1
|
Huang Q, Sun Q, Tang Z, Zeng X. K2CO3 pretreated okara enhances physicochemical, structural, and starch digestion properties in rice tofu, a traditional China snack. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
2
|
Dyke JS, Huertas-Diaz MC, Michel F, Holladay NE, Hogan RJ, He B, Lafontaine ER. The Peptidoglycan-associated lipoprotein Pal contributes to the virulence of Burkholderia mallei and provides protection against lethal aerosol challenge. Virulence 2020; 11:1024-1040. [PMID: 32799724 PMCID: PMC7567441 DOI: 10.1080/21505594.2020.1804275] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 11/07/2022] Open
Abstract
BURKHOLDERIA MALLEI is a highly pathogenic bacterium that causes the fatal zoonosis glanders. The organism specifies multiple membrane proteins, which represent prime targets for the development of countermeasures given their location at the host-pathogen interface. We investigated one of these proteins, Pal, and discovered that it is involved in the ability of B. mallei to resist complement-mediated killing and replicate inside host cells in vitro, is expressed in vivo and induces antibodies during the course of infection, and contributes to virulence in a mouse model of aerosol infection. A mutant in the pal gene of the B. mallei wild-type strain ATCC 23344 was found to be especially attenuated, as BALB/c mice challenged with the equivalent of 5,350 LD50 completely cleared infection. Based on these findings, we tested the hypothesis that a vaccine containing the Pal protein elicits protective immunity against aerosol challenge. To achieve this, the pal gene was cloned in the vaccine vector Parainfluenza Virus 5 (PIV5) and mice immunized with the virus were infected with a lethal dose of B. mallei. These experiments revealed that a single dose of PIV5 expressing Pal provided 80% survival over a period of 40 days post-challenge. In contrast, only 10% of mice vaccinated with a PIV5 control virus construct survived infection. Taken together, our data establish that the Peptidoglycan-associated lipoprotein Pal is a critical virulence determinant of B. mallei and effective target for developing a glanders vaccine.
Collapse
Affiliation(s)
- Jeremy S. Dyke
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | | | - Frank Michel
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Nathan E. Holladay
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Robert J. Hogan
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Biao He
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| | - Eric R. Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, USA
| |
Collapse
|
3
|
Kodama S, Hirano T, Noda K, Abe N, Suzuki M. A single nasal dose of fms-like tyrosine kinase receptor-3 ligand, but not peritoneal application, enhances nontypeable Haemophilus influenzae-specific long-term mucosal immune responses in the nasopharynx. Vaccine 2010; 28:2510-6. [PMID: 20117272 DOI: 10.1016/j.vaccine.2010.01.043] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 12/27/2009] [Accepted: 01/16/2010] [Indexed: 11/26/2022]
Abstract
Nasal vaccination is an effective therapeutic regimen for preventing otitis media. In the development of nasal vaccine, an appropriate adjuvant is required. In the present study, we examined the efficacy of fms-like tyrosine kinase receptor-3 ligand (Flt3L) as a mucosal adjuvant. Flt3L was administered intranasally or peritoneally to mice, which were then immunized intranasally with P6 protein of nontypeable Haemophilus influenzae (NTHi), and P6-specific immune responses were examined. In addition, NTHi challenges were performed and the level of NTHi was quantified in nasal washes. Nasal application of Flt3L induced an increase in the number of dendritic cells in nasal-associated lymphoid tissue. P6-specific nasal wash immunoglobulin (Ig)A and serum IgG titers were elevated significantly after nasal immunization. Enhanced NTHi clearance from the nasopharynx was also observed. The effect of nasal vaccination with P6 combined with nasal Flt3L application was prolonged. These results indicate the potential of Flt3L as an effective mucosal adjuvant and suggest that nasal vaccination with P6 in combination with nasal Flt3L might be an effective regimen for the induction of NTHi-specific protective immunity.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Otolaryngology, Oita University Faculty of Medicine, 1-1 Idaigaoka, Hazama-cho, Yufu, Oita 879-5593, Japan.
| | | | | | | | | |
Collapse
|
4
|
Sable SB, Plikaytis BB, Shinnick TM. Tuberculosis subunit vaccine development: Impact of physicochemical properties of mycobacterial test antigens. Vaccine 2007; 25:1553-66. [PMID: 17166640 DOI: 10.1016/j.vaccine.2006.11.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2006] [Revised: 09/27/2006] [Accepted: 11/07/2006] [Indexed: 11/23/2022]
Abstract
Tuberculosis caused by Mycobacterium tuberculosis continues to be one of the major public health problems in the world. The eventual control of this disease will require the development of a safe and effective vaccine. One of the approaches receiving a great deal of attention recently is subunit vaccination. An efficacious antituberculous subunit vaccine requires the identification and isolation of key components of the pathogen that are capable of inducing a protective immune response. Clues to identify promising subunit vaccine candidates may be found in their physicochemical and immunobiological properties. In this article, we review the evidence that the physicochemical properties of mycobacterial components can greatly impact the induction of either protective or deleterious immune response and consequently influence the potential utility as an antituberculous subunit vaccine.
Collapse
Affiliation(s)
- Suraj B Sable
- Division of TB Elimination, National Center for HIV, STD, and TB Prevention, Centers for Disease Control and Prevention, Mailstop G35, 1600 Clifton Road, Atlanta, GA 30333, USA
| | | | | |
Collapse
|
5
|
Murphy TF, Kirkham C, Lesse AJ. Construction of a mutant and characterization of the role of the vaccine antigen P6 in outer membrane integrity of nontypeable Haemophilus influenzae. Infect Immun 2006; 74:5169-76. [PMID: 16926409 PMCID: PMC1594858 DOI: 10.1128/iai.00692-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2006] [Revised: 05/19/2006] [Accepted: 06/02/2006] [Indexed: 11/20/2022] Open
Abstract
Outer membrane protein P6 is the subject of investigation as a vaccine antigen to prevent infections caused by nontypeable Haemophilus influenzae, which causes otitis media in children and respiratory tract infections in adults with chronic lung disease. P6 induces protective immune responses in animal models and is the target of potentially protective immune responses in humans. P6 is a 16-kDa lipoprotein that shares homology with the peptidoglycan-associated lipoproteins of gram-negative bacteria and is highly conserved among strains of H. influenzae. To characterize the function of P6, an isogenic mutant was constructed by replacing the P6 gene with a chloramphenicol resistance cassette. The P6 mutant showed altered colony morphology and slower growth in vitro than that of the parent strain. By electron microscopy, the P6 mutant cells demonstrated increased size, variability in size, vesicle formation, and fragility compared to the parent cells. The P6 mutant showed hypersensitivity to selected antibiotics with different mechanisms of action, indicating increased accessibility of the agents to their targets. The P6 mutant was more sensitive to complement-mediated killing by normal human serum. Complementation of the mutation in trans completely or partially restored the phenotypes. We concluded that P6 plays a structural role in maintaining the integrity of the outer membrane by anchoring the outer membrane to the cell wall. The observation that the absence of expression of P6 is detrimental to the cell is a highly desirable feature for a vaccine antigen, supporting further investigation of P6 as a vaccine candidate for H. influenzae.
Collapse
Affiliation(s)
- Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, NY, USA.
| | | | | |
Collapse
|
6
|
Kodama S, Hirano T, Suenaga S, Abe N, Suzuki M. Eustachian tube possesses immunological characteristics as a mucosal effector site and responds to P6 outer membrane protein of nontypeable Haemophilus influenzae. Vaccine 2005; 24:1016-27. [PMID: 16242817 DOI: 10.1016/j.vaccine.2005.07.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2005] [Revised: 05/27/2005] [Accepted: 07/12/2005] [Indexed: 10/25/2022]
Abstract
The eustachian tube (ET) plays an important role in the pathogenesis of otitis media (OM). To better understand its biology and to develop a nasal vaccine for preventing OM, mucosal lymphocytes in the ET were analyzed, and the ET's immunological function was investigated. Mononuclear cells were isolated from murine ET, and lymphocyte subsets were analyzed by flow cytometry. Antibody-producing cells were determined by enzyme-linked immunospot assay. The expression of cytokine mRNA in ET CD4(+) T cells was determined by RT-PCR. Results in naive mice showed that the ET contained many immunocompetent cells, including a relative large number of IgA-producing cells and Th2 cytokine-expressing T cells. Next, we investigated antigen-specific immune responses in the ET. Mice were immunized intranasally with the P6 outer membrane of nontypeable Haemophilus influenzae (NTHi) and cholera toxin (CT), and P6-specific immune responses in the ET were examined. P6-specific IgA producing cells markedly increased in the ET. Moreover, in vitro stimulation with P6 of purified CD4(+) T cells from immunized mice resulted in the proliferation of CD4(+) T cells that expressed Th2 cytokine mRNA. These results indicate that the ET might be characterized as a mucosal effector site and that antigen-specific IgA and Th2 immune responses could be induced in the ET by intranasal immunization. These findings suggest that the ET might be a key immunological organ in the pathogenesis of OM, and in the development of a nasal vaccine.
Collapse
Affiliation(s)
- Satoru Kodama
- Department of Otolaryngology, Oita University Faculty of Medicine, Hazama-machi, Japan
| | | | | | | | | |
Collapse
|
7
|
McMahon M, Murphy TF, Kyd J, Thanavala Y. Role of an immunodominant T cell epitope of the P6 protein of nontypeable Haemophilus influenzae in murine protective immunity. Vaccine 2005; 23:3590-6. [PMID: 15855018 DOI: 10.1016/j.vaccine.2005.01.151] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2004] [Revised: 06/12/2004] [Accepted: 01/14/2005] [Indexed: 10/25/2022]
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a common cause of otitis media in children and lower respiratory tract infection in adults with chronic lung disease. The highly conserved P6 protein of NTHI infection is under evaluation as a vaccine antigen in several animal models. To elucidate the role of cellular immune response to P6 in protective immunity, the goal of this study was to identify and characterize T cell epitope(s) on P6 and to investigate the role of these epitope(s) in eliciting antigen specific antibody responses and in mediating pulmonary clearance of NTHI. We report that T cells from BALB/c immunized with P6 recognize a single, immunodominant region, represented by 15 amino acids (residues 41-55) of the P6 protein. To verify the ability of this epitope to elicit T cell responses to the P6 protein, mice were immunized with a synthetic peptide corresponding to the sequence of dominant peptide. T cells isolated from mice primed in vivo with the peptide responded following in vitro stimulation with either the peptide or with the whole P6 molecule. Substitution of single amino acids and N or C terminal truncations of the dominant peptide resulted in complete abrogation of the response, implicating their importance to the T cell response. Furthermore, mucosal immunization of mice with a chimeric peptide that encompassed the dominant T cell epitope and a putative B cell epitope resulted in enhanced bacterial clearance following pulmonary challenge with NTHI. Collectively, these results establish that, in a mouse model, P6 contains a single immunodominant T cell epitope and this epitope plays an important role in protective immune responses induced by immunization with P6.
Collapse
Affiliation(s)
- Michelle McMahon
- Department of Immunology, Roswell Park Cancer Institute, Elm and Carlton Street, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
8
|
Berenson CS, Murphy TF, Wrona CT, Sethi S. Outer membrane protein P6 of nontypeable Haemophilus influenzae is a potent and selective inducer of human macrophage proinflammatory cytokines. Infect Immun 2005; 73:2728-35. [PMID: 15845475 PMCID: PMC1087348 DOI: 10.1128/iai.73.5.2728-2735.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Interactions of nontypeable Haemophilus influenzae (NTHI) with human macrophages contribute to the pathogenesis of NTHI-induced infection in humans. However, the immunologic mechanisms that initiate and perpetuate NTHI-mediated macrophage responses have not been well explored. Outer membrane protein (OMP) P6 is a conserved lipoprotein expressed by NTHI in vivo that possesses a Pam(3)Cys terminal motif, characteristic of immunoactive bacterial lipoproteins associated with Toll-like receptor signaling. We theorized that OMP P6 is a potent immunomodulator of human macrophages. To test this hypothesis, we purified OMP P6 as well as OMP P2, the predominant NTHI outer membrane protein, and lipooligosaccharide (LOS), the specific endotoxin of NTHI, from NTHI strain 1479. Human blood monocyte-derived macrophages, purified from healthy donors, were incubated with each outer membrane constituent, and cytokine production of macrophage supernatants interleukin-1beta (IL-1beta), tumor necrosis factor alpha (TNF-alpha), IL-10, IL-12, and IL-8 was measured. OMP P6 selectively upregulated IL-10, TNF-alpha, and IL-8. While OMP P6 (0.1 mug/ml for 8 h) elicited slightly greater concentrations of IL-10, it resulted in over ninefold greater concentrations of TNF-alpha and over fourfold greater concentrations of IL-8 than did OMP P2. OMP P6 at doses as low as 10 pg/ml was still effective at induction of macrophage IL-8, while OMP P2 and LOS were not. OMP P6 of NTHI is a specific trigger of bacteria-induced human macrophage inflammatory events, with IL-8 and TNF-alpha as key effectors of P6-induced macrophage responses.
Collapse
Affiliation(s)
- Charles S Berenson
- Division of Infectious Diseases (151), VA Western NY Healthcare System, 3495 Bailey Avenue, Buffalo, New York 14215, USA.
| | | | | | | |
Collapse
|
9
|
Hotomi M, Ikeda Y, Suzumoto M, Yamauchi K, Green BA, Zlotnick G, Billal DS, Shimada J, Fujihara K, Yamanaka N. A recombinant P4 protein of Haemophilus influenzae induces specific immune responses biologically active against nasopharyngeal colonization in mice after intranasal immunization. Vaccine 2005; 23:1294-300. [PMID: 15652672 DOI: 10.1016/j.vaccine.2004.08.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2004] [Revised: 07/26/2004] [Accepted: 08/06/2004] [Indexed: 10/26/2022]
Abstract
Outer membrane protein P4, together with P6, is highly conserved among all typeable and nontypeable strains of Haemophilus influenzae (H. influenzae). Thus, the protein is an attractive antigen for the inclusion in a vaccine against nontypeable H. influenzae (NTHi). However, the ability of P4 to induce antibodies protective against NTHi infections is still controversial. In this study, we investigated the specific mucosal immune responses against NTHi induced by intranasal immunization with the lipidated form of recombinant P4 protein (rP4) and non-fatty acylated recombinant P6 protein (rP6) with or without cholera toxin (CT) in BALB/c mice model. Intranasal immunization with either rP4+CT, a mixture of rP4 and rP6+CT, or rP4 and rP6 without CT elicited anti-rP4 specific IgG antibody in serum of mice. Intranasal immunization with either rP4+CT or a mixture of rP4, rP6+CT elicited anti-rP4 specific IgA antibody in nasopharyngeal washing (NPW), while intranasal immunization with rP4 and rP6 without CT did not induced anti-rP4 specific IgA antibody responses in NPWs. Sera from mice intranasally immunized with rP4+CT and a mixture of rP4, rP6+CT also showed bactericidal activity. Significant clearance of NTHi in nasopharynx was seen 3 days after the inoculation of live NTHi in mice intranasally immunized with rP4+CT. The current findings suggested that P4 would be a useful antigen as the component of the vaccine to induce protective immune responses against NTHi. The use of an intranasal vaccine composed of the different surface protein antigens is an attractive strategy for the development of a vaccine against NTHi.
Collapse
Affiliation(s)
- Muneki Hotomi
- Department of Otolaryngology-Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama-shi 641-0032, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hotomi M, Yamanaka N, Shimada J, Suzumoto M, Ikeda Y, Sakai A, Arai J, Green B. Intranasal immunization with recombinant outer membrane protein P6 induces specific immune responses against nontypeable Haemophilus influenzae. Int J Pediatr Otorhinolaryngol 2002; 65:109-16. [PMID: 12176180 DOI: 10.1016/s0165-5876(02)00076-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
OBJECTIVE Nontypeable Haemophilus influenzae (NTHi) is one of the leading causative pathogens for otitis media. The outer membrane protein P6 of NTHi is highly conserved among the strains and is an attractive candidate for a preventive vaccine. However, for the production of a relatively small amount P6 containing lipopolysaccharides, the development of a recombinant version of this protein is required. This study was designed to investigate the specific mucosal immunity induced by intranasal immunization of recombinant P6 (rP6) with cholera toxin (CT). METHODS BALB/c mice were immunized with of rP6 (30 microg) and CT (2 microg) intranasally every 2 days for 2 weeks. Anti-rP6 specific IgG, IgA and IgM antibodies and the subclass of anti-rP6 specific IgG antibody were determined by enzyme linked immunosorbent assay (ELISA). Anti-rP6 specific IgA in nasopharyngeal washings were also determined by ELISA. Nasopharyngeal clearance of inoculated NTHi after the intranasal immunization were assessed. All statistical differences between the two groups were assessed by ANOVA parametric test. RESULTS Intranasal immunization with rP6 and CT evoked rP6-specific mucosal IgA immune response as well as the systemic IgG immune response against rP6 and enhanced nasopharyngeal clearance of inoculated live NTHi. CONCLUSION These results indicate the good immunogenicities of rP6 to induce specific immune responses against NTHi. Intranasal immunization with rP6 will be an effective approach to protect infections of NTHi.
Collapse
Affiliation(s)
- Muneki Hotomi
- Department of Otolaryngology - Head and Neck Surgery, Wakayama Medical University, Kimiidera 811-1, Wakayama-shi, Wkayama 641-0032, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Sethi S, Murphy TF. Bacterial infection in chronic obstructive pulmonary disease in 2000: a state-of-the-art review. Clin Microbiol Rev 2001; 14:336-63. [PMID: 11292642 PMCID: PMC88978 DOI: 10.1128/cmr.14.2.336-363.2001] [Citation(s) in RCA: 395] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the fourth leading cause of death in the United States. The precise role of bacterial infection in the course and pathogenesis of COPD has been a source of controversy for decades. Chronic bacterial colonization of the lower airways contributes to airway inflammation; more research is needed to test the hypothesis that this bacterial colonization accelerates the progressive decline in lung function seen in COPD (the vicious circle hypothesis). The course of COPD is characterized by intermittent exacerbations of the disease. Studies of samples obtained by bronchoscopy with the protected specimen brush, analysis of the human immune response with appropriate immunoassays, and antibiotic trials reveal that approximately half of exacerbations are caused by bacteria. Nontypeable Haemophilus influenzae, Moraxella catarrhalis, and Streptococcus pneumoniae are the most common causes of exacerbations, while Chlamydia pneumoniae causes a small proportion. The role of Haemophilus parainfluenzae and gram-negative bacilli remains to be established. Recent progress in studies of the molecular mechanisms of pathogenesis of infection in the human respiratory tract and in vaccine development guided by such studies promises to lead to novel ways to treat and prevent bacterial infections in COPD.
Collapse
Affiliation(s)
- S Sethi
- Division of Pulmonary and Critical Medicine, State University of New York at Buffalo, Buffalo, New York, USA
| | | |
Collapse
|
12
|
Karalus RJ, Murphy TF. Purification and characterization of outer membrane protein P6, a vaccine antigen of non-typeable Haemophilus influenzae. FEMS IMMUNOLOGY AND MEDICAL MICROBIOLOGY 1999; 26:159-66. [PMID: 10536303 DOI: 10.1111/j.1574-695x.1999.tb01384.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Outer membrane protein P6 is a promising vaccine antigen with potential to prevent infections caused by non-typeable Haemophilus influenzae. A convenient and reliable method for the purification of P6 and an assessment of the purity, yield, protein structure, antigenicity and immunogenicity of the purified protein are described. The method begins with intact H. influenzae and utilizes a series of incubations and centrifugations using a single buffer to remove all cell components with the exception of the peptidoglycan to which the P6 is associated. P6 is dissociated from the complex with heat and the insoluble peptidoglycan is removed by centrifugation. The procedure yields highly purified P6. Contamination with lipooligosaccharide is less than 0.025 endotoxin U per microgr P6. The yield of P6 is approximately 2 mg of P6 per l H. influenzae culture. The purified P6 retains both the secondary and tertiary structure as measured by circular dichroism and analysis with monoclonal antibodies. The purified P6 is immunogenic in animals. A convenient method for purifying P6 which retains antigenicity and immunogenicity will be an important tool for future studies of the vaccine potential of P6.
Collapse
Affiliation(s)
- R J Karalus
- Department of Microbiology, State University of New York at Buffalo, Buffalo, NY, USA
| | | |
Collapse
|
13
|
Badr WH, Loghmanee D, Karalus RJ, Murphy TF, Thanavala Y. Immunization of mice with P6 of nontypeable Haemophilus influenzae: kinetics of the antibody response and IgG subclasses. Vaccine 1999; 18:29-37. [PMID: 10501232 DOI: 10.1016/s0264-410x(99)00166-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The kinetics of the anti-P6 antibody response was characterized in three strains of mice of different haplotypes (Balb/c; H-2d, C3H/H; H-2k, SJL/J; H-2s). Anti-P6 antibodies were measured on a weekly basis by enzyme-linked immunosorbent assay (ELISA). The primary response peaked 2 or 3 weeks after the initial injection with 40 microg of purified P6. The response remained at a plateau for 8-10 weeks. A maximum titer of 1:1,638,400 was attained and then steadily declined. To study the ability of P6 to generate a recall response, we opted to boost the vaccinated mice with a known subimmunogenic dose of live nontypeable Haemophilus influenzae (NTHI) bacteria. After the anti-P6 antibody titers in the primed animals had stayed at baseline levels for 2 weeks, the mice were injected intraperitonealy with 10(8) cfu of NTHI in sterile saline. This challenge with live NTHI bacteria induced a very rapid and strong secondary antibody response in all mice. Finally, we demonstrated that these murine anti-P6 sera were 100% bactericidal against three strains of NTHI when tested in a complement dependant bactericidal assay.
Collapse
Affiliation(s)
- W H Badr
- Department of Molecular Immunology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | | | |
Collapse
|
14
|
Webb DC, Cripps AW. Immunization with recombinant transferrin binding protein B enhances clearance of nontypeable Haemophilus influenzae from the rat lung. Infect Immun 1999; 67:2138-44. [PMID: 10225866 PMCID: PMC115949 DOI: 10.1128/iai.67.5.2138-2144.1999] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1998] [Accepted: 01/26/1999] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is an opportunistic pathogen, and heterogeneity in the surface-exposed immunodominant domains of NTHI proteins is thought to be associated with the failure of an infection to stimulate an immune response that is cross-protective against heterologous NTHI strains. The aim of this study was to assess the vaccine potential of a surface-exposed component of the NTHI human transferrin receptor, TbpB, and to determine if the antibody response elicited was cross-reactive with heterologous strains of NTHI. The efficacy of immunization with a recombinant form of TbpB (rTbpB) was determined by assessing the pulmonary clearance of viable bacteria 4 h after a live challenge with NTHI. There was a significant reduction in the number of viable bacteria in both the bronchoalveolar lavage fluid (34% for the 20-microgram dose and 58% for the 40-microgram dose) and lung homogenates (26% for the 20-microgram dose and 60% for the 40-microgram dose) of rats immunized with rTbpB compared to the control animals. While rTbpB-specific antibodies from immunized rats were nonspecific in the recognition of TbpB from six heterologous NTHI strains on Western blots, these antibodies differed in their ability to block transferrin binding to heterologous strains and to cross-react in bactericidal assays. If bactericidal antibodies are key indicators of the efficacy of the immune response in eliminating NTHI, this data suggests that while immunization with rTbpB stimulates protective responses against the homologous isolate, variability in the recognition of TbpB from heterologous isolates may limit the potential of rTbpB as an NTHI vaccine component.
Collapse
Affiliation(s)
- D C Webb
- Gadi Research Centre, Faculty of Applied Science, University of Canberra, Canberra City, ACT 2601, Australia.
| | | |
Collapse
|
15
|
Myers LE, Yang YP, Du RP, Wang Q, Harkness RE, Schryvers AB, Klein MH, Loosmore SM. The transferrin binding protein B of Moraxella catarrhalis elicits bactericidal antibodies and is a potential vaccine antigen. Infect Immun 1998; 66:4183-92. [PMID: 9712766 PMCID: PMC108504 DOI: 10.1128/iai.66.9.4183-4192.1998] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transferrin binding protein genes (tbpA and tbpB) from two strains of Moraxella catarrhalis have been cloned and sequenced. The genomic organization of the M. catarrhalis transferrin binding protein genes is unique among known bacteria in that tbpA precedes tbpB and there is a third gene located between them. The deduced sequences of the M. catarrhalis TbpA proteins from two strains were 98% identical, while those of the TbpB proteins from the same strains were 63% identical and 70% similar. The third gene, tentatively called orf3, encodes a protein of approximately 58 kDa that is 98% identical between the two strains. The tbpB genes from four additional strains of M. catarrhalis were cloned and sequenced, and two potential families of TbpB proteins were identified based on sequence similarities. Recombinant TbpA (rTbpA), rTbpB, and rORF3 proteins were expressed in Escherichia coli and purified. rTbpB was shown to retain its ability to bind human transferrin after transfer to a membrane, but neither rTbpA nor rORF3 did. Monospecific anti-rTbpA and anti-rTbpB antibodies were generated and used for immunoblot analysis, which demonstrated that epitopes of M. catarrhalis TbpA and TbpB were antigenically conserved and that there was constitutive expression of the tbp genes. In the absence of an appropriate animal model, anti-rTbpA and anti-rTbpB antibodies were tested for their bactericidal activities. The anti-rTbpA antiserum was not bactericidal, but anti-rTbpB antisera were found to kill heterologous strains within the same family. Thus, if bactericidal ability is clinically relevant, a vaccine comprising multiple rTbpB antigens may protect against M. catarrhalis disease.
Collapse
Affiliation(s)
- L E Myers
- Pasteur Merieux Connaught Canada Research, North York, Ontario, Canada M2R 3T4
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Du RP, Wang Q, Yang YP, Schryvers AB, Chong P, Klein MH, Loosmore SM. Cloning and expression of the Moraxella catarrhalis lactoferrin receptor genes. Infect Immun 1998; 66:3656-65. [PMID: 9673246 PMCID: PMC108399 DOI: 10.1128/iai.66.8.3656-3665.1998] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The lactoferrin receptor genes from two strains of Moraxella catarrhalis have been cloned and sequenced. The lfr genes are arranged as lbpB followed by lbpA, a gene arrangement found in lactoferrin and transferrin receptor operons from several bacterial species. In addition, a third open reading frame, orf3, is located one nucleotide downstream of lbpA. The deduced lactoferrin binding protein A (LbpA) sequences from the two strains were found to be 99% identical, the LbpB sequences were 92% identical, and the ORF3 proteins were 98% identical. The lbpB gene was PCR amplified and sequenced from a third strain of M. catarrhalis, and the encoded protein was found to be 77% identical and 84% similar to the other LbpB proteins. Recombinant LbpA and LbpB proteins were expressed from Escherichia coli, and antisera raised to the purified proteins were used to assess antigenic conservation in a panel of M. catarrhalis strains. The recombinant proteins were tested for the ability to bind human lactoferrin following gel electrophoresis and electroblotting, and rLbpB, but not rLbpA, was found to bind lactoferrin. Bactericidal antibody activity was measured, and while the anti-rLbpA antiserum was not bactericidal, the anti-rLbpB antisera were found to be weakly bactericidal. Thus, LbpB may have potential as a vaccine candidate.
Collapse
Affiliation(s)
- R P Du
- Pasteur Merieux Connaught Canada Research Centre, North York, Ontario, Canada M2R 3T4
| | | | | | | | | | | | | |
Collapse
|
17
|
Foxwell AR, Kyd JM, Cripps AW. Nontypeable Haemophilus influenzae: pathogenesis and prevention. Microbiol Mol Biol Rev 1998; 62:294-308. [PMID: 9618443 PMCID: PMC98916 DOI: 10.1128/mmbr.62.2.294-308.1998] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this paper, we describe the ability of nontypeable Haemophilus influenzae (NTHi) to coexist with the human host and the devastating results associated with disruption of the delicate state of balanced pathogenesis, resulting in both acute and chronic respiratory tract infections. It has been seen that the strains of NTHi causing disease show a marked genetic and phenotypic diversity but that changes in the lipooligosaccharide (LOS) and protein size and antigenicity in chronically infected individuals indicate that individual strains of NTHi can remain and adapt themselves to avoid expulsion from their infective niche. The lack of reliance of NTHi on a single mechanism of attachment and its ability to interact with the host with rapid responses to its environment confirmed the success of this organism as both a colonizer and a pathogen. In vitro experiments on cell and organ cultures, combined with otitis media and pulmonary models in chinchillas, rats, and mice, have allowed investigations into individual interactions between NTHi and the mammalian host. The host-organism interaction appears to be a two-way process, with NTHi using cell surface structures to directly interact with the mammalian host and using secreted proteins and LOS to change the mammalian host in order to pave the way for colonization and invasion. Many experiments have also noted that immune system evasion through antigenic variation, secretion of enzymes and epithelial cell invasion allowed NTHi to survive for longer periods despite a specific immune response being mounted to infection. Several outer membrane proteins and LOS derivatives are discussed in relation to their efficacy in preventing pulmonary infections and otitis media in animals. General host responses with respect to age, genetic makeup, and vaccine delivery routes are considered, and a mucosal vaccine strategy is suggested.
Collapse
Affiliation(s)
- A R Foxwell
- School of Human and Biomedical Sciences, Faculty of Applied Science, University of Canberra, Belconnen, Australia
| | | | | |
Collapse
|
18
|
Yang YP, Loosmore SM, Underdown BJ, Klein MH. Nasopharyngeal colonization with nontypeable Haemophilus influenzae in chinchillas. Infect Immun 1998; 66:1973-80. [PMID: 9573078 PMCID: PMC108152 DOI: 10.1128/iai.66.5.1973-1980.1998] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Colonization of the nasopharynx by a middle ear pathogen is the first step in the development of otitis media in humans. The establishment of an animal model of nasopharyngeal colonization would therefore be of great utility in assessing the potential protective ability of candidate vaccine antigens (especially adhesins) against otitis media. A chinchilla nasopharyngeal colonization model for nontypeable Haemophilus influenzae (NTHI) was developed with antibiotic-resistant strains. This model does not require coinfection with a virus. There was no significant difference in the efficiency of NTHI colonization between adult (1- to 2-year-old) and young (2- to 3-month-old) animals. However, the incidence of middle ear infection following nasopharyngeal colonization was significantly higher in young animals (83 to 89%) than in adult chinchillas (10 to 30%). Chinchillas that had recovered either from a previous middle ear infection caused by NTHI or from an infection by intranasal inoculation with NTHI were completely protected against nasopharyngeal colonization with a homologous strain and were found to be the best positive controls in protection studies. Systemic immunization of chinchillas with inactivated whole-cell preparations significantly protected animals not only against homologous NTHI colonization but also partially against heterologous NTHI infection. In all protected animals, significant serum anti-P6 and anti-HMW antibody responses were observed. The outer membrane P6 and high-molecular-weight (HMW) proteins appear to be promising candidate vaccine antigens to prevent nasopharyngeal colonization and middle ear infection caused by NTHI.
Collapse
Affiliation(s)
- Y P Yang
- Research Center, Pasteur Merieux Connaught Canada, North York, Ontario.
| | | | | | | |
Collapse
|