermore, MIMP enhanced responses to Hepatitis B and influenza vaccines. Vaccination represents an extremely powerful tool for combating a variety of diseases, perhaps even cancer. However, to date, vaccines have been limited by their inability to produce cell-mediated responses and by the low immunogenicity of soluble/subunit antigens. In addition, there are difficulties in eliciting sufficient responses in immunocompromised individuals, which includes the elderly, due to the natural immunosenescence that occurs with aging. The data described here suggest that MIMP could be used to overcome some of these limitations. The application of MIMP as an adjuvant to the influenza vaccine, focusing on the elderly, at-risk populations will be discussed in more detail; however, several other bacterial and viral vaccine and/or disease targets merit further consideration.
Collapse
|
35
|
Ben-Yehuda A, Joseph A, Barenholz Y, Zeira E, Even-Chen S, Louria-Hayon I, Babai I, Zakay-Rones Z, Greenbaum E, Galprin I, Glück R, Zurbriggen R, Kedar E. Immunogenicity and safety of a novel IL-2-supplemented liposomal influenza vaccine (INFLUSOME-VAC) in nursing-home residents. Vaccine 2003; 21:3169-78. [PMID: 12804845 DOI: 10.1016/s0264-410x(03)00251-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Influenza and its complications account for substantial morbidity and mortality, especially among the elderly. In young adults, immunization provides 70-90% protection, while among the elderly the vaccine may be only </=50% effective; hence, the need for new, more immunogenic vaccines. We compared the safety and immunogenicity of a novel, interleukin-2 (IL-2) -supplemented trivalent liposomal influenza vaccine (designated INFLUSOME-VAC) with that of a commercial trivalent split virion vaccine in community-residing elderly volunteers (mean age 81 years) in winter of 2000/2001. Eighty-one individuals were randomly assigned to be vaccinated intramuscularly, either with the standard vaccine (n=33) or with INFLUSOME-VAC (n=48) prepared from the former. The two vaccines contained equal amounts of hemagglutinin (HA) ( approximately 15 microgram of each viral strain); INFLUSOME-VAC consisted of liposomal antigens admixed with liposomal human IL-2 (Lip IL-2) (33 microgram = 6x10(5) IU/dose). At 1 month post-vaccination, seroconversion rates (tested by hemagglutination inhibition) for the A/New Caledonia (H1N1) and A/Moscow (H3N2) strains were significantly higher (P=0.04) in the INFLUSOME-VAC group (65 versus 45%, 44 versus 24%, respectively). Moreover, INFLUSOME-VAC induced a greater anti-neuraminidase (NA-N2) response (P<0.05). Anti-IL-2 antibodies were undetected, and no increase in anti-phospholipid IgG antibodies was found in the INFLUSOME-VAC group. Adverse reactions were similar in both groups. Thus, INFLUSOME-VAC appears to be both safe and more immunogenic than the currently used vaccine in the elderly.
Collapse
Affiliation(s)
- Arie Ben-Yehuda
- Department of Internal Medicine, Hadassah Medical Center, Jerusalem, 91120, Israel.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Oh YK, Park JS, Kang MJ, Ko JJ, Kim JM, Kim CK. Enhanced adjuvanticity of interleukin-2 plasmid DNA administered in polyethylenimine complexes. Vaccine 2003; 21:2837-43. [PMID: 12798625 DOI: 10.1016/s0264-410x(03)00178-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here the enhanced adjuvant effect of murine interleukin-2 plasmid DNA (mIL-2) by complexation with a cationic polymer polyethylenimine (PEI). The mRNA expression of mIL-2 was observed at C2C12 cells after treatment with pVAXmIL-2 in PEI-complexed form, but not in naked plasmid DNA. In vivo, the plasmid DNA levels of mIL-2 at the administered muscle tissues were prolonged up to 14 days after intramuscular administration in PEI complexes. Moreover, the mRNA expression level in the muscle was 54-fold higher in PEI-complexed pVAXmIL-2 than in naked pVAXmIL-2 at 14 days after intramuscular administration. Mice were immunized on Days 0 and 28 by intramuscular administration of hepatitis B surface antigen (HBsAg) alone or with pVAXmIL-2 in naked or PEI complexes. At 8 weeks after the first immunization, mice coadministered with HBsAg plus pVAXmIL-2 in PEI complexes showed the serum IgG titer 72- and 208-fold higher as compared to those treated with HBsAg plus naked pVAXmIL-2 and with HBsAg alone, respectively. Though both HBsAg-specific IgG(1) and IgG(2a) immune responses were increased upon complexation of pVAXmIL-2 with PEI, IgG(2a) was more effectively induced relative to IgG(1). These results suggest that the complexation with PEI could be useful for prolonging in vivo expression of genetic cytokine adjuvants and enhancing their adjuvanticity for subunit vaccines.
Collapse
Affiliation(s)
- Yu-Kyoung Oh
- Department of Microbiology, Pochon CHA University, Kyonggi-do, South Korea
| | | | | | | | | | | |
Collapse
|
37
|
Syed FM, Khan MA, Nasti TH, Ahmad N, Mohammad O. Antigen entrapped in the escheriosomes leads to the generation of CD4(+) helper and CD8(+) cytotoxic T cell response. Vaccine 2003; 21:2383-93. [PMID: 12744869 DOI: 10.1016/s0264-410x(03)00106-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In previous study, we demonstrated the potential of Escherichia coli (E. coli) lipid liposomes (escheriosomes) to undergo membrane-membrane fusion with cytoplasmic membrane of the target cells including professional antigen presenting cells. Our present study demonstrates that antigen encapsulated in escheriosomes could be successfully delivered simultaneously to the cytosolic as well as endosomal processing pathways of antigen presenting cells, leading to the generation of both CD4(+) T-helper and CD8(+) cytotoxic T cell response. In contrast, encapsulation of same antigen in egg phosphatidyl-choline (egg PC) liposomes, just like antigen-incomplete Freund's adjuvant (IFA) complex, has inefficient access to the cytosolic pathway of MHC I-dependent antigen presentation and failed to generate antigen-specific CD8(+) cytotoxic T cell response. However, both egg PC liposomes as well as escheriosomes-encapsulated antigen elicited strong humoral immune response in immunized animals but antibody titre was significantly higher in the group of animals immunized with escheriosomes-encapsulated antigen. These results imply usage of liposome-based adjuvant as potential candidate vaccine capable of eliciting both cell-mediated as well as humoral immune responses. Furthermore, antigen entrapped in escheriosomes stimulates antigen-specific CD4(+) T cell proliferation and also enhances the level of IL-2, IFN-gamma and IL-4 in the immunized animals.
Collapse
Affiliation(s)
- Faisal M Syed
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, 202002, Aligarh, India
| | | | | | | | | |
Collapse
|
38
|
Dileo J, Banerjee R, Whitmore M, Nayak JV, Falo LD, Huang L. Lipid-protamine-DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Mol Ther 2003; 7:640-8. [PMID: 12718907 DOI: 10.1016/s1525-0016(03)00064-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Vaccination with antigenic peptides encoding tumor antigens has the potential to be an effective treatment for cancer. To induce tumor-specific cellular immune responses, a peptide antigen must be presented by antigen-presenting cells (APCs) to T-cells in the lymphatic tissues. Effective in vivo delivery of peptide antigens to APCs has been problematic. Here we use a model antigen from the HPV16 E7 protein to formulate LPD/E7 particles that upon iv administration are internalized by CD11c(+) and CD11b(+) cells in the marginal zone of the spleen. Either iv or sc vaccination with LPD/E7 particles induces E7-specific CTL responses stronger than those obtained using previously described liposome/peptide strategies and prevents the establishment of E7-expressing tumors. Furthermore, the administration of LPD/E7 particles to tumor-bearing mice caused complete tumor regression in 100% of the treated animals. Based on these studies, the entrapment of peptide antigens inside LPD particles may be an effective and generally applicable strategy for the enhancement of peptide vaccine potency.
Collapse
Affiliation(s)
- John Dileo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
39
|
Ben-Yehuda A, Joseph A, Zeira E, Even-Chen S, Louria-Hayon I, Babai I, Zakay-Rones Z, Greenbaum E, Barenholz Y, Kedar E. Immunogenicity and safety of a novel liposomal influenza subunit vaccine (INFLUSOME-VAC) in young adults. J Med Virol 2003; 69:560-7. [PMID: 12601765 DOI: 10.1002/jmv.10345] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Influenza and its complications account for substantial morbidity and mortality among young adults and especially among the elderly. In young adults, immunization provides 70-90% protection, while among the elderly the vaccine may be only 30-40% effective; hence the need for new, more immunogenic vaccines. We compared the safety and immunogenicity of a novel IL-2-supplemented liposomal influenza vaccine (designated INFLUSOME-VAC) with that of a commercial subunit vaccine and a commercial split virion vaccine in young adults (mean age 28 years) in the winter of 1999-2000. Seventy-three healthy young adults were randomly assigned to be vaccinated intramuscularly with the following: a commercial subunit vaccine (n = 17, group A), INFLUSOME-VAC (n = 36, group B), and a commercial split virion vaccine (n = 20, group C). The three vaccines contained equal amounts of hemagglutinin (approximately 15 microg each) from the strains A/Sydney (H3N2), A/Beijing (H1N1), and B/Yamanashi. INFLUSOME-VAC induced higher geometric mean HI titers and higher-fold increases in HI titers against all three strains, compared with the two commercial vaccines. In addition, seroconversion rates for the A/Sydney and B/Yamanashi strains were significantly higher (P < 0.05) compared with the split virion vaccine, and significantly higher for the three strains compared with the subunit vaccine (69-97% vs 35-65%, P < or = 0.02). Moreover, the anti-neuraminidase response was significantly greater (P = 0.05) in group B vs group A. INFLUSOME-VAC caused mild local pain at the injection site in a significantly higher proportion of the vaccinees (83%). Thus, INFLUSOME-VAC is an immunogenic and safe vaccine in young adults.
Collapse
Affiliation(s)
- Arie Ben-Yehuda
- Department of Internal Medicine, Hebrew University-Hadassah Medical School and Hadassah Hospital, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Faulkner L, Buchan G, Slobbe L, Lockhart E, Wales J, Wilson M, Baird M. Influenza hemagglutinin peptides fused to interferon gamma and encapsulated in liposomes protects mice against influenza infection. Vaccine 2003; 21:932-9. [PMID: 12547605 DOI: 10.1016/s0264-410x(02)00543-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The immunogenicity of a peptide vaccine may be improved by fusing antigen to a cytokine and administering this chimeric protein in a particulate delivery system. We have investigated this using a vaccine comprising an immunodominant T cell epitope and a B cell epitope from influenza haemagglutinin (HATB) fused to interferon gamma and encapsulated in liposomes (HATB/IFN-gamma/lipo). Controls comprised groups receiving HATB/IFN-gamma mixed with liposomes, HATB incorporated in liposomes or heat inactivated PR8 influenza virus (HI PR8). IFN-gamma production in mice treated with HATB/IFN-gamma/lipo was significantly higher than in mice inoculated with either HATB/IFN-gamma mixed with liposomes or HATB incorporated in liposomes but less than HI PR8. Lung viral titres were significantly lower in mice treated with HATB/IFN-gamma/lipo compared with those treated with HATB/IFN-gamma mixed with liposomes. HI PR8-treated mice recorded a nil viral titre. There was no correlation between the level of antibody production and clearance of virus from the lungs. These data suggest that particulate delivery systems may be useful adjuncts to improve immune responses to chimeric proteins and to induce protection against disease.
Collapse
Affiliation(s)
- L Faulkner
- Department of Microbiology, University of Otago, PO Box 56, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Yechezkel Barenholz
- Laboratory of Membrane and Liposome Research, Hebrew University Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
42
|
Affiliation(s)
- Peter Palese
- Department of Microbiology, Mount Sinai School of Medicine, One Gustave Levy Place, New York, NY 10029, USA.
| | | |
Collapse
|
43
|
|
44
|
Abstract
Although influenza activity throughout the world has been relatively low during the past year, epidemics of influenza A, in particular, which are caused by new virus variants, continue to be a major public health problem. Widespread vaccination is the only rational measure that can be used for the prevention of illness in key risk groups. Although current inactivated split/subunit vaccines are reasonably effective, significant improvements have been shown to be possible in the boosting of responses by the use of particular adjuvants and/or the direct administration of vaccines to the respiratory tract. Live attenuated vaccines, also administered directly to the respiratory tract, have continued to be shown to be safe and effective, and, in the longer term, probably will have a major role in influenza prophylaxis, especially in children and young adults.
Collapse
|
45
|
Lee KY, Chun E, Seong BL. Investigation of antigen delivery route in vivo and imune-boosting effects mediated by pH-sensitive liposomes encapsulated with K(b)-restricted CTL epitope. Biochem Biophys Res Commun 2002; 292:682-8. [PMID: 11922620 DOI: 10.1006/bbrc.2002.6711] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using fluorescein isothiocyanate (FITC)-conjugated H-2K(b) CTL epitope (SIINFEKL) as a model system, we investigated the antigen delivery route by pH-sensitive liposomes in vivo. Fluorescence was initially detected in lymph nodes at 3 h after immunization, and its intensity reached a peak value in superticial inguinal lymph node at 9 h. No trace could be detected in spleen even with prolonged monitoring for up to 24 h. These results strongly suggest that the presentation of CTL-peptide antigen vehicled by pH-sensitive liposomes exclusively occurs in lymph nodes. In mice immunized with the H-2K(b) CTL epitope encapsulated pH-sensitive liposomes, peptide-specific CTL response was detected at day 3. The response was strongly augmented by the second immunization and persisted up to at least 45 days. These results suggest that pH-sensitive liposome formula functions as a potential adjuvant of peptide antigens and is useful for the induction of antigen specific CTLsv in vivo.
Collapse
Affiliation(s)
- Ki-Young Lee
- Department of Biotechnology, College of Engineering and Bioproducts Research Center, Yonsei University, 134 Shinchon-Dong, Seodaemun-Gu, Seoul, 120-749, South Korea
| | | | | |
Collapse
|
46
|
Abstract
Respiratory tract viruses are particularly significant causes of illness and death in children and in the elderly. Vaccines offer the possibility of decreasing the severity and complications of viral respiratory disease, but development has been delayed by numerous factors. First, there are more than 200 serologically distinct RNA and DNA virus species and strains which cause an essentially similar spectrum of disease. Some re-infect at high efficiency despite little antigenic variation, while others exhibit extensive coat protein variability. Vaccine candidates show variable efficacy in partially immune adults, the immunocompromised and the elderly, and may be ineffective or pathogenic in neonates or in the presence of maternal antibodies. However, effective childhood vaccines are essential to prevent severe disease due to respiratory syncytial virus (RSV) and parainfluenza and to reduce virus transmission to adults. A number of promising vaccines are in clinical trial, and it is likely that vaccines against RSV and parainfluenza will be licensed within the next 5-10 years. Mucosal delivery and the use of novel adjuvants offers the prospect of better vaccines against influenza. The ultimate goal is to develop multivalent mucosal vaccines offering protection against a spectrum of respiratory infections.
Collapse
Affiliation(s)
- Wieslawa Olszewska
- Department of Respiratory Medicine, Wright Fleming Institute for Infection and Immunity, National Heart and Lung Division, Faculty of Medicine, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|