1
|
Pyke AT, Wilson DJ, Michie A, Mackenzie JS, Imrie A, Cameron J, Doggett SL, Haniotis J, Herrero LJ, Caly L, Lynch SE, Mee PT, Madzokere ET, Ramirez AL, Paramitha D, Hobson-Peters J, Smith DW, Weir R, Sullivan M, Druce J, Melville L, Robson J, Gibb R, van den Hurk AF, Duchene S. Independent repeated mutations within the alphaviruses Ross River virus and Barmah Forest virus indicates convergent evolution and past positive selection in ancestral populations despite ongoing purifying selection. Virus Evol 2024; 10:veae080. [PMID: 39411152 PMCID: PMC11477980 DOI: 10.1093/ve/veae080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/25/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Ross River virus (RRV) and Barmah Forest virus (BFV) are arthritogenic arthropod-borne viruses (arboviruses) that exhibit generalist host associations and share distributions in Australia and Papua New Guinea (PNG). Using stochastic mapping and discrete-trait phylogenetic analyses, we profiled the independent evolution of RRV and BFV signature mutations. Analysis of 186 RRV and 88 BFV genomes demonstrated their viral evolution trajectories have involved repeated selection of mutations, particularly in the nonstructural protein 1 (nsP1) and envelope 3 (E3) genes suggesting convergent evolution. Convergent mutations in the nsP1 genes of RRV (residues 248 and 441) and BFV (residues 297 and 447) may be involved with catalytic enzyme mechanisms and host membrane interactions during viral RNA replication and capping. Convergent E3 mutations (RRV site 59 and BFV site 57) may be associated with enzymatic furin activity and cleavage of E3 from protein precursors assisting viral maturation and infectivity. Given their requirement to replicate in disparate insect and vertebrate hosts, convergent evolution in RRV and BFV may represent a dynamic link between their requirement to selectively 'fine-tune' intracellular host interactions and viral replicative enzymatic processes. Despite evidence of evolutionary convergence, selection pressure analyses did not reveal any RRV or BFV amino acid sites under strong positive selection and only weak positive selection for nonstructural protein sites. These findings may indicate that their alphavirus ancestors were subject to positive selection events which predisposed ongoing pervasive convergent evolution, and this largely supports continued purifying selection in RRV and BFV populations during their replication in mosquito and vertebrate hosts.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Daniel J Wilson
- Big Data Institute, Oxford Population Health, University of Oxford, Li Ka Shing Centre for Health Information and Discovery, Old Road Campus, Oxford OX3 7LF, United Kingdom
- Department for Continuing Education, University of Oxford, 1 Wellington Square, Oxford OX1 2JA, United Kingdom
| | - Alice Michie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - John S Mackenzie
- Faculty of Health Sciences, Curtin University, G.P.O. Box U1987, Bentley, Western Australia 6845, Australia
| | - Allison Imrie
- School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Jane Cameron
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Stephen L Doggett
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
| | - John Haniotis
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
| | - Lara J Herrero
- Gold Coast Campus, Institute for Glycomics, Griffith University, 1 Parklands Drive, Southport, Queensland 4215, Australia
| | - Leon Caly
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Stacey E Lynch
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Peter T Mee
- Agriculture Victoria Research, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, Victoria 3083, Australia
| | - Eugene T Madzokere
- Gold Coast Campus, Institute for Glycomics, Griffith University, 1 Parklands Drive, Southport, Queensland 4215, Australia
| | - Ana L Ramirez
- College of Public Health, Medical and Veterinary Sciences, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- Australian Institute of Tropical Health and Medicine, James Cook University, P.O. Box 6811, Cairns, Queensland 4870, Australia
- The Jackson Laboratory, 10 Discovery Drive Connecticut, Farmington, CT 06032, United States of America
| | - Devina Paramitha
- School of Chemistry and Molecular Biosciences, The University of Queensland, Bdg 68 Cooper Road, St. Lucia, Queensland 4072, Australia
| | - Jody Hobson-Peters
- School of Chemistry and Molecular Biosciences, The University of Queensland, Bdg 68 Cooper Road, St. Lucia, Queensland 4072, Australia
| | - David W Smith
- NSW Health Pathology, Westmead Hospital, 166-174 Hawkesbury Road Westmead, Sydney, New South Wales 2145, Australia
- School of Medicine, University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia
| | - Richard Weir
- Department of Primary Industries and Fisheries, Berrimah Veterinary Laboratory, P.O. Box 3000, Darwin, Northern Territory 0801, Australia
| | - Mitchell Sullivan
- Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O Box 594 Archerfield, Coopers Plains, Queensland 4108, Australia
| | - Julian Druce
- Victorian Infectious Diseases Reference Laboratory, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Lorna Melville
- Department of Primary Industries and Fisheries, Berrimah Veterinary Laboratory, P.O. Box 3000, Darwin, Northern Territory 0801, Australia
| | - Jennifer Robson
- Department of Microbiology and Molecular Pathology, Sullivan Nicolaides Pathology, P.O. Box 2014 Fortitude Valley, Brisbane, Queensland 4006, Australia
| | - Robert Gibb
- Serology, Pathology Queensland Central Laboratory, Royal Brisbane and Women’s Hospital, 40 Butterfield Street Herston, Brisbane, Queensland 4029, Australia
| | - Andrew F van den Hurk
- Public Health Virology Laboratory, Public and Environmental Health Reference Laboratories, Department of Health, Queensland Government, P.O. Box 594, Archerfield, Coopers Plains, Queensland, Australia
| | - Sebastian Duchene
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, 792 Elizabeth Street, Melbourne, Victoria 3000, Australia
- Evolutionary Dynamics of Infectious Diseases, Department of Computational Biology, Institut Pasteur, 28 Rue du Dr Roux, Paris 75015, France
| |
Collapse
|
2
|
Powell LA, Fox JM, Kose N, Kim AS, Majedi M, Bombardi R, Carnahan RH, Slaughter JC, Morrison TE, Diamond MS, Crowe JE. Human monoclonal antibodies against Ross River virus target epitopes within the E2 protein and protect against disease. PLoS Pathog 2020; 16:e1008517. [PMID: 32365139 PMCID: PMC7252634 DOI: 10.1371/journal.ppat.1008517] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 05/27/2020] [Accepted: 04/05/2020] [Indexed: 11/18/2022] Open
Abstract
Ross River fever is a mosquito-transmitted viral disease that is endemic to Australia and the surrounding Pacific Islands. Ross River virus (RRV) belongs to the arthritogenic group of alphaviruses, which largely cause disease characterized by debilitating polyarthritis, rash, and fever. There is no specific treatment or licensed vaccine available, and the mechanisms of protective humoral immunity in humans are poorly understood. Here, we describe naturally occurring human mAbs specific to RRV, isolated from subjects with a prior natural infection. These mAbs potently neutralize RRV infectivity in cell culture and block infection through multiple mechanisms, including prevention of viral attachment, entry, and fusion. Some of the most potently neutralizing mAbs inhibited binding of RRV to Mxra8, a recently discovered alpahvirus receptor. Epitope mapping studies identified the A and B domains of the RRV E2 protein as the major antigenic sites for the human neutralizing antibody response. In experiments in mice, these mAbs were protective against cinical disease and reduced viral burden in multiple tissues, suggesting a potential therapeutic use for humans.
Collapse
Affiliation(s)
- Laura A. Powell
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Julie M. Fox
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Nurgun Kose
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
| | - Arthur S. Kim
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mahsa Majedi
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
| | - Robin Bombardi
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James C. Slaughter
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
- Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado, Aurora, Colorado, United States of America
| | - Michael S. Diamond
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - James. E. Crowe
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, Tennessee, United States of America
| |
Collapse
|
3
|
Abstract
RNA viruses of the families Arena-, Bunya-, Filo-, Flavi-and Togaviridae cause illness in humans ranging from mild, non-specific febrile syndromes to fulminant, lethal haemorrhagic fever. They are transmitted from animals to humans and from human to human by arthropods, aerosols or contact with body fluids. Antiviral compounds, convalescent plasma and interferon inhibit many of these agents in vitro and in virus-infected animals. Drug or plasma treatment is now in use for several human diseases, and would probably be beneficial for a number of others for which there is only limited treatment experience. Success is linked to early diagnosis and initiation of therapy. Ribavirin is used to treat Lassa fever and haemorrhagic fever with renal syndrome, and would probably be effective for Crimean-Congo haemorrhagic fever and for all New World arenavirus diseases. The value of ribavirin in the early treatment of hantavirus pulmonary syndrome is under evaluation. Convalescent plasma is the therapy of choice for Argentine haemorrhagic fever, and would also probably be effective for other New World arenaviruses and some other infections if a safe supply of plasma could be maintained. Ribavirin and interferon-α have both shown protective efficacy in non-human primates infected with Rift Valley fever virus. No effective therapy has yet been identified for filovirus infections, but results in animal models are encouraging. More clinical research is urgently needed. Even if placebo-controlled drug trials cannot be performed, conscientious reports of the results of therapy in limited numbers of patients can still provide evidence of antiviral drug effects.
Collapse
Affiliation(s)
- Mike Bray
- Virology Division, USAMRIID, Frederick, Maryland, MD 21702-5011, USA
| | - John Huggins
- Virology Division, USAMRIID, Frederick, Maryland, MD 21702-5011, USA
| |
Collapse
|
4
|
Tambyah PA, Oon J, Asli R, Kristanto W, Hwa SH, Vang F, Karwal L, Fuchs J, Santangelo JD, Gordon GS, Thomson C, Rao R, Dean H, Das SC, Stinchcomb DT. An inactivated enterovirus 71 vaccine is safe and immunogenic in healthy adults: A phase I, double blind, randomized, placebo-controlled, study of two dosages. Vaccine 2019; 37:4344-4353. [PMID: 31230881 DOI: 10.1016/j.vaccine.2019.06.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/10/2019] [Accepted: 06/12/2019] [Indexed: 01/27/2023]
Abstract
BACKGROUND Hand, foot and mouth disease (HFMD), especially that caused by enterovirus 71 (EV71) infection, is a public health concern in the Asia-Pacific region. We report a phase I clinical trial of an EV71 candidate vaccine (INV21) based on a binary ethylenimine inactivated B2 sub-genotype formulated with aluminum hydroxide. METHODS In this double-blind, placebo-controlled, randomized, dose escalation study adult volunteers received two vaccinations 28 days apart of low or high dose formulations of the candidate vaccine and were then monitored for safety and reactogenicity for four weeks after each dose, and for their immune responses up to 28 weeks. RESULTS Of 36 adults enrolled, 35 completed the study as planned. Either no or mild adverse events were observed, mainly injection site pain and tiredness. Seroconversion was 100% after two vaccinations. High geometric mean neutralizing antibody titers (GMT) were observed 14 days post first dose, peaking 14 days post second dose (at Day 42) in both high and low dose groups; GMTs on days 14, 28, 42, and 56 were 128, 81, 323, 203 and 144, 100, 451, 351 in low- and high-dose groups, respectively. Titers for both doses declined gradually to Day 196 but remained higher than baseline and the placebo groups, which had low GMTs throughout the duration of the study. Cross-neutralizing antibody activity against heterologous sub-genotypes was demonstrated. CONCLUSION These data show that the EV71 candidate vaccine is safe and immunogenic in adults and supports further clinical development as a potential pediatric vaccine by initiating a dose-escalation study for determining the dose-dependent safety and immunogenicity of the vaccine in young naïve children.
Collapse
Affiliation(s)
- Paul A Tambyah
- Department of Medicine, NUH Investigational Medicine Unit, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119228, Singapore
| | - Jolene Oon
- Department of Medicine, NUH Investigational Medicine Unit, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119228, Singapore
| | - Rosmonaliza Asli
- Department of Medicine, NUH Investigational Medicine Unit, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119228, Singapore
| | - William Kristanto
- Department of Medicine, NUH Investigational Medicine Unit, Yong Loo Lin School of Medicine, National University of Singapore, 1E, Kent Ridge Road, NUHS Tower Block, Level 10, Singapore 119228, Singapore
| | - Shi-Hsia Hwa
- Vaccine Business Unit, Takeda Pharmaceuticals Asia Pacific Pte Ltd, 21 Biopolis Road, Nucleos South Tower Level 4, Singapore 138567, Singapore
| | - Fue Vang
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Lovkesh Karwal
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Jeremy Fuchs
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Joseph D Santangelo
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Gilad S Gordon
- Takeda Vaccines, Inc., Takeda Pharmaceuticals USA, Fort Collins, CO, USA
| | - Cynthia Thomson
- Vaccine Business Unit, Takeda Pharmaceuticals Asia Pacific Pte Ltd, 21 Biopolis Road, Nucleos South Tower Level 4, Singapore 138567, Singapore
| | - Raman Rao
- Vaccine Business Unit, Takeda Pharmaceuticals Asia Pacific Pte Ltd, 21 Biopolis Road, Nucleos South Tower Level 4, Singapore 138567, Singapore
| | - Hansi Dean
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA
| | - Subash C Das
- Vaccine Business Unit, Takeda Pharmaceuticals USA, 40 Landsdowne Street, Cambridge, MA 02139, USA.
| | - Dan T Stinchcomb
- Takeda Vaccines, Inc., Takeda Pharmaceuticals USA, Fort Collins, CO, USA
| |
Collapse
|
5
|
Levi LI, Vignuzzi M. Arthritogenic Alphaviruses: A Worldwide Emerging Threat? Microorganisms 2019; 7:microorganisms7050133. [PMID: 31091828 PMCID: PMC6560413 DOI: 10.3390/microorganisms7050133] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
Arthritogenic alphaviruses are responsible for a dengue-like syndrome associated with severe debilitating polyarthralgia that can persist for months or years and impact life quality. Chikungunya virus is the most well-known member of this family since it was responsible for two worldwide epidemics with millions of cases in the last 15 years. However, other arthritogenic alphaviruses that are as of yet restrained to specific territories are the cause of neglected tropical diseases: O'nyong'nyong virus in Sub-Saharan Africa, Mayaro virus in Latin America, and Ross River virus in Australia and the Pacific island countries and territories. This review evaluates their emerging potential in light of the current knowledge for each of them and in comparison to chikungunya virus.
Collapse
Affiliation(s)
- Laura I Levi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
- Ecole doctorale BioSPC, Université Paris Diderot, Sorbonne Paris Cité, 75013 Paris, France.
| | - Marco Vignuzzi
- Populations Virales et Pathogenèse, Institut Pasteur, CNRS UMR 3569, 75015 Paris, France.
| |
Collapse
|
6
|
|
7
|
Chan Y, Ng LFP. Age has a role in driving host immunopathological response to alphavirus infection. Immunology 2017; 152:545-555. [PMID: 28744856 PMCID: PMC5680050 DOI: 10.1111/imm.12799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are a group of arthropod-borne pathogens capable of causing a wide spectrum of clinical symptoms, ranging from milder symptoms like rashes, fever and polyarthralgia, to life-threatening encephalitis. This genus of viruses is prevalent globally, and can infect patients across a wide age range. Interestingly, disease severity of virus-infected patients is wide-ranging. Definitions of the pathogenesis of alphaviruses, as well as the host factors influencing disease severity, remain limited. The innate and adaptive immune systems are important host defences against alphavirus infections. Several reports have highlighted the roles of specific immune subsets in contributing to the immune pathogenesis of these viruses. However, immunosenescence, a gradual deterioration of the immune system brought about by the natural advancement of age, affects the functional roles of these immune subsets. This phenomenon compromises the host's ability to defend against alphavirus infection and pathogenesis. In addition, the lack of maturity in the immune system in newborns and infants also results in more severe disease outcomes. In this review, we will summarize the subtle yet diverse physiological changes in the immune system during aging, and how these changes underlie the differences in disease severity for common alphaviruses.
Collapse
Affiliation(s)
- Yi‐Hao Chan
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore
- NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingapore
| | - Lisa F. P. Ng
- Singapore Immunology NetworkAgency for ScienceTechnology and Research (A*STAR)Singapore
- Department of BiochemistryYong Loo Lin School of MedicineNational University of SingaporeSingapore
- Institute of Infection and Global HealthUniversity of LiverpoolLiverpoolUK
- Present address:
8A Biomedical Grove, Biopolis#04‐06 Immunos138648Singapore
| |
Collapse
|
8
|
Barrett PN, Terpening SJ, Snow D, Cobb RR, Kistner O. Vero cell technology for rapid development of inactivated whole virus vaccines for emerging viral diseases. Expert Rev Vaccines 2017; 16:883-894. [PMID: 28724343 DOI: 10.1080/14760584.2017.1357471] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Rapid development and production of vaccines against emerging diseases requires well established, validated, robust technologies to allow industrial scale production and accelerated licensure of products. Areas covered: A versatile Vero cell platform has been developed and utilized to deliver a wide range of candidate and licensed vaccines against emerging viral diseases. This platform builds on the 35 years' experience and safety record with inactivated whole virus vaccines such as polio vaccine. The current platform has been optimized to include a novel double inactivation procedure in order to ensure a highly robust inactivation procedure for novel emerging viruses. The utility of this platform in rapidly developing inactivated whole virus vaccines against pandemic (-like) influenza viruses and other emerging viruses such as West Nile, Chikungunya, Ross River and SARS is reviewed. The potential of the platform for development of vaccines against other emerging viruses such as Zika virus is described. Expert commentary: Use of this platform can substantially accelerate process development and facilitate licensure because of the substantial existing data set available for the cell matrix. However, programs to provide vaccines against emerging diseases must allow alternative clinical development paths to licensure, without the requirement to carry out large scale field efficacy studies.
Collapse
Affiliation(s)
| | | | - Doris Snow
- a Nanotherapeutics Inc. , Alachua , FL , USA
| | | | | |
Collapse
|
9
|
Claflin SB, Webb CE. Ross River Virus: Many Vectors and Unusual Hosts Make for an Unpredictable Pathogen. PLoS Pathog 2015; 11:e1005070. [PMID: 26335937 PMCID: PMC4559463 DOI: 10.1371/journal.ppat.1005070] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Suzi B. Claflin
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Cameron E. Webb
- Department of Medical Entomology, University of Sydney and Pathology West—ICPMR Westmead, Westmead Hospital, Westmead, New South Wales, Australia
- * E-mail:
| |
Collapse
|
10
|
Dhama K, Kapoor S, Pawaiya RVS, Chakraborty S, Tiwari R, Verma AK. Ross River Virus (RRV) infection in horses and humans: a review. Pak J Biol Sci 2015; 17:768-79. [PMID: 26035950 DOI: 10.3923/pjbs.2014.768.779] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A fascinating and important arbovirus is Ross River Virus (RRV) which is endemic and epizootic in nature in certain parts of the world. RRV is a member of the genus Alphavirus within the Semliki Forest complex of the family Togaviridae, which also includes the Getah virus. The virus is responsible for causing disease both in humans as well as horses. Mosquito species (Aedes camptorhynchus and Aedes vigilax; Culex annulirostris) are the most important vector for this virus. In places of low temperature as well as low rainfall or where there is lack of habitat of mosquito there is also limitation in the transmission of the virus. Such probability is higher especially in temperate regions bordering endemic regions having sub-tropical climate. There is involvement of articular as well as non-articular cells in the replication of RRV. Levels of pro-inflammatory factors viz., tumor necrosis factor-alpha (TNF-α); interferon-gamma (IFN-γ); and macrophage chemo-attractant protein-1 (MAC-1) during disease pathogenesis have been found to be reduced. Reverse transcription-polymerase chain reaction (RT-PCR) is the most advanced molecular diagnostic tool along with epitope-blocking enzyme-linked immunosorbent assay (ELISA) for detecting RRV infection. Treatment for RRV infection is only supportive. Vaccination is not a fruitful approach. Precise data collection will help the researchers to understand the RRV disease dynamics and thereby designing effective prevention and control strategy. Advances in diagnosis, vaccine development and emerging/novel therapeutic regimens need to be explored to their full potential to tackle RRV infection and the disease it causes.
Collapse
|
11
|
An inactivated Ross River virus vaccine is well tolerated and immunogenic in an adult population in a randomized phase 3 trial. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:267-73. [PMID: 25540268 DOI: 10.1128/cvi.00546-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ross River virus (RRV) is endemic in Australia and several South Pacific Islands. More than 90,000 cases of RRV disease, which is characterized by debilitating polyarthritis, were reported in Australia in the last 20 years. There is no vaccine available to prevent RRV disease. A phase 3 study was undertaken at 17 sites in Australia to investigate the safety and immunogenicity of an inactivated whole-virus Vero cell culture-derived RRV vaccine in 1,755 healthy younger adults aged 16 to 59 years and 209 healthy older adults aged ≥60 years. Participants received a 2.5-μg dose of Al(OH)(3)-adjuvanted RRV vaccine, with a second and third dose after 3 weeks and 6 months, respectively. Vaccine-induced RRV-specific neutralizing and total IgG antibody titers were measured after each immunization. Vaccine safety was monitored over the entire study period. The vaccine was safe and well-tolerated after each vaccination. No cases of arthritis resembling RRV disease were reported. The most frequently reported systemic reactions were headache, fatigue, and malaise; the most frequently reported injection site reactions were tenderness and pain. After the third immunization, 91.5% of the younger age group and 76.0% of the older age group achieved neutralizing antibody titers of ≥1:10; 89.1% of the younger age group and 70.9% of the older age group achieved enzyme-linked immunosorbent assay (ELISA) titers of ≥11 PanBio units. A whole-virus Vero cell culture-derived RRV vaccine is well tolerated in an adult population and induces antibody titers associated with protection from RRV disease in the majority of individuals. (This study is registered at www.clinicaltrials.gov under registration no. NCT01242670.).
Collapse
|
12
|
|
13
|
Delrue I, Verzele D, Madder A, Nauwynck HJ. Inactivated virus vaccines from chemistry to prophylaxis: merits, risks and challenges. Expert Rev Vaccines 2012; 11:695-719. [PMID: 22873127 DOI: 10.1586/erv.12.38] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of this review is to make researchers aware of the benefits of an efficient quality control system for prediction of a developed vaccine's efficacy. Two major goals should be addressed when inactivating a virus for vaccine purposes: first, the infectious virus should be inactivated completely in order to be safe, and second, the viral epitopes important for the induction of protective immunity should be conserved after inactivation in order to have an antigen of high quality. Therefore, some problems associated with the virus inactivation process, such as virus aggregate formation, protein crosslinking, protein denaturation and degradation should be addressed before testing an inactivated vaccine in vivo.
Collapse
Affiliation(s)
- Iris Delrue
- Laboratory of Virology, Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | | | | | | |
Collapse
|
14
|
Aaskov J, Fokine A, Liu W. Ross River virus evolution: implications for vaccine development. Future Virol 2012. [DOI: 10.2217/fvl.11.139] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ross River virus is a mosquito-borne alphavirus that causes approximately 5000 cases of epidemic polyarthritis in Australia each year and has direct medical-associated costs of approximately US$15 million annually. While mosquito control programs are able, at best, to contain rather than prevent this disease, natural infection with Ross River virus confers lifelong protection against subsequent clinical infection. A killed-virus vaccine has been developed, which is in Phase III clinical trials. Analyses of intra-host genetic diversity and of long-term evolutionary changes in Ross River virus populations suggest that antigenic variation is unlikely to pose a threat to the efficacy of this vaccine.
Collapse
Affiliation(s)
- John Aaskov
- Institute of Health & Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane 4059, Australia
| | - Andrei Fokine
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Wenjun Liu
- Australian Army Malaria Institute, Brisbane, Australia
| |
Collapse
|
15
|
Holzer GW, Coulibaly S, Aichinger G, Savidis-Dacho H, Mayrhofer J, Brunner S, Schmid K, Kistner O, Aaskov JG, Falkner FG, Ehrlich H, Barrett PN, Kreil TR. Evaluation of an inactivated Ross River virus vaccine in active and passive mouse immunization models and establishment of a correlate of protection. Vaccine 2011; 29:4132-41. [PMID: 21477673 DOI: 10.1016/j.vaccine.2011.03.089] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/23/2011] [Accepted: 03/24/2011] [Indexed: 01/06/2023]
Abstract
Ross River Virus has caused reported outbreaks of epidemic polyarthritis, a chronic debilitating disease associated with significant long-term morbidity in Australia and the Pacific region since the 1920s. To address this public health concern, a formalin- and UV-inactivated whole virus vaccine grown in animal protein-free cell culture was developed and tested in preclinical studies to evaluate immunogenicity and efficacy in animal models. After active immunizations, the vaccine dose-dependently induced antibodies and protected adult mice from viremia and interferon α/β receptor knock-out (IFN-α/βR(-/-)) mice from death and disease. In passive transfer studies, administration of human vaccinee sera followed by RRV challenge protected adult mice from viremia and young mice from development of arthritic signs similar to human RRV-induced disease. Based on the good correlation between antibody titers in human sera and protection of animals, a correlate of protection was defined. This is of particular importance for the evaluation of the vaccine because of the comparatively low annual incidence of RRV disease, which renders a classical efficacy trial impractical. Antibody-dependent enhancement of infection, did not occur in mice even at low to undetectable concentrations of vaccine-induced antibodies. Also, RRV vaccine-induced antibodies were partially cross-protective against infection with a related alphavirus, Chikungunya virus, and did not enhance infection. Based on these findings, the inactivated RRV vaccine is expected to be efficacious and protect humans from RRV disease.
Collapse
Affiliation(s)
- Georg W Holzer
- Baxter Bioscience, Biomedical Research Center, A-2304 Orth/Donau, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Chikungunya virus is a mosquito-borne arthrogenic alphavirus that has recently reemerged to produce the largest epidemic ever documented for this virus. Here we describe a new adult wild-type mouse model of chikungunya virus arthritis, which recapitulates the self-limiting arthritis, tenosynovitis, and myositis seen in humans. Rheumatic disease was associated with a prolific infiltrate of monocytes, macrophages, and NK cells and the production of monocyte chemoattractant protein 1 (MCP-1), tumor necrosis factor alpha (TNF-alpha), and gamma interferon (IFN-gamma). Infection with a virus isolate from the recent Reunion Island epidemic induced significantly more mononuclear infiltrates, proinflammatory mediators, and foot swelling than did an Asian isolate from the 1960s. Primary mouse macrophages were shown to be productively infected with chikungunya virus; however, the depletion of macrophages ameliorated rheumatic disease and prolonged the viremia. Only 1 microg of an unadjuvanted, inactivated, whole-virus vaccine derived from the Asian isolate completely protected against viremia and arthritis induced by the Reunion Island isolate, illustrating that protection is not strain specific and that low levels of immunity are sufficient to mediate protection. IFN-alpha treatment was able to prevent arthritis only if given before infection, suggesting that IFN-alpha is not a viable therapy. Prior infection with Ross River virus, a related arthrogenic alphavirus, and anti-Ross River virus antibodies protected mice against chikungunya virus disease, suggesting that individuals previously exposed to Ross River virus should be protected from chikungunya virus disease. This new mouse model of chikungunya virus disease thus provides insights into pathogenesis and a simple and convenient system to test potential new interventions.
Collapse
|
17
|
|
18
|
Kistner O, Barrett N, Brühmann A, Reiter M, Mundt W, Savidis-Dacho H, Schober-Bendixen S, Dorner F, Aaskov J. The preclinical testing of a formaldehyde inactivated Ross River virus vaccine designed for use in humans. Vaccine 2007; 25:4845-52. [PMID: 17509734 DOI: 10.1016/j.vaccine.2007.01.103] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 01/13/2007] [Accepted: 01/17/2007] [Indexed: 11/28/2022]
Abstract
Ross River virus was grown in industrial facilities in vaccine-certified Vero cells in the absence of serum, inactivated using standard formalin-inactivation protocols, treated with Benzonase to digest host cell DNA and purified on a sucrose gradient. Mice given two subcutaneous injections of 0.625 microg of this vaccine or two doses of 0.156 microg vaccine with aluminium hydroxide adjuvant failed to develop a detectable viraemia after intravenous challenge with 10(6)TCID50 of the prototype strain of Ross River virus (T48). Guinea pigs immunised with one or two10 microg doses of vaccine with adjuvant also failed to develop a detectable viraemia following a similar challenge. The levels of neutralising antibody (neutralisation index 1.9-3.1) in the mice protected against challenge with 10(6)TCID50 Ross River virus were similar to those in 16 former epidemic polyarthritis patients (1.1-3.5) who had not experienced a second clinical infection with Ross River virus in the 20 years following their initial infection.
Collapse
Affiliation(s)
- Otfried Kistner
- Biomedical Research Center, Baxter Vaccine AG, Uferstrasse 15, A-2304 Orth/Donau, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Mylonas AD, Harley D, Purdie DM, Pandeya N, Vecchio PC, Farmer JF, Suhrbier A. Corticosteroid Therapy in an Alphaviral Arthritis. J Clin Rheumatol 2004; 10:326-30. [PMID: 17043541 DOI: 10.1097/01.rhu.0000147052.11190.36] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND : Corticosteroid use during acute viral arthritis is considered to be contraindicated as a result of the risk of immunosuppression causing enhanced infection and disease exacerbation. OBJECTIVES : The objective of this study was to analyze the effect of oral corticosteroid therapy on symptoms of the viral arthritic disease, Ross River virus disease (RRVD). METHODS : Patients with RRVD were enrolled in 2 prospective longitudinal studies. Medications and comorbidities were recorded and the patients' health was assessed using 2 validated quality-of life-questionnaires, the Comparison of Clinical Health Assessment Questionnaire (CLINHAQ) and the Medical Outcomes Study Short Form (SF-36). RESULTS : Six patients taking corticosteroids showed no exacerbation of RRVD compared with patients not taking steroids. The CLINHAQ Functional Disability Index also indicated that corticosteroid users recovered faster compared with patients using nonsteroidal antiinflammatory drugs. CONCLUSION : Conventional concern that corticosteroid treatment will exacerbate disease appears unjustified for alphaviral arthritides once serodiagnosis has demonstrated antiviral immunity.
Collapse
Affiliation(s)
- Andrea D Mylonas
- From the *Australian Centre for International and Tropical Health and Nutrition, Queensland Institute of Medical Research and the University of Queensland, Brisbane, Queensland, Australia; the †Department of Rheumatology, Princess Alexandra Hospital, Brisbane, Queensland, Australia; and the ‡Emergency Department, Prince Charles Hospital, Brisbane, Queensland, Australia
| | | | | | | | | | | | | |
Collapse
|
20
|
Suhrbier A, La Linn M. Clinical and pathologic aspects of arthritis due to Ross River virus and other alphaviruses. Curr Opin Rheumatol 2004; 16:374-9. [PMID: 15201600 DOI: 10.1097/01.bor.0000130537.76808.26] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Arthritogenic alphaviruses are globally distributed mosquito-borne RNA viruses causing epidemics of polyarthritis/arthralgia, with disease emerging or reemerging and increasingly being reported in travelers. This article summarizes the current knowledge of these diseases, focusing on recent developments in the understanding of Ross River virus disease. RECENT FINDINGS Alphaviral arthritides have often been blamed for protracted chronic illnesses. However, validated quality-of-life questionnaires and exhaustive searches for differential diagnoses showed that Ross River virus disease, although severe at onset, progressively resolved over 3 to 6 months. Many patients did experience long-term disease lasting more than 12 months, but in nearly all cases this was due to other conditions, primarily unrelated rheumatic conditions or depression. There is no indication that alphaviral arthritides predispose to other conditions; thus, patients whose Ross River virus disease has actually resolved may be underdiagnosed for other conditions. Ross River virus polyarthritis probably arises from inflammation associated with productive viral infections in synovial macrophages, which persist despite neutralizing antibodies and antiviral cytokine responses. Persistence may be facilitated by downregulation of cytokine responses by virus-antibody complexes binding to Fc receptors and induction of interleukin-10. How virus escapes neutralizing antibodies remains unclear but may involve phagocytosis of apoptotic virus-infected cells and infection of the phagocyte via the phagosome. SUMMARY Diagnosis of alphaviral arthritides is complicated by nonspecific symptoms and the lack of commercial serodiagnostic kits, except for Ross River and Barmah Forest virus infections in Australia. Differential diagnoses should be actively pursued, especially if symptoms persist. Treatment with nonsteroidal anti-inflammatory drugs appears largely effective, with no evidence of long-term sequelae or relapse.
Collapse
Affiliation(s)
- Andreas Suhrbier
- Queensland Institute of Medical Research, Australian Centre for International & Tropical Health & Nutrition, Brisbane, Australia.
| | | |
Collapse
|
21
|
Pyke AT, Phillips DA, Chuan TF, Smith GA. Sucrose density gradient centrifugation and cross-flow filtration methods for the production of arbovirus antigens inactivated by binary ethylenimine. BMC Microbiol 2004; 4:3. [PMID: 14720306 PMCID: PMC331405 DOI: 10.1186/1471-2180-4-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2003] [Accepted: 01/14/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sucrose density gradient centrifugation and cross-flow filtration methods have been developed and standardised for the safe and reproducible production of inactivated arbovirus antigens which are appropriate for use in diagnostic serological applications. METHODS To optimise the maximum titre of growth during the propagation of arboviruses, the multiplicity of infection and choice of cell line were investigated using stocks of Ross River virus and Barmah Forest virus grown in both mosquito and mammalian cell lines. To standardise and improve the efficacy of the inactivation of arboviral suspensions, stocks of Ross River virus, Barmah Forest virus, Japanese encephalitis virus, Murray Valley encephalitis virus and Alfuy virus were chemically inactivated using binary ethylenimine at a final concentration of 3 mM. Aliquots were then taken at hourly intervals and crude inactivation rates were determined for each virus using a plaque assay. To ensure complete inactivation, the same aliquots were each passaged 3 times in Aedes albopictus C6/36 cells and the presence of viral growth was detected using an immunofluorescent assay. For larger quantities of viral suspensions, centrifugation on an isopycnic sucrose density gradient or cross-flow filtration was used to produce concentrated, pure antigens or partially concentrated, semi-purified antigens respectively. RESULTS The results of the propagation experiments suggested that the maximum viral titres obtained for both Ross River virus and Barmah Forest virus were affected by the incubation period and choice of cell line, rather than the use of different multiplicity of infection values. Results of the binary ethylenimine inactivation trial suggested that standardised periods of 5 or 8 hours would be suitable to ensure effective and complete inactivation for a number of different arboviral antigens. CONCLUSION Two methods used to prepare inactivated arbovirus antigens have been standardised to minimise production failure and expenditure and to provide reagents that conform to the highest quality and safety requirements of a diagnostic serology laboratory. The antigens are suitable for use in either enzyme linked immunosorbent assays or haemagglutination inhibition assays and the optimised protocols can be directly applied to produce antigens from new or emerging arboviral pathogens.
Collapse
Affiliation(s)
- Alyssa T Pyke
- Public Health Virology, Queensland Health Scientific Services, Coopers Plains, Australia
| | | | - Teck F Chuan
- Public Health Virology, Queensland Health Scientific Services, Coopers Plains, Australia
| | - Greg A Smith
- Public Health Virology, Queensland Health Scientific Services, Coopers Plains, Australia
| |
Collapse
|
22
|
Abstract
Ross River virus is the most common mosquito-borne pathogen in Australia, and approximately 5000 human cases are reported annually. The infection is not fatal, but there is considerable morbidity associated with a debilitating polyarthritis that is the major symptom. The virus is annually active in most regions of Australia, but exists as strains that vary in virulence. Native macropods are thought to be the natural vertebrate hosts, although horses and humans may be involved during epidemic activity, and vertical transmission of the virus occurs in mosquitoes. Different mosquito species are involved as vectors in various regions and in different seasonal and environmental conditions. In coastal areas the saltmarsh mosquitoes Aedes camptorhynchus and Ae. vigilax are the most important vectors in southern and northern regions, respectively, whereas in inland areas Culex annulirostris is the most important vector, although various Aedes species can be involved depending on region and conditions, and the epidemiology of the disease and vector control imperatives vary with circumstance concomitantly.
Collapse
Affiliation(s)
- Richard C Russell
- Department of Medical Entomology, University of Sydney, ICPMR, Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
23
|
Harley D, Sleigh A, Ritchie S. Ross River virus transmission, infection, and disease: a cross-disciplinary review. Clin Microbiol Rev 2001; 14:909-32, table of contents. [PMID: 11585790 PMCID: PMC89008 DOI: 10.1128/cmr.14.4.909-932.2001] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ross River virus (RRV) is a fascinating, important arbovirus that is endemic and enzootic in Australia and Papua New Guinea and was epidemic in the South Pacific in 1979 and 1980. Infection with RRV may cause disease in humans, typically presenting as peripheral polyarthralgia or arthritis, sometimes with fever and rash. RRV disease notifications in Australia average 5,000 per year. The first well-described outbreak occurred in 1928. During World War II there were more outbreaks, and the name epidemic polyarthritis was applied. During a 1956 outbreak, epidemic polyarthritis was linked serologically to a group A arbovirus (Alphavirus). The virus was subsequently isolated from Aedes vigilax mosquitoes in 1963 and then from epidemic polyarthritis patients. We review the literature on the evolutionary biology of RRV, immune response to infection, pathogenesis, serologic diagnosis, disease manifestations, the extraordinary variety of vertebrate hosts, mosquito vectors, and transmission cycles, antibody prevalence, epidemiology of asymptomatic and symptomatic human infection, infection risks, and public health impact. RRV arthritis is due to joint infection, and treatment is currently based on empirical anti-inflammatory regimens. Further research on pathogenesis may improve understanding of the natural history of this disease and lead to new treatment strategies. The burden of morbidity is considerable, and the virus could spread to other countries. To justify and design preventive programs, we need accurate data on economic costs and better understanding of transmission and behavioral and environmental risks.
Collapse
Affiliation(s)
- D Harley
- Australian Centre for International and Tropical Health and Nutrition, Medical School, University of Queensland, Brisbane 4006, Queensland, Australia
| | | | | |
Collapse
|
24
|
Abstract
Mosquito-borne arboviruses are an important public health issue in Australia. The alphaviruses Ross River and Barmah Forest virus are widespread and active annually, and cause debilitating polyarthritis. The flaviviruses Murray Valley encephalitis, Kunjin and Japanese encephalitis virus are restricted in distribution and activity but may cause life-threatening illness, and dengue viruses are active in some areas.
Collapse
Affiliation(s)
- R C Russell
- Department of Medical Entomology, University of Sydney, Institute of Clinical Pathology and Medical Research, Westmead Hospital, NSW 2145, Westmead, Australia.
| | | |
Collapse
|