1
|
Lovett AL, Riley CB, Chapman V, Bell B, Bishop B, Grierson A, Johnstone LJ, Sykes BW. Tetanus prophylaxis in horses: guidelines for New Zealand and Australia based on a critical appraisal of the evidence. N Z Vet J 2024; 72:241-255. [PMID: 38910032 DOI: 10.1080/00480169.2024.2365283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 05/19/2024] [Indexed: 06/25/2024]
Abstract
Horses are exquisitely sensitive to tetanus neurotoxin and are exposed to the risk of infection with Clostridium tetani throughout life. The vaccine against tetanus is highly effective at preventing disease, whereas tetanus in unvaccinated populations is associated with high mortality rates. Current guidelines in New Zealand and Australia for the available vaccine contain contradictions and limitations surrounding the optimal tetanus immunisation protocols for both adult horses and foals. This review critically evaluates the scientific literature on tetanus prophylaxis in horses within the context of equine practice and available products in New Zealand and Australia. The review was conducted by a panel of industry and specialist veterinarians to obtain agreement on nine equine tetanus prophylaxis guidelines for practising veterinarians. The primary protocol for tetanus toxoid (TT) immunisation consists of a three-dose series IM for all horses ≥ 6 months of age, and a four-dose series IM is proposed if commencing vaccination in foals between 3 and 6 months of age. Tetanus prophylaxis in foals < 3 months of age relies on passive immunity strategies. Following the completion of the primary protocol, a TT booster dose IM should be administered within 5 years, and every 5 years thereafter. When followed, these protocols should provide adequate protection against tetanus in horses. Additional tetanus prophylaxis guidelines are provided for veterinarians attending a horse experiencing a known "risk event" (e.g. wound, hoof abscess, surgery, umbilical infection). When a correctly vaccinated horse experiences a risk event, pre-existing immunity provides protection against tetanus. When an unvaccinated horse or one with unknown vaccination status, or a foal born to an unvaccinated dam, experiences a risk event, TT IM and tetanus antitoxin (TAT) 1,500 IU SC should be administered simultaneously at separate sites, and the TT primary immunisation protocol should subsequently be completed for the horse's respective age. In previously immunised pregnant broodmares, a TT booster dose administered 4-8 weeks prior to parturition optimises the transfer of passive immunity against tetanus to the newborn foal via colostrum; provided that post-natal IgG concentration in serum is > 800 mg/dL (8 g/L), such foals should be passively protected against tetanus up to 6 months of age. Survivors of clinical tetanus must still receive the primary protocol for vaccination against tetanus. In summary, all horses in New Zealand and Australia should be vaccinated against tetanus with protection maintained throughout life via TT booster doses, facilitated by accurate medical record keeping and client education.
Collapse
Affiliation(s)
- A L Lovett
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - C B Riley
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - V Chapman
- Zoetis New Zealand Ltd., Auckland, New Zealand
| | - B Bell
- VetSouth Equine, Invercargill, New Zealand
| | - B Bishop
- Canterbury Equine Surgical Consultancy Ltd., Prebbleton, New Zealand
| | - A Grierson
- Auckland Veterinary Centre, Takanini, New Zealand
| | - L J Johnstone
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - B W Sykes
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Wagner B. Monoclonal antibody development advances immunological research in horses. Vet Immunol Immunopathol 2024; 272:110771. [PMID: 38729028 DOI: 10.1016/j.vetimm.2024.110771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Host immune analyses require specific reagents to identify cellular and soluble components of the immune system. These immune reagents are often species-specific. For horses, various immunological tools have been developed and tested by different initiatives during the past decades. This article summarizes the development of well characterized monoclonal antibodies (mAbs) for equine immune cells, immunoglobulin isotypes, cytokines, and chemokines.
Collapse
Affiliation(s)
- Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Bordin AI, Huber L, Sanz M, Cohen N. Rhodococcus equi Foal Pneumonia: Update on Epidemiology, Immunity, Treatment, and Prevention. Equine Vet J 2022; 54:481-494. [PMID: 35188690 DOI: 10.1111/evj.13567] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/03/2022] [Accepted: 02/17/2022] [Indexed: 11/25/2022]
Abstract
Pneumonia in foals caused by the bacterium Rhodococcus equi has a worldwide distribution and is a common cause of disease and death for foals. The purpose of this narrative review is to summarise recent developments pertaining to the epidemiology, immune responses, treatment, and prevention of rhodococcal pneumonia of foals. Screening tests have been used to implement earlier detection and treatment of foals with presumed subclinical R. equi pneumonia to reduce mortality and severity of disease. Unfortunately, this practice has been linked to the emergence of antimicrobial resistant R. equi in North America. Correlates of protective immunity for R. equi infections of foals remain elusive, but recent evidence indicates that innate immune responses are important both for mediating killing and orchestrating adaptive immune responses. A macrolide antimicrobial in combination with rifampin remains the recommended treatment for foals with R. equi pneumonia. Great need exists to identify which antimicrobial combination is most effective for treating foals with R. equi pneumonia and to limit emergence of antimicrobial-resistant strains. In the absence of an effective vaccine against R. equi, passive immunisation remains the only commercially-available method for effectively reducing the incidence of R. equi pneumonia. Because passive immunisation is expensive, labour-intensive, and carries risks for foals, great need exists to develop alternative approaches for passive and active immunisation.
Collapse
Affiliation(s)
- Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4475, USA
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, Alabama, 36849, USA
| | - Macarena Sanz
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-6610, USA
| | - Noah Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, 77843-4475, USA
| |
Collapse
|
4
|
Kahn SK, Cywes-Bentley C, Blodgett GP, Canaday NM, Turner-Garcia CE, Flores-Ahlschwede P, Metcalfe LL, Nevill M, Vinacur M, Sutter PJ, Meyer SC, Bordin AI, Pier GB, Cohen ND. Randomized, controlled trial comparing Rhodococcus equi and poly-N-acetyl glucosamine hyperimmune plasma to prevent R equi pneumonia in foals. J Vet Intern Med 2021; 35:2912-2919. [PMID: 34738651 PMCID: PMC8692225 DOI: 10.1111/jvim.16294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/16/2023] Open
Abstract
Background Hyperimmune plasma raised against β‐1→6‐poly‐N‐acetyl glucosamine (PNAG HIP) mediates more opsonophagocytic killing of Rhodococcus equi (R equi) than does R equi hyperimmune plasma (RE HIP) in vitro. The relative efficacy of PNAG HIP and RE HIP to protect foals against R equi pneumonia, however, has not been evaluated. Hypothesis Transfusion with PNAG HIP will be superior to RE HIP in foals for protection against R equi pneumonia in a randomized, controlled, blinded clinical trial. Animals Four hundred sixty Quarter Horse and Thoroughbred foals at 5 large breeding farms in the United States. Methods A randomized, controlled, blinded clinical trial was conducted in which foals were transfused within 24 hours after birth with 2 L of either RE HIP or PNAG HIP. Study foals were monitored through weaning for clinical signs of pneumonia by farm veterinarians. The primary outcome was the proportion of foals that developed pneumonia after receiving each type of plasma. Results The proportion of foals that developed pneumonia was the same between foals transfused with RE HIP (14%; 32/228) and PNAG HIP (14%; 30/215). Conclusions and Clinical Importance Results indicate that PNAG HIP was not superior to a commercially available, United States Department of Agriculture‐licensed RE HIP product for protecting foals against R equi pneumonia under field conditions.
Collapse
Affiliation(s)
- Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Colette Cywes-Bentley
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | - Mariana Vinacur
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Gerald B Pier
- Department of Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
5
|
Kahn SK, Cywes-Bentley C, Blodgett GP, Canaday NM, Turner-Garcia CE, Vinacur M, Cortez-Ramirez SC, Sutter PJ, Meyer SC, Bordin AI, Vlock DR, Pier GB, Cohen ND. Antibody activities in hyperimmune plasma against the Rhodococcus equi virulence -associated protein A or poly-N-acetyl glucosamine are associated with protection of foals against rhodococcal pneumonia. PLoS One 2021; 16:e0250133. [PMID: 34437551 PMCID: PMC8389416 DOI: 10.1371/journal.pone.0250133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/25/2021] [Indexed: 11/18/2022] Open
Abstract
The efficacy of transfusion with hyperimmune plasma (HIP) for preventing pneumonia caused by Rhodococcus equi remains ill-defined. Quarter Horse foals at 2 large breeding farms were randomly assigned to be transfused with 2 L of HIP from adult donors hyperimmunized either with R. equi (RE HIP) or a conjugate vaccine eliciting antibody to the surface polysaccharide β-1→6-poly-N-acetyl glucosamine (PNAG HIP) within 24 hours of birth. Antibody activities against PNAG and the rhodococcal virulence-associated protein A (VapA), and to deposition of complement component 1q (C՛1q) onto PNAG were determined by ELISA, and then associated with either clinical pneumonia at Farm A (n = 119) or subclinical pneumonia at Farm B (n = 114). Data were analyzed using multivariable logistic regression. Among RE HIP-transfused foals, the odds of pneumonia were approximately 6-fold higher (P = 0.0005) among foals with VapA antibody activity ≤ the population median. Among PNAG HIP-transfused foals, the odds of pneumonia were approximately 3-fold (P = 0.0347) and 11-fold (P = 0.0034) higher for foals with antibody activities ≤ the population median for PNAG or C՛1q deposition, respectively. Results indicated that levels of activity of antibodies against R. equi antigens are correlates of protection against both subclinical and clinical R. equi pneumonia in field settings. Among PNAG HIP-transfused foals, activity of antibodies with C՛1q deposition (an indicator of functional antibodies) were a stronger predictor of protection than was PNAG antibody activity alone. Collectively, these findings suggest that the amount and activity of antibodies in HIP (i.e., plasma volume and/or antibody activity) is positively associated with protection against R. equi pneumonia in foals.
Collapse
MESH Headings
- Acetylglucosamine/immunology
- Actinomycetales Infections/immunology
- Actinomycetales Infections/microbiology
- Actinomycetales Infections/prevention & control
- Actinomycetales Infections/veterinary
- Animals
- Animals, Newborn/immunology
- Animals, Newborn/microbiology
- Antibodies, Bacterial/immunology
- Antibodies, Bacterial/therapeutic use
- Bacterial Proteins/immunology
- Female
- Horse Diseases/immunology
- Horse Diseases/microbiology
- Horse Diseases/prevention & control
- Horses/immunology
- Horses/microbiology
- Immunization, Passive/methods
- Immunization, Passive/veterinary
- Male
- Pneumonia, Bacterial/immunology
- Pneumonia, Bacterial/microbiology
- Pneumonia, Bacterial/prevention & control
- Pneumonia, Bacterial/veterinary
- Rhodococcus equi/immunology
Collapse
Affiliation(s)
- Susanne K. Kahn
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | - Colette Cywes-Bentley
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | | | | | | | - Mariana Vinacur
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Sophia C. Cortez-Ramirez
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | | | | | - Angela I. Bordin
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| | | | - Gerald B. Pier
- Department of Medicine, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, Equine Infectious Disease Laboratory, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States of America
| |
Collapse
|
6
|
Flores‐Ahlschwede P, Kahn SK, Ahlschwede S, Bordin AI, Cohen ND. Transfusion with 2 litres of hyperimmune plasma is superior to transfusion of 1 litre for protecting foals against pneumonia attributed to
Rhodococcus equi. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - S. K. Kahn
- Equine Infectious Disease Laboratory Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences Texas A&M University College Station Texas USA
| | - S. Ahlschwede
- Rood & Riddle Equine Hospital in Saratoga Saratoga Springs New YorkUSA
| | - A. I. Bordin
- Equine Infectious Disease Laboratory Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences Texas A&M University College Station Texas USA
| | - N. D. Cohen
- Equine Infectious Disease Laboratory Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences Texas A&M University College Station Texas USA
| |
Collapse
|
7
|
Kahn SK, Blodgett GP, Canaday NM, Bevevino KE, Rocha JN, Bordin AI, Cohen ND. Transfusion With 2 L of Hyperimmune Plasma is Superior to Transfusion of 1 L or Less for Protecting Foals Against Subclinical Pneumonia Attributed to Rhodococcus equi. J Equine Vet Sci 2019; 79:54-58. [PMID: 31405501 DOI: 10.1016/j.jevs.2019.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 01/11/2023]
Abstract
Transfusing foals with Rhodococcus equi hyperimmune plasma (REHIP) is a standard practice at many horse-breeding farms to help prevent R. equi pneumonia. At many large breeding farms, pneumonia is most commonly recognized as subclinical based on thoracic ultrasonography findings. The efficacy of REHIP transfusion and the impact of the volume of plasma transfused for reducing the cumulative incidence of subclinical R. equi pneumonia are unknown. A retrospective cohort study was conducted among foals born and residing through weaning at a large breeding farm. Foals were transfused with either 0 L (n = 2 foals), 1 L (n = 85 foals), or 2 L (n = 62 foals) of REHIP within 36 hours of birth. Volume transfused was principally based on intended use of the foals. All foals at the ranch were routinely screened using thoracic ultrasonography at 5, 7, and 9 weeks of age to detect subclinical pneumonia attributed to R. equi based on farm history. The proportion of the foals receiving < 1 L REHIP that developed subclinical pneumonia (32%; 26/82) was significantly (P = .0068; chi-squared test) greater than that among foals transfused with 2 L of REHIP (12%; 8/68). Despite the important limitations of this observational study, it provides evidence supporting the need for well-designed clinical trials to evaluate the impact of the use and dose of REHIP for preventing subclinical pneumonia. Reducing the incidence of subclinical pneumonia is important because reducing antibiotic treatment of subclinical cases will decrease selection pressure for antimicrobial resistance in R. equi.
Collapse
Affiliation(s)
- Susanne K Kahn
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | | | | | - Kari E Bevevino
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Joana N Rocha
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX.
| |
Collapse
|
8
|
Bordin AI, Gressler LT, Alexander ERC, Sule P, Cirillo JD, Edwards JF, Cohen ND. Guinea pig infection with the intracellular pathogen Rhodococcus equi. Vet Microbiol 2018; 215:18-22. [PMID: 29426401 DOI: 10.1016/j.vetmic.2017.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/04/2017] [Accepted: 11/17/2017] [Indexed: 11/29/2022]
Abstract
Rhodococcus equi is an opportunistic, intracellular pathogen that causes pyogranulomatous pneumonia in foals and immunocompromised people. Currently, there is no experimental model of R. equi pneumonia other than intra-bronchial experimental infection of foals with R. equi, which is labor-intensive and costly. This study's objective was to develop a guinea pig (GP) model of R. equi pneumonia that would facilitate development of novel approaches for controlling and preventing this disease. Guinea pigs were infected with either 101, 102, 103, or 104 colony forming units (CFUs) of a virulent strain of R. equi using a Madison aerosol chamber, or 106 or 107 CFUs of this strain intratracheally. Animals were monitored daily for clinical signs of pneumonia, and were euthanized and necropsied on days 1, 3, 7, or 35 post-infection (PI). Lung homogenates were plated onto selective agar to determine bacterial load. No clinical signs of disease were observed regardless of the inoculum dose or infection method. No bacteria were recovered from GPs euthanized at 35 days PI. Histology and immunostaining of T-cells, B-cells, and macrophages in lungs showed that inflammatory responses in infected GPs were similarly unremarkable irrespective of dose or route of infection. Guinea pigs appear to be resistant to pulmonary infection with virulent R. equi even at doses that reliably produce clinical pneumonia in foals.
Collapse
Affiliation(s)
- Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA.
| | - Leticia T Gressler
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Ellen Ruth C Alexander
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA
| | - Preeti Sule
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College Station, TX, USA
| | - John F Edwards
- Department of Veterinary Pathobiology, Texas A&M University, College Station, TX, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
9
|
Tallmadge RL, Miller SC, Parry SA, Felippe MJB. Antigen-specific immunoglobulin variable region sequencing measures humoral immune response to vaccination in the equine neonate. PLoS One 2017; 12:e0177831. [PMID: 28520789 PMCID: PMC5433778 DOI: 10.1371/journal.pone.0177831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/03/2017] [Indexed: 12/16/2022] Open
Abstract
The value of prophylactic neonatal vaccination is challenged by the interference of passively transferred maternal antibodies and immune competence at birth. Taken our previous studies on equine B cell ontogeny, we hypothesized that the equine neonate generates a diverse immunoglobulin repertoire in response to vaccination, independently of circulating maternal antibodies. In this study, equine neonates were vaccinated with 3 doses of keyhole limpet hemocyanin (KLH) or equine influenza vaccine, and humoral immune responses were assessed using antigen-specific serum antibodies and B cell Ig variable region sequencing. An increase (p<0.0001) in serum KLH-specific IgG level was measured between days 21 and days 28, 35 and 42 in vaccinated foals from non-vaccinated mares. In vaccinated foals from vaccinated mares, serum KLH-specific IgG levels tended to increase at day 42 (p = 0.07). In contrast, serum influenza-specific IgG levels rapidly decreased (p≤0.05) in vaccinated foals from vaccinated mares within the study period. Nevertheless, IGHM and IGHG sequences were detected in KLH- and influenza- sorted B cells of vaccinated foals, independently of maternal vaccination status. Immunoglobulin nucleotide germline identity, IGHV gene usage and CDR length of antigen-specific IGHG sequences in B cells of vaccinated foals revealed a diverse immunoglobulin repertoire with isotype switching that was comparable between groups and to vaccinated mares. The low expression of CD27 memory marker in antigen-specific B cells, and of cytokines in peripheral blood mononuclear cells upon in vitro immunogen stimulation indicated limited lymphocyte population expansion in response to vaccine during the study period.
Collapse
Affiliation(s)
- Rebecca L. Tallmadge
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Steven C. Miller
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Stephen A. Parry
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, United States of America
| | - Maria Julia B. Felippe
- Equine Immunology Laboratory, Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Mariella J, Castagnetti C, Prosperi A, Scagliarini A, Peli A. Cytokine levels in colostrum and in foals' serum pre- and post-suckling. Vet Immunol Immunopathol 2017; 185:34-37. [PMID: 28242000 DOI: 10.1016/j.vetimm.2017.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/11/2017] [Accepted: 01/26/2017] [Indexed: 10/20/2022]
Abstract
The purpose of this study is to investigate the presence of IL-4, IL-8, IL-13 and IFN-γ in equine colostrum and in foals' serum. Samples were obtained from 14 mares and their healthy foals. Soon after parturition, 10ml of colostrum was collected, filtered, centrifuged and frozen until assayed. Blood samples were obtained from each foal at birth (TO) and again after 24h (T24), after which they were frozen until assayed. Serum IgG was measured at 24h of age with an immunoturbidimetric quantitative method. Cytokine concentration was determined using commercially available ELISA tests. Statistical analyses revealed a significant difference in serum concentration of IL-4 at T0 and at T24 (p<0.05) and a significant correlation between the serum IL-4 at T24 and colostral IL-4. These results suggest the absorption of IL-4 from colostrum. The presence of IL-8 in the pre-suckle foal's serum may be due to an endogenous production. With the exception of two samples, there was no IL-13 detected in the foals' serum at birth and remained undetectable in 8/14 samples after 24h. This cytokine was also undetectable in four colostrum samples, where its concentration showed a wide range and a high standard deviation. IFN-γ was present in both the colostrum and in the foals serum at birth.
Collapse
Affiliation(s)
- J Mariella
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy.
| | - C Castagnetti
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - A Prosperi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - A Scagliarini
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| | - A Peli
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra 50, 40064 Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|
11
|
Giles C, Ndi O, Barton MD, Vanniasinkam T. An Adenoviral Vector Based Vaccine for Rhodococcus equi. PLoS One 2016; 11:e0152149. [PMID: 27008624 PMCID: PMC4805240 DOI: 10.1371/journal.pone.0152149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 03/09/2016] [Indexed: 11/26/2022] Open
Abstract
Rhodococcus equi is a respiratory pathogen which primarily infects foals and is endemic on farms around the world with 50% mortality and 80% morbidity in affected foals. Unless detected early and treated appropriately the disease can be fatal. Currently, there is no vaccine available to prevent this disease. For decades researchers have endeavoured to develop an effective vaccine to no avail. In this study a novel human adenoviral vector vaccine for R. equi was developed and tested in the mouse model. This vaccine generated a strong antibody and cytokine response and clearance of R. equi was demonstrated following challenge. These results show that this vaccine could potentially be developed further for use as a vaccine to prevent R. equi disease in foals.
Collapse
Affiliation(s)
- Carla Giles
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Olasumbo Ndi
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary D. Barton
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Thiru Vanniasinkam
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
- * E-mail:
| |
Collapse
|
12
|
Dossa RG, Alperin DC, Garzon D, Mealey RH, Brown WC, Jervis PJ, Besra GS, Cox LR, Hines SA. In contrast to other species, α-Galactosylceramide (α-GalCer) is not an immunostimulatory NKT cell agonist in horses. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:49-58. [PMID: 25445911 DOI: 10.1016/j.dci.2014.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
α-GalCer is a potent immunomodulatory molecule that is presented to NKT cells via the CD1 antigen-presenting system. We hypothesized that when used as an adjuvant α-GalCer would induce protective immune responses against Rhodococcus equi, an important pathogen of young horses. Here we demonstrate that the equine CD1d molecule shares most features found in CD1d from other species and has a suitable lipid-binding groove for presenting glycolipids to NKT cells. However, equine CTL stimulated with α-GalCer failed to kill cells infected with R. equi, and α-GalCer did not increase killing by CTL co-stimulated with R. equi antigen. Likewise, α-GalCer did not induce the lymphoproliferation of equine PBMC or increase the proliferation of R. equi-stimulated cells. Intradermal injection of α-GalCer in horses did not increase the recruitment of lymphocytes or cytokine production. Furthermore, α-GalCer-loaded CD1d tetramers, which have been shown to be broadly cross-reactive, did not bind equine lymphocytes. Altogether, our results demonstrate that in contrast to previously described species, horses are unable to respond to α-GalCer. This raises questions about the capabilities and function of NKT cells and other lipid-specific T lymphocytes in horses.
Collapse
Affiliation(s)
- Robson G Dossa
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | - Debra C Alperin
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | - Diana Garzon
- Unilever Centre for Molecular Science Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
| | - Robert H Mealey
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | - Wendy C Brown
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA
| | - Peter J Jervis
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Liam R Cox
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stephen A Hines
- Department of Veterinary Microbiology and Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, USA.
| |
Collapse
|
13
|
Perkins GA, Wagner B. The development of equine immunity: Current knowledge on immunology in the young horse. Equine Vet J 2015; 47:267-74. [DOI: 10.1111/evj.12387] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 11/09/2014] [Indexed: 01/21/2023]
Affiliation(s)
- G. A. Perkins
- Department of Clinical Sciences; College of Veterinary Medicine; Cornell University; Ithaca New York USA
| | - B. Wagner
- Department of Population Medicine and Diagnostic Sciences; College of Veterinary Medicine; Cornell University; Ithaca New York USA
| |
Collapse
|
14
|
|
15
|
Giles C, Vanniasinkam T, Ndi S, Barton MD. Rhodococcus equi (Prescottella equi)vaccines; the future of vaccine development. Equine Vet J 2014; 47:510-8. [DOI: 10.1111/evj.12310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/12/2014] [Indexed: 12/29/2022]
Affiliation(s)
- C. Giles
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide Australia
| | - T. Vanniasinkam
- School of Biomedical Sciences; Charles Sturt University; Wagga Wagga New South Wales Australia
| | - S. Ndi
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide Australia
| | - M. D. Barton
- School of Pharmacy and Medical Sciences; University of South Australia; Adelaide Australia
| |
Collapse
|
16
|
Bordin AI, Pillai SD, Brake C, Bagley KB, Bourquin JR, Coleman M, Oliveira FN, Mwangi W, McMurray DN, Love CC, Felippe MJB, Cohen ND. Immunogenicity of an electron beam inactivated Rhodococcus equi vaccine in neonatal foals. PLoS One 2014; 9:e105367. [PMID: 25153708 PMCID: PMC4143214 DOI: 10.1371/journal.pone.0105367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 07/18/2014] [Indexed: 11/19/2022] Open
Abstract
Rhodococcus equi is an important pathogen of foals that causes severe pneumonia. To date, there is no licensed vaccine effective against R. equi pneumonia of foals. The objectives of our study were to develop an electron beam (eBeam) inactivated vaccine against R. equi and evaluate its immunogenicity. A dose of eBeam irradiation that inactivated replication of R. equi while maintaining outer cell wall integrity was identified. Enteral administration of eBeam inactivated R. equi increased interferon-γ production by peripheral blood mononuclear cells in response to stimulation with virulent R. equi and generated naso-pharyngeal R. equi-specific IgA in newborn foals. Our results indicate that eBeam irradiated R. equi administered enterally produce cell-mediated and upper respiratory mucosal immune responses, in the face of passively transferred maternal antibodies, similar to those produced in response to enteral administration of live organisms (a strategy which previously has been documented to protect foals against intrabronchial infection with virulent R. equi). No evidence of adverse effects was noted among vaccinated foals.
Collapse
Affiliation(s)
- Angela I. Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Suresh D. Pillai
- National Center for Electron Beam Research and Departments of Poultry Science and Nutrition and Food Science, Texas A&M University, College Station, Texas, United States of America
| | - Courtney Brake
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kaytee B. Bagley
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jessica R. Bourquin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michelle Coleman
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | | | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - David N. McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, Texas A&M University, College Station, Texas, United States of America
| | - Charles C. Love
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Maria Julia B. Felippe
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Noah D. Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
17
|
Sanz MG, Oliveira AF, Page A, Horohov DW. Administration of commercial Rhodococcus equi specific hyperimmune plasma results in variable amounts of IgG against pathogenic bacteria in foals. Vet Rec 2014; 175:485. [PMID: 25117301 DOI: 10.1136/vr.102594] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Rhodococcus equi is the most common cause of pneumonia in young foals. A vaccine is not available and the use of R equi-specific hyperimmune plasma (HIP) is common. Despite its widespread use, the efficacy of HIP in preventing disease remains controversial. The objectives of this study were (1) to evaluate the virulence associate protein A (VapA)-specific IgG and IgG subclasses in commercially available R equi HIP and (2) to evaluate serum VapA-specific IgG and IgG subclasses in foals following administration of commercial R equi HIP. Three different lots from four commercial R equi HIP were sampled. VapA-specific IgG and IgG subclasses were evaluated in all samples using an ELISA. Serum was collected from newborn foals either after commercial R equi HIP was administered (n=97) or not (n=70). Serum was also collected from each mare. Administration of HIP significantly (P<0.001) increased VapA-specific IgGs in recipient foals, however, there was a marked variation in VapA-specific IgGs in foals receiving the same product. VapA-specific IgGs were significantly different (P<0.001) between products and varied between lots, with coefficients of variation ranging from 17 to 123 per cent. These results may explain previously reported disparities in HIP efficacy.
Collapse
Affiliation(s)
- M G Sanz
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | - A F Oliveira
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | - A Page
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| | - D W Horohov
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, Lexington, KY 40546-0099, USA
| |
Collapse
|
18
|
Stoughton W, Poole T, Kuskie K, Liu M, Bishop K, Morrissey A, Takai S, Cohen N. Transfer of the Virulence-Associated Protein A-Bearing Plasmid between Field Strains of Virulent and Avirulent Rhodococcus equi. J Vet Intern Med 2013; 27:1555-62. [DOI: 10.1111/jvim.12210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- W. Stoughton
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - T. Poole
- Southern Plains Agricultural Research Center; Agricultural Research Service; U.S. Department of Agriculture; College Station TX
| | - K. Kuskie
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - M. Liu
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - K. Bishop
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - A. Morrissey
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| | - S. Takai
- School of Veterinary Medicine and Animal Sciences; Kitasoto University; Towada Aomori Japan
| | - N. Cohen
- Department of Large Animal Clinical Sciences; Texas A&M University; College Station TX
| |
Collapse
|
19
|
Vázquez-Boland JA, Giguère S, Hapeshi A, MacArthur I, Anastasi E, Valero-Rello A. Rhodococcus equi: the many facets of a pathogenic actinomycete. Vet Microbiol 2013; 167:9-33. [PMID: 23993705 DOI: 10.1016/j.vetmic.2013.06.016] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/27/2013] [Indexed: 12/20/2022]
Abstract
Rhodococcus equi is a soil-dwelling pathogenic actinomycete that causes pulmonary and extrapulmonary pyogranulomatous infections in a variety of animal species and people. Young foals are particularly susceptible and develop a life-threatening pneumonic disease that is endemic at many horse-breeding farms worldwide. R. equi is a facultative intracellular parasite of macrophages that replicates within a modified phagocytic vacuole. Its pathogenicity depends on a virulence plasmid that promotes intracellular survival by preventing phagosome-lysosome fusion. Species-specific tropism of R. equi for horses, pigs and cattle appears to be determined by host-adapted virulence plasmid types. Molecular epidemiological studies of these plasmids suggest that human R. equi infection is zoonotic. Analysis of the recently determined R. equi genome sequence has identified additional virulence determinants on the bacterial chromosome. This review summarizes our current understanding of the clinical aspects, biology, pathogenesis and immunity of this fascinating microbe with plasmid-governed infectivity.
Collapse
Affiliation(s)
- José A Vázquez-Boland
- Microbial Pathogenesis Unit, School of Biomedical Sciences and Edinburgh Infectious Diseases, University of Edinburgh, Edinburgh EH9 3JT, UK; Grupo de Patogenómica Bacteriana, Facultad de Veterinaria, Universidad de León, 24071 León, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Fowler VL, Barnett PV. Progress in the development of DNA vaccines against foot-and-mouth disease. Expert Rev Vaccines 2012; 11:481-93. [PMID: 22551033 DOI: 10.1586/erv.11.198] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA vaccines are, in principle, the simplest yet most versatile methods of inducing protective humoral and cellular immune responses. Research involving this type of vaccine against veterinary diseases began in the early 1990s and has since seen the evaluation of more than 30 important viral pathogens, including the economically important foot-and-mouth disease. With the demonstration that DNA vaccines protect against foot-and-mouth disease in sheep and pigs, and the advantages these DNA vaccines have over the conventional formulations, this approach may provide a better solution to the control of this disease. In this review, we provide a comprehensive overview of DNA vaccination strategies for foot-and-mouth disease reported in the literature, in which we highlight the studies that have reported protection in the key target species.
Collapse
Affiliation(s)
- Veronica L Fowler
- Institute for Animal Health, Pirbright Laboratory, Surrey GU24 0NF, UK.
| | | |
Collapse
|
21
|
Witkowski L, Kaba J, Rzewuska M, Nowicki M, Szaluś-Jordanow O, Kita J. Development of ELISA test for determination of the level of antibodies against Rhodococcus equi in equine serum and colostrum. Vet Immunol Immunopathol 2012; 149:280-5. [PMID: 22883938 DOI: 10.1016/j.vetimm.2012.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 04/16/2012] [Accepted: 07/18/2012] [Indexed: 11/17/2022]
Abstract
Rhodococcus equi infection occurs worldwide and is one of the major causes of losing foals in the first six months of life. The application of serological tests in the diagnostics of rhodococcosis is limited, however they play a crucial role in immunological studies. The objective of this study was to develop and standardize ELISA test for the determination of the level of antibodies against Rhodococcus equi in equine serum and colostrum.Bacterial cell lysate was used as antigen. The test was standardized on 175 sera obtained from adult horses kept on rhodococcosis-free and endemic farms. Positive and negative control sera were used. The test detected IgG antibodies mainly against VapA protein, which was confirmed by Western blot analysis. The test was easy to perform, did not require inactivation of sera and had low well-to-well variation. The shelf life of antigen-coated ELISA plates was 21 days.The test allowed to reveal significant increase of R. equi-specific antibodies in both serum and colostrum in response to the vaccination (p<0.001). Therefore it can be applied to the evaluation of efficacy of immunization. Moreover, no statistically significant difference in the baseline antibody level in adult horses from rhodococcosis-free and endemic farm was revealed (α=0.05).
Collapse
Affiliation(s)
- Lucjan Witkowski
- Division of Infectious Diseases and Epidemiology, Department of Large Animal Diseases with the Clinic, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
22
|
Monoclonal antibodies to equine CD23 identify the low-affinity receptor for IgE on subpopulations of IgM+ and IgG1+ B-cells in horses. Vet Immunol Immunopathol 2012; 146:125-34. [DOI: 10.1016/j.vetimm.2012.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2011] [Revised: 02/12/2012] [Accepted: 02/13/2012] [Indexed: 11/21/2022]
|
23
|
Giguère S, Cohen N, Keith Chaffin M, Hines S, Hondalus M, Prescott J, Slovis N. Rhodococcus equi: Clinical Manifestations, Virulence, and Immunity. J Vet Intern Med 2011; 25:1221-30. [DOI: 10.1111/j.1939-1676.2011.00804.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 08/01/2011] [Accepted: 08/15/2011] [Indexed: 11/27/2022] Open
Affiliation(s)
- S. Giguère
- Department of Large Animal Medicine; University of Georgia; Athens; GA
| | - N.D. Cohen
- Department of Large Animal Clinical Sciences; College of Veterinary Medicine; Texas A&M University; College Station; TX
| | - M. Keith Chaffin
- Department of Large Animal Clinical Sciences; College of Veterinary Medicine; Texas A&M University; College Station; TX
| | - S.A. Hines
- Department of Veterinary Microbiology and Pathology; Washington State University; Pullman; WA
| | - M.K. Hondalus
- Department of Infectious Diseases; University of Georgia; Athens; GA
| | - J.F. Prescott
- Department of Pathobiology; University of Guelph; Guelph; ON; Canada
| | - N.M. Slovis
- Hagyard Equine Medical Institute; Lexington; KY
| |
Collapse
|
24
|
Equine neonates have attenuated humoral and cell-mediated immune responses to a killed adjuvanted vaccine compared to adult horses. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1896-902. [PMID: 20943883 DOI: 10.1128/cvi.00328-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The objectives of this study were to compare relative vaccine-specific serum immunoglobulin concentrations, vaccine-specific lymphoproliferative responses, and cytokine profiles of proliferating lymphocytes between 3-day-old foals, 3-month-old foals, and adult horses after vaccination with a killed adjuvanted vaccine. Horses were vaccinated intramuscularly twice at 3-week intervals with a vaccine containing antigens from bovine viral respiratory pathogens to avoid interference from maternal antibody. Both groups of foals and adult horses responded to the vaccine with a significant increase in vaccine-specific IgGa and IgG(T) concentrations. In contrast, only adult horses and 3-month-old foals mounted significant vaccine-specific total IgG, IgGb, and IgM responses. Vaccine-specific concentrations of IgM and IgG(T) were significantly different between all groups, with the highest concentrations occurring in adult horses, followed by 3-month-old foals and, finally, 3-day-old foals. Only the adult horses mounted significant vaccine-specific lymphoproliferative responses. Baseline gamma interferon (IFN-γ) and interleukin-4 (IL-4) concentrations were significantly lower in 3-day-old foals than in adult horses. Vaccination resulted in a significant decrease in IFN-γ concentrations in adult horses and a significant decrease in IL-4 concentrations in 3-day-old foals. After vaccination, the ratio of IFN-γ/IL-4 in both groups of foals was significantly higher than that in adult horses. The results of this study indicate that the humoral and lymphoproliferative immune responses to this killed adjuvanted vaccine are modest in newborn foals. Although immune responses improve with age, 3-month-old foals do not respond with the same magnitude as adult horses.
Collapse
|
25
|
Sturgill TL, Horohov DW. Vaccination Response of Young Foals to Keyhole Limpet Hemocyanin: Evidence of Effective Priming in the Presence of Maternal Antibodies. J Equine Vet Sci 2010. [DOI: 10.1016/j.jevs.2010.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
26
|
Oliveira AF, Ruas LP, Cardoso SA, Soares SG, Roque-Barreira MC. Vaccination of mice with salmonella expressing VapA: mucosal and systemic Th1 responses provide protection against Rhodococcus equi infection. PLoS One 2010; 5:e8644. [PMID: 20072623 PMCID: PMC2800180 DOI: 10.1371/journal.pone.0008644] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/21/2009] [Indexed: 11/28/2022] Open
Abstract
Conventional vaccines to prevent the pneumonia caused by Rhodococcus equi have not been successful. We have recently demonstrated that immunization with Salmonella enterica Typhimurium expressing the VapA antigen protects mice against R. equi infection. We now report that oral vaccination of mice with this recombinant strain results in high and persistent fecal levels of antigen-specific IgA, and specific proliferation of the spleen cells of immunized mice in response to the in vitro stimulation with R. equi antigen. After in vitro stimulation, spleen cells of immunized mice produce high levels of Th1 cytokines and show a prominent mRNA expression of the Th1 transcription factor T-bet, in detriment of the Th2 transcription factor GATA-3. Following R. equi challenge, a high H2O2, NO, IL-12, and IFN-γ content is detected in the organs of immunized mice. On the other hand, TNF-α and IL-4 levels are markedly lower in the organs of vaccinated mice, compared with the non-vaccinated ones. The IL-10 content and the mRNA transcription level of TGF-β are also higher in the organs of immunized mice. A greater incidence of CD4+ and CD8+ T cells and B lymphocytes is verified in vaccinated mice. However, there is no difference between vaccinated and non-vaccinated mice in terms of the frequency of CD4+CD25+Foxp3+ T cells. Finally, we show that the vaccination confers a long-term protection against R. equi infection. Altogether, these data indicate that the oral vaccination of mice with S. enterica Typhimurium expressing VapA induces specific and long-lasting humoral and cellular responses against the pathogen, which are appropriately regulated and allow tissue integrity after challenge.
Collapse
Affiliation(s)
- Aline F. Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luciana P. Ruas
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Silvia A. Cardoso
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Sandro G. Soares
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Maria-Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
27
|
Dawson TRMY, Horohov DW, Meijer WG, Muscatello G. Current understanding of the equine immune response to Rhodococcus equi. An immunological review of R. equi pneumonia. Vet Immunol Immunopathol 2009; 135:1-11. [PMID: 20064668 DOI: 10.1016/j.vetimm.2009.12.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2009] [Revised: 12/11/2009] [Accepted: 12/16/2009] [Indexed: 10/20/2022]
Abstract
Rhodococcus equi is recognised to cause chronic purulent bronchopneumonia in foals of less than 6 months of age. Virulent strains of the bacteria possess a large 80-90 kb plasmid encoding several virulence-associated proteins, including virulence-associated protein A (VapA), which is associated with disease. R. equi pneumonia can represent significant costs and wastage to the equine breeding industry, especially on stud farms where the disease is endemic. This article reviews knowledge of the equine immune response, both in the immune adult and susceptible neonate, with respect to this pathogen. Humoral immune responses are addressed, with a discussion on the use of hyperimmune and normal adult equine plasma as prophylactic tools. The role that innate immune mechanisms play in the susceptibility of some foals to R. equi infection is also highlighted. Likewise, cell-mediated immune components are reviewed, with particular attention directed towards research undertaken to develop an effective vaccine for foals. It is possible that the implementation of a single immunoprophylaxis strategy to prevent R. equi infection on farms will yield disappointing results. Combined prophylactic protocols that address husbandry practices, environmental and aerosol contamination levels, enhancement of innate immunity, good quality hyperimmune plasma for the neonate, and vaccinal efficacy in the developing foal may be required.
Collapse
Affiliation(s)
- Tamsin R M Y Dawson
- The Faculty of Applied Sciences, University of Sunderland, Fleming Building, Wharncliffe Street, Sunderland SR1 3SD, UK.
| | - David W Horohov
- Department of Veterinary Science, University of Kentucky, UK
| | - Wim G Meijer
- School of Biomolecular and Biomedical Science, University College Dublin, Ireland
| | - Gary Muscatello
- Faculty of Veterinary Science, The University of Sydney, Australia
| |
Collapse
|
28
|
Phumoonna T, Barton MD, Vanniasinkam T, Heuzenroeder MW. Chimeric vapA/groEL2 DNA vaccines enhance clearance of Rhodococcus equi in aerosol challenged C3H/He mice. Vaccine 2008; 26:2457-65. [DOI: 10.1016/j.vaccine.2008.03.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Revised: 01/31/2008] [Accepted: 03/12/2008] [Indexed: 10/22/2022]
|
29
|
Muscatello G, Leadon DP, Klayt M, Ocampo-Sosa A, Lewis DA, Fogarty U, Buckley T, Gilkerson JR, Meijer WG, Vazquez-Boland JA. Rhodococcus equi infection in foals: the science of 'rattles'. Equine Vet J 2007; 39:470-8. [PMID: 17910275 DOI: 10.2746/042516407x209217] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Infection with Rhodococcus (Corynebacterium) equi is a well-recognised condition in foals that represents a consistent and serious risk worldwide. The condition manifests itself primarily as one of pulmonary abscessation and bronchitis, hence the terminology of 'rattles' derived from its most obvious clinical sign, frequently terminal when first identified. This review addresses the clinical manifestation, bacteriology and pathogenesis of the condition together with recent developments providing knowledge of the organism in terms of virulence, epidemiology, transmission and immune responses. Enhanced understanding of R. equi virulence mechanisms and biology derived from the recently available genome sequence may facilitate the rational development of a vaccine and the improvement of farm management practices used to control R. equi on stud farms in the future. Reliance on vaccines alone, in the absence of management strategies to control the on-farm challenge is likely to be disappointing.
Collapse
Affiliation(s)
- G Muscatello
- Equine Infectious Disease Laboratory, School of Veterinary Science, The University of Melbourne, Victoria 3010, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Paillot R, Kydd JH, MacRae S, Minke JM, Hannant D, Daly JM. New assays to measure equine influenza virus-specific Type 1 immunity in horses. Vaccine 2007; 25:7385-98. [PMID: 17881098 DOI: 10.1016/j.vaccine.2007.08.033] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2007] [Revised: 08/01/2007] [Accepted: 08/07/2007] [Indexed: 11/28/2022]
Abstract
Equine influenza virus (EIV) is a leading cause of respiratory disease in horses. Equine influenza infection induces a long-term immunity to re-infection. Recent strategies of vaccination aim to mimic this immunity by stimulating both antibody and cellular immune responses. Cell-mediated immunity (CMI) to influenza is well defined in man, but little has been done to characterise the responses in the horse. Additionally, the development of reliable assays for the measurement of equine CMI has lagged behind serological methods and vaccine development. In this study, two methods of measuring EIV-specific T lymphocyte responses have been developed. An EIV 'bulk' cytotoxic T lymphocytes (CTL) assay using equine dermal fibroblasts as target cells has been adapted from a method used in the 1980s. This method was also complemented with a new EIV-specific IFNgamma synthesis assay. When compared with the measurement of EIV-specific IFNgamma synthesis previously described, this method required the amplification of EIV-specific lymphocytes by culture and was sensitive enough to detect stimulation of EIV-specific T lymphocytes induced by experimental infection with EIV or vaccination with recombinant canarypox viruses coding for EIV-HA molecules. This study provides the tools to characterise the stimulation of CMI by the new generation of vaccines against equine influenza.
Collapse
Affiliation(s)
- R Paillot
- Animal Health Trust, Centre for Preventive Medicine, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Mealey R, Stone D, Hines M, Alperin D, Littke M, Leib S, Leach S, Hines S. Experimental Rhodococcus equi and equine infectious anemia virus DNA vaccination in adult and neonatal horses: effect of IL-12, dose, and route. Vaccine 2007; 25:7582-97. [PMID: 17889970 PMCID: PMC3342688 DOI: 10.1016/j.vaccine.2007.07.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2007] [Revised: 07/24/2007] [Accepted: 07/28/2007] [Indexed: 11/15/2022]
Abstract
Improving the ability of DNA-based vaccines to induce potent Type1/Th1 responses against intracellular pathogens in large outbred species is essential. Rhodoccocus equi and equine infectious anemia virus (EIAV) are two naturally occurring equine pathogens that also serve as important large animal models of neonatal immunity and lentiviral immune control. Neonates present a unique challenge for immunization due to their diminished immunologic capabilities and apparent Th2 bias. In an effort to augment R. equi- and EIAV-specific Th1 responses induced by DNA vaccination, we hypothesized that a dual promoter plasmid encoding recombinant equine IL-12 (rEqIL-12) would function as a molecular adjuvant. In adult horses, DNA vaccines induced R. equi- and EIAV-specific antibody and lymphoproliferative responses, and EIAV-specific CTL and tetramer-positive CD8+ T lymphocytes. These responses were not enhanced by the rEqIL-12 plasmid. In neonatal foals, DNA immunization induced EIAV-specific antibody and lymphoproliferative responses, but not CTL. The R. equi vapA vaccine was poorly immunogenic in foals even when co-administered with the IL-12 plasmid. It was concluded that DNA immunization was capable of inducing Th1 responses in horses; dose and route were significant variables, but rEqIL-12 was not an effective molecular adjuvant. Additional work is needed to optimize DNA vaccine-induced Th1 responses in horses, especially in neonates.
Collapse
Affiliation(s)
- R.H. Mealey
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - D.M. Stone
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - M.T. Hines
- Department of Veterinary Clinical Sciences, Washington State University, College of Veterinary Medicine, P.O. Box 646010, Pullman, WA 99164-6010, United States
| | - D.C. Alperin
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - M.H. Littke
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.R. Leib
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.E. Leach
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
| | - S.A. Hines
- Department of Veterinary Microbiology & Pathology, Washington State University, College of Veterinary Medicine, P.O. Box 647040, Pullman, WA 99164-7040, United States
- Corresponding author. Tel.: +1 509 335 6030; fax: +1 509 335 8529. (S.A. Hines)
| |
Collapse
|
32
|
Jacks S, Giguère S, Prescott JF. In vivo expression of and cell-mediated immune responses to the plasmid-encoded virulence-associated proteins of Rhodococcus equi in foals. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:369-74. [PMID: 17301216 PMCID: PMC1865619 DOI: 10.1128/cvi.00448-06] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Rhodococcus equi is a facultative intracellular pathogen that causes pneumonia in foals but does not induce disease in adult horses. Virulence of R. equi depends on the presence of a large plasmid, which encodes a family of seven virulence-associated proteins (VapA and VapC to VapH). Eradication of R. equi from the lungs depends on gamma interferon (IFN-gamma) production by T lymphocytes. The objectives of the present study were to determine the relative in vivo expression of the vap genes of R. equi in the lungs of infected foals, to determine the recall response of bronchial lymph node (BLN) lymphocytes from foals and adult horses to each of the Vap proteins, and to compare the cytokine profiles of proliferating lymphocytes between foals and adult horses. vapA, vapD, and vapG were preferentially expressed in the lungs of infected foals, and expression of these genes in the lungs was significantly (P < 0.05) higher than that achieved during in vitro growth. VapA and VapC induced the strongest lymphoproliferative responses for foals and adult horses. There was no significant difference in recall lymphoproliferative responses or IFN-gamma mRNA expression by bronchial lymph node lymphocytes between foals and adults. In contrast, interleukin 4 (IL-4) expression was significantly higher for adults than for foals for each of the Vap proteins. The ratio of IFN-gamma to IL-4 was significantly higher for foals than for adult horses for most Vap proteins. Therefore, foals are immunocompetent and are capable of mounting lymphoproliferative responses of the same magnitude and cytokine phenotype as those of adult horses.
Collapse
Affiliation(s)
- Stephanie Jacks
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
33
|
Attili AR, Kennerman E, Takai S, Or ME, Marenzoni ML, Torun S, Pieramati C, Kayar A, Golcu E, Parkan C, Yilmaz Z, Gonul R, Valente C, Cuteri V. Seroepidemiological survey of Rhodoccocus equi infection in asymptomatic horses from Bursa, Izmir and Istanbul provinces, Turkey. Comp Immunol Microbiol Infect Dis 2006; 29:323-33. [PMID: 17034856 DOI: 10.1016/j.cimid.2006.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
In order to assess the Rhodococcus equi infection in three provinces of Turkey (Bursa, Izmir and Istanbul), 696 sera from healthy foals and adult horses were tested by indirect ELISA using a R. equi reference strain (ATCC 6939) as antigen. 103 sera (14.80%) with titres >0.646 resulted positive. Seroprevalence was significantly higher (P=0.0053) in male than in female horses of Istanbul province, although higher antibody titres (mean value) were observed in the female group of Bursa and Izmir provinces with differences estimated between provinces (P=0.0002). Seroprevalence was correlated with age: foals aged less than 1 year (P<10(-4)) and horses from 5 to 10 years old (P=0.018) resulted more infected in Bursa and Izmir provinces. Our findings indicate that R. equi infection actually occurs in all investigated provinces, suggesting the importance of serological survey to diagnose the infection and to prevent the zoonotic risk.
Collapse
Affiliation(s)
- A R Attili
- Department of Veterinary Sciences, Veterinary Faculty, Camerino University, Via Circonvallazione 93/95, Matelica, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Wagner B, Flaminio JBF, Hillegas J, Leibold W, Erb HN, Antczak DF. Occurrence of IgE in foals: Evidence for transfer of maternal IgE by the colostrum and late onset of endogenous IgE production in the horse. Vet Immunol Immunopathol 2006; 110:269-78. [PMID: 16343646 DOI: 10.1016/j.vetimm.2005.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 08/29/2005] [Accepted: 10/13/2005] [Indexed: 11/17/2022]
Abstract
IgE is the key antibody involved in type I allergies. Allergen mediated crosslinking of IgE bound to high affinity Fcepsilon-receptors on mast cells and basophils stimulates cellular degranulation and release of inflammatory mediators and cytokines. In this report, we demonstrate that IgE antibodies can be transferred from the mother to offspring in horses via the colostrum. We found a clear correlation between the IgE concentration in colostrum and the total IgE concentration in foal sera on day 2 after birth (r(sp)=0.83). Maternal IgE was detected in foal sera by ELISA and on peripheral blood leukocytes of foals by flow cytometry. Both serum and cell membrane-bound IgE were undetectable in newborn foals before colostrum uptake and peaked on days 2-5 after birth. Cell-bound IgE became undetectable at 2 months after birth. Serum IgE disappeared from the circulation within the first 3-4 months of age. These kinetics suggest that the IgE antibodies which are detectable in foals during the first 4 months after birth are of maternal origin only. The endogenous IgE production was found to begin at 9-11 months of age, when IgE could be detected on peripheral blood leukocytes and in foal sera again. After 18 months of life, the total IgE concentrations in foal sera were comparable to those detected in their dams. The late onset of endogenous IgE production offers an explanation for observations that IgE mediated allergies are generally not observed in horses before puberty. The roles of the passively transferred maternal IgE in newborn foals are not yet known, but could be manifold, ranging from passive immunity and induction of immunoregulatory functions to determinative influences of maternal IgE on the antibody repertoire in the offspring.
Collapse
Affiliation(s)
- Bettina Wagner
- James A. Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Wagner B. Immunoglobulins and immunoglobulin genes of the horse. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:155-64. [PMID: 16046236 DOI: 10.1016/j.dci.2005.06.008] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Antibodies of the horse were studied intensively by many notable immunologists throughout the past century until the early 1970's. After a large gap of interest in horse immunology, additional basic studies on horse immunoglobulin genes performed during the past 10 years have resulted in new insights into the equine humoral immune system. These include the characterization of the immunoglobulin lambda and kappa light chain genes, the immunoglobulin heavy chain constant (IGHC) gene regions, and initial studies regarding the heavy chain variable genes. Horses express predominately lambda light chains and seem to have a relatively restricted germline repertoire of both lambda and kappa chain variable genes. The IGHC region contains eleven constant heavy chain genes, seven of which are gamma heavy chain genes. It is suggested that all seven genes encoding IgG isotypes are expressed and have distinct functions in equine immune responses.
Collapse
Affiliation(s)
- Bettina Wagner
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Toussaint JF, Letellier C, Paquet D, Dispas M, Kerkhofs P. Prime-boost strategies combining DNA and inactivated vaccines confer high immunity and protection in cattle against bovine herpesvirus-1. Vaccine 2005; 23:5073-81. [PMID: 16024138 DOI: 10.1016/j.vaccine.2005.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 06/06/2005] [Accepted: 06/09/2005] [Indexed: 11/20/2022]
Abstract
DNA vaccines have frequently been associated with poor efficacy in large animals. In the present study, one administration of an inactivated marker vaccine to cattle considerably boosted both humoral and cellular arms of the immune response primed with Bovine herpesvirus-1 (BoHV-1) DNA vaccines encoding glycoprotein D (gD) or gC+gD. Calves vaccinated according to the DNA prime-inactivated boost also showed significantly enhanced virological protection as compared to controls. The 4-logarithms reduction of virus shedding observed in primed-boosted animals was comparable to the one previously reported in calves immunized twice with marker vaccines. Intradermal immunization of cattle with DNA vaccines promoted a Th2-biased immune response but also primed a cellular component that was further boosted by the inactivated vaccine. Individual IgG2 titers of vaccinated calves were significantly correlated to IFN-gamma production. The immunization protocol described in the present study demonstrates the complementarity between DNA and conventional marker vaccines.
Collapse
Affiliation(s)
- J F Toussaint
- Veterinary and Agrochemical Research Centre, Department of Virology, Groeselenberg 99, B-1180 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
37
|
Wattrang E, Berg M, Magnusson M. Immunostimulatory DNA activates production of type I interferons and interleukin-6 in equine peripheral blood mononuclear cells in vitro. Vet Immunol Immunopathol 2005; 107:265-79. [PMID: 15955566 DOI: 10.1016/j.vetimm.2005.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2005] [Revised: 04/15/2005] [Accepted: 05/10/2005] [Indexed: 11/20/2022]
Abstract
This study aimed to evaluate different nucleic acid preparations as cytokine inducers in equine cells. To induce cytokine production, bacterial plasmid DNA or short synthetic oligodeoxyribonucleotides (ODN), with or without the transfection reagent lipofectin, were added to cultures of purified equine peripheral blood mononuclear cells (PBMC). Cytokine activity was detected with bioassays in cell culture supernatants after 24h of induction and cytokine mRNA expression was detected using RT-PCR at 6h post induction. For IFN-alpha/beta it was found that both plasmid DNA and phosphodiester ODN, containing an unmethylated CpG-motif, were able to induce IFN production in the presence of lipofectin but not without. The levels of IFN varied with individuals and were often quite low. Moreover, methylation or removal of the CpG sequence completely abolished IFN induction. CpG-containing ODN with poly-guanine (G) sequences in the 5' and 3' ends induced considerably higher levels of IFN, especially when the poly-G sequences had a phosphorothioate backbone. ODN with poly-G sequences also had the ability to induce IFN in the absence of lipofectin but the levels of IFN induced were radically reduced compared to those induced with lipofectin. In contrast to IFN, which was only detected upon induction, low spontaneous IL-6 production was observed in unstimulated control cultures. Nevertheless, plasmid DNA and CpG-containing ODN were able to increase the IL-6 production threefold. All the IFN inducing ODN also induced IL-6 production and the levels of IL-6 induced seemed influenced by addition of lipofectin and presence of poly-G sequences in the same way as was observed for the IFN-production. However, a complete phosphorothioate ODN with a central CpG-motif and poly-C sequences, that did not induce IFN, readily induced IL-6 both in the presence and absence of lipofectin. In addition, there was also evidence that some ODN induced increased expression of IL-12p40 mRNA. To conclude, equine PBMC were able to recognize CpG-DNA and respond with both IFN-alpha/beta and/or IL-6 production. The levels of cytokine induced, and sometimes which cytokine induced, varied with, e.g., CpG-motifs used, the presence of poly-G sequences, ODN backbone chemistry and presence of lipofectin.
Collapse
Affiliation(s)
- Eva Wattrang
- Section of Veterinary Immunology and Virology, Department of Molecular Biosciences, Swedish University of Agricultural Sciences, SE-75123 Uppsala, Sweden.
| | | | | |
Collapse
|
38
|
Haghighi HR, Prescott JF. Assessment in mice of vapA–DNA vaccination against Rhodococcus equi infection. Vet Immunol Immunopathol 2005; 104:215-25. [PMID: 15734542 DOI: 10.1016/j.vetimm.2004.12.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2004] [Revised: 11/15/2004] [Accepted: 12/01/2004] [Indexed: 11/25/2022]
Abstract
There is a need to produce a vaccine against Rhodococcus equi pneumonia in foals in which immunity against infection is largely based on a type 1, cell-mediated, immune response. The VapA protein of the virulence plasmid of R. equi is highly immunogenic. To assess the potential of vapA-DNA to produce immunity, C57BL/6 and BALB/c mice were immunized with a DNA vaccine constructed from vapA incorporated into pcDNA3.1. The plasmid construct expressed VapA in a COS-7 cell line. Intramuscular immunization of mice resulted in enhanced clearance of R. equi from the liver of intravenously challenged mice compared to non-immunized controls. This effect was more marked when pORF-IL-12, a plasmid expressing murine IL12, was included with the vaccine. Antibody developed to VapA, with an IgG2a response being more marked in mice immunized with pcDNA-vapA than in non-immunized or in mice immunized with the mixed vapA and IL-12 plasmid constructs. In conclusion, this study has shown for the first time that DNA immunization with vapA enhances the immune responses of mice against R. equi infection, that the IgG subisotype response is consistent with a type 1-based immune response, and that this can be enhanced by injection of the IL-12 gene.
Collapse
Affiliation(s)
- H R Haghighi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ont., Canada N1G 2W1
| | | |
Collapse
|
39
|
Vanniasinkam T, Barton MD, Heuzenroeder MW. Immune response to vaccines based upon the VapA protein of the horse pathogen, Rhodococcus equi, in a murine model. Int J Med Microbiol 2005; 294:437-45. [PMID: 15715172 DOI: 10.1016/j.ijmm.2004.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Rhodococcus equi is a significant pathogen in foals predominantly causing a pyogranulomatous bronchopneumonia. Many vaccine candidates have been tested for the prevention of R. equi disease in foals. However, none of these have been developed for widespread commercial use. Previous studies have shown that a Th1 immune response is imperative for the protection of foals against R. equi disease. In this study a DNA and a protein vaccine based upon the well-characterised R. equi virulence-associated protein VapA were developed. The vaccines were tested in the BALB/c murine model and the results showed that both vaccine candidates elicited a Th1-type response in the host. Upon coadministration of an IL-12 expression plasmid with the DNA vaccine, an increase in the Th1 response was observed. However, when mice were challenged with 1.5 x 10(7) virulent R. equi ATCC 33701 none of the vaccinated mice showed protection apart from the mice immunised with live R. equi. These results indicate that despite their immunogenicity the VapA-based DNA and recombinant protein vaccines developed in this study were unable to prevent bacterial replication following a high-dose systemic challenge with virulent R. equi in the BALB/c model.
Collapse
Affiliation(s)
- Thiru Vanniasinkam
- Infectious Diseases Laboratories, Institute of Medical and Veterinary Science, P.O. Box 14, Rundle Mall, Adelaide, SA 5000, Australia
| | | | | |
Collapse
|
40
|
Cauchard J, Sevin C, Ballet JJ, Taouji S. Foal IgG and opsonizing anti-Rhodococcus equi antibodies after immunization of pregnant mares with a protective VapA candidate vaccine. Vet Microbiol 2004; 104:73-81. [PMID: 15530741 DOI: 10.1016/j.vetmic.2004.09.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 08/23/2004] [Accepted: 09/01/2004] [Indexed: 11/26/2022]
Abstract
The aim of this study was to evaluate serum IgG antibody levels and opsonizing activity in foals from pregnant mares immunized with either proteins from an R. equi strain containing virulence-associated protein A (VapA), an immunodominant surface-expressed lipoprotein encoded by a virulence plasmid crucial for virulence in foals, or a whole killed virulent R. equi preparation. Forty-eight pregnant mares were distributed into three groups, i.e. 24 immunized with R. equi VapA protein antigen associated with a water-based nanoparticle adjuvant (Montanide IMS 3012), 8 immunized with whole killed R. equi, and 16 non-immunized as control. Serum IgG and opsonizing capacity were evaluated during pregnancy in mares, and up to day 45 post-delivery in foals in which R. equi infections were recorded in the first 6 months of life. Pregnant mares immunized with virulent R. equi proteins developed higher serum IgG and opsonic activity which were transferred to the foals than either in the whole R. equi immunized or the control group. Four foals developed pneumonia in the control group while none in immunized groups. Results support further evaluation of VapA protein antigen associated with a water-based nanoparticle adjuvant as a candidate vaccine for immunization of pregnant mares resulting in passive antibody-mediated protection of foals.
Collapse
Affiliation(s)
- Julien Cauchard
- AFSSA, Laboratoire d'Etudes et de Recherche en Pathologie Equine, IPC, Goustranville, 14430 Dozulé, France.
| | | | | | | |
Collapse
|
41
|
Taouji S, Nomura I, Giguère S, Tomomitsu S, Kakuda T, Ganne V, Takaï S. Immunogenecity of synthetic peptides representing linear B-cell epitopes of VapA of Rhodococcus equi. Vaccine 2004; 22:1114-23. [PMID: 15003638 DOI: 10.1016/j.vaccine.2003.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2003] [Revised: 10/01/2003] [Accepted: 10/02/2003] [Indexed: 10/26/2022]
Abstract
Amino acid 65-78 of membrane protein VapA of the facultative intracellular Rhodococcus equi contained an immunodominant N-terminal B-cell epitope (N15Y peptide). Safety and immunogenecity of a synthetic peptide consisting of the amino acid 65-78 of VapA (peptide N15Y) were evaluated first in mice and in healthy adult horses. A single dose of a peptide-VapA vaccine induced and only in presence of adjuvant, specific IgG antibodies in sera of mice. After challenge with virulent R. equi 3 weeks after immunization, tissue clearance was more delayed in immunized mice than in control mice. An antibody-mediated response (restricted to IgG1 and IgG2b subclasses) predominated in vaccinated mice sera and no specific lymphocytes proliferation was observed. Next, a total of 15 mares were given systemic inoculation of N15Y peptide with IMS3012 ( n = 4 ) or IMS2211 ( n = 4 ) or ISA35 ( n = 4 ) or placebo ( n = 2). Serological responses to the peptide vaccine were found in all but not in placebo group. A significant increase of IgGb subclass in sera of vaccinated mare with N15Y peptide in presence of IMS3012 was observed in comparison to IMS2211 or ISA35 or control group. Moreover, INF-gamma, IL-2 and IL-10 mRNA expression increased more significantly in peripheral blood lymphocytes of IMS3012 group than in IMS2211 or ISA35 group. Interestingly, a significant decrease of IL-4 mRNA expression (undetectable level) was observed with all adjuvants. These results support the use of peptide N15Y in presence of IMS3012 adjuvant in future studies of protection of foals against R. equi.
Collapse
MESH Headings
- Actinomycetales Infections/immunology
- Actinomycetales Infections/veterinary
- Adjuvants, Immunologic/pharmacology
- Animals
- B-Lymphocytes/immunology
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Bacterial Vaccines/immunology
- Blotting, Western
- Cell Division/physiology
- Cytokines/biosynthesis
- DNA Primers/genetics
- DNA, Complementary/biosynthesis
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Epitopes/genetics
- Epitopes/immunology
- Female
- Horse Diseases/immunology
- Horses/immunology
- Immunization
- Immunoassay
- Immunoglobulin G/analysis
- Immunoglobulin G/biosynthesis
- Mice
- Mice, Inbred BALB C
- RNA, Bacterial/biosynthesis
- RNA, Bacterial/isolation & purification
- Reverse Transcriptase Polymerase Chain Reaction
- Rhodococcus equi/genetics
- Rhodococcus equi/immunology
- Vaccines, Subunit/chemical synthesis
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Virulence Factors/genetics
- Virulence Factors/immunology
Collapse
Affiliation(s)
- Saïd Taouji
- AFSSA. Laboratoire d'études et de recherches en pathologie équine.IPC, Goustranville 14430, Dozulé, France.
| | | | | | | | | | | | | |
Collapse
|
42
|
Vanniasinkam T, Barton MD, Heuzenroeder MW. The immunogenicity of Rhodococcus equi GroEL2-based vaccines in a murine model. Vet Immunol Immunopathol 2004; 98:91-100. [PMID: 15127846 DOI: 10.1016/j.vetimm.2003.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rhodococcus equi is a significant intracellular bacterial pathogen in foals. However, at present there is no commercially available vaccine for the prevention of R. equi-induced disease in these animals. Studies have shown that GroEL based vaccines can afford protection against some intracellular pathogens. In this study, the R. equi gene encoding the heat shock protein GroEL2 was cloned and sequenced, with a view to using it as a vaccine candidate. The promoter region of the gene contained two copies of controlling inverted repeat of chaperone expression (CIRCE) motifs, which are well-recognised transcriptional regulators of bacterial heat shock proteins. The R. equi GroEL2 was expressed in E. coli BL21 DE3 with a C-terminal His-tag and sequenced to confirm its identity. The R. equi purified His-tagged GroEL2 protein and a groEL2-based DNA vaccine were used in separate experiments to immunise BALB/c mice. The recombinant protein-based vaccine elicited a mixed Th1/Th2 response whereas the DNA vaccine was found to elicit a predominantly Th1 biased immune response. However, when vaccinated mice were challenged intravenously with 1.5 x 10(7) R. equi neither vaccine elicited enhanced bacterial clearance from the spleen or liver in this model. The reasons for this apparent lack of success are discussed.
Collapse
MESH Headings
- Actinomycetales Infections/immunology
- Actinomycetales Infections/prevention & control
- Amino Acid Sequence
- Animals
- Antibodies, Bacterial/biosynthesis
- Bacterial Vaccines/genetics
- Bacterial Vaccines/immunology
- Bacterial Vaccines/pharmacology
- Base Sequence
- Chaperonin 60/genetics
- Chaperonin 60/immunology
- Cloning, Molecular
- DNA, Bacterial/genetics
- Disease Models, Animal
- Escherichia coli/genetics
- Female
- Genes, Bacterial
- Hypersensitivity, Delayed
- Mice
- Mice, Inbred BALB C
- Phylogeny
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Rhodococcus equi/genetics
- Rhodococcus equi/immunology
- Rhodococcus equi/pathogenicity
- Th1 Cells/immunology
- Th2 Cells/immunology
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Vaccines, DNA/pharmacology
- Vaccines, Subunit/genetics
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
Collapse
Affiliation(s)
- Thiru Vanniasinkam
- School of Pharmaceutical, Molecular and Biomedical Sciences, University of South Australia, Adelaide, Australia
| | | | | |
Collapse
|