1
|
Porta M, Casu G, Fastame MC, Nussbaum MA, Pau M. Older workers spend less time in extreme trunk and upper-arm postures during order-picking tasks: Results from field testing. APPLIED ERGONOMICS 2025; 125:104462. [PMID: 39736183 DOI: 10.1016/j.apergo.2024.104462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025]
Abstract
Order picking tasks require repetitive trunk and upper arms movements that may increase the risk of developing musculoskeletal disorders, particularly among older workers due to the decline of their physical capabilities with aging. We proposed an approach based on a limited number of wearable inertial sensors to assessed exposures to non-neutral trunk and upper arms postures among both older and young workers during their regular work-shifts. The obtained data were processed accordingly to international standards (ISO 11226 and EN 1005-4) to detect the existence of possible differences associated with age-specific working strategies. While the results indicate similar trunk and upper arms movement frequencies in both groups, older workers spend a significantly smaller percentage of time in the most demanding (>60°) postures for both districts. Such findings suggest the adoption of specific strategies to reduce the biomechanical risk which might be originated by a combination of awareness of physical limits and superior working experience. In this context, the instrumental monitoring of upper body in the logistic sector may result useful to highlight critical conditions potentially able to promote the onset of musculoskeletal disorders, thus supporting the decision processes pertaining to workers' health management and aging worker retainment.
Collapse
Affiliation(s)
- Micaela Porta
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Italy.
| | - Giulia Casu
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Italy
| | | | - Maury A Nussbaum
- Department of Industrial and System Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Italy
| |
Collapse
|
2
|
Salehi M, Choi S, Kia K, Chan A, Kincl L, Kim JH. Effects of different sorting table heights on low back and shoulders biomechanical loads during dungeness crab sorting. APPLIED ERGONOMICS 2025; 128:104537. [PMID: 40262285 DOI: 10.1016/j.apergo.2025.104537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
West Coast Dungeness crab fishers suffer a high prevalence of musculoskeletal injuries, especially low back pain. Substantial trunk flexion and associated low back loads during crab sorting tasks have been attributed to awkward sorting table heights. This study examined how varying table heights affect biomechanical loads on the low back and shoulders. Twenty-five participants performed crab sorting tasks at three table heights while trunk and shoulder joint angles, moments, muscle activity, perceived exertion, and discomfort were measured. Increasing table height reduced trunk flexion and lumbosacral (L5/S1) joint moments but increased shoulder flexion moments and upper trapezius muscle activity. Table height did not affect perceived exertion or discomfort. These findings indicate that increasing sorting table height can reduce biomechanical load on the low back but results in increased shoulder strain. This trade-off underscores the importance of adopting ergonomic designs balancing low back and shoulder biomechanics to determine appropriate sorting table height.
Collapse
Affiliation(s)
- Mina Salehi
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA
| | - Seobin Choi
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, USA; Department of Industrial and Management Engineering, Incheon National University, Incheon, South Korea
| | - Kiana Kia
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA
| | - Allen Chan
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA; Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Laurel Kincl
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA
| | - Jeong Ho Kim
- School of Nutrition and Public Health, College of Health, Oregon State University, Corvallis, OR, USA; Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Abdul Halim NSS, Mohd Ripin Z, Yusuf A, Ridzwan MIZ. Efficacy of lifting devices for wheelchair transfers: a systematic review and meta-analysis. ERGONOMICS 2025; 68:484-495. [PMID: 38994766 DOI: 10.1080/00140139.2024.2375360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024]
Abstract
A high prevalence of work-related musculoskeletal disorders (WMSDs) has been reported among nurses as a result of the injuries caused by patient transfer and handling. This review examines the impact of motorised and non-motorised lifting devices on reducing physical stress during wheelchair transfers among nurses. Systematic electronic database searches were performed, and the review was prepared according to the PRISMA guidelines. The results of 20 studies on biomechanical stresses related to WMSDs were synthesised qualitatively, and 13 were analysed quantitatively using meta-analysis. Motorised lifting devices significantly decreased biomechanical stress among nurses [SMD -0.68; 95% CI -1.02 to -0.34], whereas non-motorised counterparts showed no significant change [SMD - 0.23; 95% CI -0.59 to 0.13]. This study underscores the effectiveness of motorised lifting devices in mitigating WMSD risk during wheelchair transfers. The findings provide practical guidance for hospital administrators, policymakers, and experts seeking suitable devices to prevent WMSDs in nursing professionals. Practitioner Summary: This study investigated the impact of motorised and non-motorised lifting devices on nurses during wheelchair transfers. Findings revealed that motorised devices significantly reduce biomechanical stress, while non-motorised devices showed limited effectiveness. The research emphasises the superior role of motorised devices in preventing WMSDs during wheelchair transfers among nurses.
Collapse
Affiliation(s)
- Nur Shuhaidatul Sarmiza Abdul Halim
- Neurorehabilitation Engineering and Assistance Systems Research (NEAR), School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Zaidi Mohd Ripin
- Neurorehabilitation Engineering and Assistance Systems Research (NEAR), School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| | - Azlina Yusuf
- Exercise & Sports Science Programme, School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kelantan, Malaysia
| | - Mohamad Ikhwan Zaini Ridzwan
- Neurorehabilitation Engineering and Assistance Systems Research (NEAR), School of Mechanical Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Malaysia
| |
Collapse
|
4
|
Chung J, Quirk DA, Cherin JM, Friedrich D, Kim D, Walsh CJ. The perceptual and biomechanical effects of scaling back exosuit assistance to changing task demands. Sci Rep 2025; 15:10929. [PMID: 40158010 PMCID: PMC11954937 DOI: 10.1038/s41598-025-94726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/17/2025] [Indexed: 04/01/2025] Open
Abstract
Back exoskeletons are gaining attention for preventing occupational back injuries, but they can disrupt movement, a burden that risks abandonment. Enhanced adaptability is proposed to mitigate burdens, but perceptual benefits are less known. This study investigates the perceptual and biomechanical impacts of a SLACK suit (non-assistive) controller versus three controllers with varying adaptability: a Weight-Direction-Angle adaptive (WDA-ADPT) that scales assistance based on the weight of the boxes using a chest-mounted camera and machine learning algorithm, movement direction, and trunk flexion angle, and standard Direction-Angle adaptive (DA-ADPT) and Angle adaptive (A-ADPT) controllers. Fifteen participants performed a variable weight (2, 8, 14 kg) box-transfer task. WDA-ADPT achieved the highest perceptual score (88%) across survey categories and reduced peak back extensor (BE) muscle amplitudes by 10.1%. DA-ADPT had slightly lower perceptual (76%) and peak BE reduction (8.5%). A-ADPT induced hip restriction, which could explain the lowest perceptual score (55%) despite providing the largest reductions in peak BE muscle activity (17.3%). Reduced perceptual scores achieved by DA and A-ADPT were explained by controllers providing too much or little assistance versus actual task demands. These findings underscore that scaling assistance to task demands improves biomechanical benefits and the perception of the device's suitability.
Collapse
Affiliation(s)
- Jinwon Chung
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| | - D Adam Quirk
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Jason M Cherin
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Dennis Friedrich
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
| | - Daekyum Kim
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA
- School of Mechanical Engineering, Korea University, Seoul, South Korea
| | - Conor J Walsh
- John a. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, USA.
| |
Collapse
|
5
|
Moya-Esteban A, Refai MI, Sridar S, van der Kooij H, Sartori M. Soft back exosuit controlled by neuro-mechanical modeling provides adaptive assistance while lifting unknown loads and reduces lumbosacral compression forces. WEARABLE TECHNOLOGIES 2025; 6:e9. [PMID: 40071245 PMCID: PMC11894419 DOI: 10.1017/wtc.2025.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/30/2024] [Accepted: 02/01/2025] [Indexed: 03/14/2025]
Abstract
State-of-the-art controllers for active back exosuits rely on body kinematics and state machines. These controllers do not continuously target the lumbosacral compression forces or adapt to unknown external loads. The use of additional contact or load detection could make such controllers more adaptive; however, it can be impractical for daily use. Here, we developed a novel neuro-mechanical model-based controller (NMBC) that uses a personalized electromyography (EMG)-driven musculoskeletal (MSK) model to estimate lumbosacral joint loading. NMBC provided adaptive, subject- and load-specific assistive forces proportional to estimates of the active part of biological joint moments through a soft back support exosuit. Without a priori information, the maximum assistive forces of the cable were modulated across weights. Simultaneously, we applied a non-adaptive, kinematic-dependent, trunk inclination-based controller (TIBC). Both NMBC and TIBC reduced the mean and peak biomechanical metrics, although not all reductions were significant. TIBC did not modulate assistance across weights. NMBC showed larger reductions of mean than peak values, significant reductions during the erect stance and the cumulative compressive loads by 21% over multiple cycles in a cohort of 10 participants. Overall, NMBC targeted mean lumbosacral compressive forces during lifting without a priori information of the load being carried. This may facilitate the adoption of non-hindering wearable robotics in real-life scenarios. As NMBC is informed by an EMG-driven MSK model, it is possible to tune the timing of NMBC-generated torque commands to the exosuit (delaying or anticipating commands with respect to biological torques) to target further reduction of peak or mean compressive forces and muscle fatigue.
Collapse
Affiliation(s)
- Alejandro Moya-Esteban
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Mohamed Irfan Refai
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Saivimal Sridar
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Massimo Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
6
|
Nail-Ulloa I, Zabala M, Pool N, Sesek R, Thiese M, Sesek R, Schall MC, Gallagher S. A fatigue failure framework for the assessment of highly variable low back loading using inertial motion capture - a case study. ERGONOMICS 2025:1-17. [PMID: 39955671 DOI: 10.1080/00140139.2025.2460695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/25/2025] [Indexed: 02/17/2025]
Abstract
Workers in manufacturing settings experience highly variable musculoskeletal loading, which current risk assessment methods often fail to fully capture. This study evaluated a Fatigue Failure-Based framework for estimating continuous lumbar loading from variable occupational loads. Worker movements and postures were recorded using Inertial Motion Capture technologies, and L5/S1 joint loading history was estimated through inverse dynamics. Stress cycles were analysed using Rainflow analysis, adjusted with Goodman's method, and summed using Palmgren-Miner rule to estimate cumulative damage. The framework was tested in live industrial settings with eight automotive workers across 108 trials. Logistic regression models demonstrated significant correlations between cumulative damage estimates and self-reported low-back pain (OR = 2.16, 95% CI: 1.30, 3.57). This framework provides a novel method for analysing highly variable loading to estimate cumulative exposure in ergonomics, offering a starting point for future research and potential applications in assessing low back injury risks in similar occupational settings.
Collapse
Affiliation(s)
- Iván Nail-Ulloa
- Department of Industrial and Systems Engineering, Auburn University, Auburn, Alabama, USA
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama, USA
| | - Michael Zabala
- Department of Mechanical Engineering, Auburn University, Auburn, Alabama, USA
| | - Nathan Pool
- Department of Industrial and Systems Engineering, Auburn University, Auburn, Alabama, USA
| | - Robert Sesek
- Department of Industrial and Systems Engineering, Auburn University, Auburn, Alabama, USA
| | - Matthew Thiese
- Rocky Mountain Center for Occupational and Environmental Health, University of Utah, Salt Lake City, Utah, USA
| | - Richard Sesek
- Department of Industrial and Systems Engineering, Auburn University, Auburn, Alabama, USA
| | - Mark C Schall
- Department of Industrial and Systems Engineering, Auburn University, Auburn, Alabama, USA
| | - Sean Gallagher
- Department of Industrial and Systems Engineering, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
7
|
Thevenot C, Pierre X, Mornieux G. Effects of an occupational soft-back exoskeleton during order picking: a field study in logistics. ERGONOMICS 2025:1-14. [PMID: 39773360 DOI: 10.1080/00140139.2024.2447867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
The use of exoskeletons is increasingly considered as a solution to reduce workers' exposure to physical risk factors, such as low-back disorders. The aim of this study was to evaluate the effects of the CORFOR® occupational soft-back exoskeleton on trunk muscle activity and kinematics during an order picking manual task performed in the field. 10 workers, with at least 4 weeks' experience using the exoskeleton, performed a 1.5-hour order picking task with and without the exoskeleton. Trunk muscle activity, upper-body kinematics and the exoskeleton's acceptance were assessed. Erector spinae muscle activity was significantly reduced by 7.5% with the use of the exoskeleton. Moreover, trunk flexor muscles activity, trunk kinematics, or low-back pain were not affected. Further, the acceptance of the exoskeleton was rated as favourable. Thus, at least in the test company, the integration of the CORFOR® exoskeleton for order picking tasks is promising.
Collapse
Affiliation(s)
- Clement Thevenot
- DevAH, Université de Lorraine, Nancy, France
- Lidl France, Châtenay-Malabry, France
| | | | - Guillaume Mornieux
- DevAH, Université de Lorraine, Nancy, France
- Faculty of Sport Sciences, Université de Lorraine, Nancy, France
| |
Collapse
|
8
|
Sturdy JT, Sessoms PH, Rizeq HN, Silder A, Whittier TT, Silverman AK. Walking Slope and Heavy Backpacks Affect Peak and Impulsive Lumbar Joint Contact Forces. J Biomech Eng 2025; 147:011004. [PMID: 39340147 DOI: 10.1115/1.4066658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Heavy load carriage is associated with musculoskeletal overuse injury, particularly in the lumbar spine. In addition, steep walking slopes and heavy backpacks separately require adaptation of torso kinematics, but the combined effect of sloped walking and heavy backpack loads on lumbar joint contact forces is unclear. Backpacks with hip belt attachments can reduce pressure under the shoulder straps; however, it is unknown if wearing a hip belt reduces lumbar spine forces. We used a musculoskeletal modeling and simulation approach to quantify peak and impulsive L1L2 and L4L5 lumbar joint contact forces in the anterior/posterior shear and compressive directions during walking on 0 deg and ±10 deg slopes, with no backpack and with 40% body weight backpack load using two different backpack configurations (hip belt assisted and shoulder-borne). Both walking slope and backpack load significantly affected shear and compressive peak and impulsive forces. The largest peak shear and compressive forces of 1.57 and 5.23 body weights, respectively, exceed recommended limits and were observed during uphill walking with shoulder-borne loads. However, only impulsive force results revealed differences due to the backpack configuration, and this effect depended on walking slope. During downhill walking only, the hip belt-assisted configuration resulted compressive impulses lower than during shoulder borne by 0.25 body weight seconds for both L1L2 and L4L5. These results indicate that walking uphill with heavy loads causes high shear and compressive lumbar forces that may increase overuse injury risk. In addition, our results suggest it is especially important to wear a hip belt when walking downhill.
Collapse
Affiliation(s)
- Jordan T Sturdy
- Department of Mechanical Engineering, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401
- Colorado School of Mines
| | - Pinata H Sessoms
- Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Rd, San Diego, CA 92106
| | - Hedaya N Rizeq
- Military and Veterans Health Solutions, Leidos, Inc, 140 Sylvester Rd, San Diego, CA 92016; Military and Veterans Health Solutions, Leidos Inc, 140 Sylvester Rd, San Diego, CA 92016
| | - Amy Silder
- Warfighter Performance Department, Naval Health Research Center, 140 Sylvester Rd, San Diego, CA 92106
| | - Tyler T Whittier
- Military and Veterans Health Solutions, Leidos, Inc, 140 Sylvester Rd, San Diego, CA 92016; Military and Veterans Health Solutions, Leidos Inc, 140 Sylvester Rd, San Diego, CA 92016
| | - Anne K Silverman
- Department of Mechanical Engineering, Quantitative Biosciences and Engineering Program, Colorado School of Mines, 1500 Illinois St, Golden, CO 80401
| |
Collapse
|
9
|
Hess A, Jacobs JV, Sullivan S, Roberts Williams DO, Awad LN, Dalton D, Walsh CJ, Quirk DA. Active back exosuits demonstrate positive usability perceptions that drive intention-to-use in the field among logistic warehouse workers. APPLIED ERGONOMICS 2025; 122:104400. [PMID: 39388886 DOI: 10.1016/j.apergo.2024.104400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 09/12/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
Back exosuits offer the potential to reduce occupational back injuries but require in-field acceptance and use to realize this potential. For this study, 146 employees trialed an active back exosuit in the field for 4 h, completing an acceptance usability survey. Comparing the 80% of employees willing to continue wearing this device (N = 117) to those who were not (N = 29) revealed that employees willing to wear this device for a longer-term study generally were more likely to perceive this back exosuit to be effective (helpful) and compatible (minimally disruptive) to their everyday work. Using an optimal tree approach, we demonstrate that intent-to-use could be predicted with 78% accuracy by interacting features of perceived exosuit effectiveness and work compatibility. This study reinforces the importance of task matching, noticeable relief, and unobtrusive design to facilitate short-term employee acceptance of industrial wearable robotic technology.
Collapse
Affiliation(s)
- Adam Hess
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Jesse V Jacobs
- Risk Control Services, Liberty Mutual Insurance, Boston, MA, USA
| | - Sarah Sullivan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | | | - Lou N Awad
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Diane Dalton
- Sargent College of Health & Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Conor J Walsh
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA.
| | - D Adam Quirk
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| |
Collapse
|
10
|
Brouwer NP, Tabasi A, Hu F, Kingma I, van Dijk W, Mohamed Refai MI, van der Kooij H, van Dieën JH. The effect of active exoskeleton support with different lumbar-to-hip support ratios on spinal musculoskeletal loading and lumbar kinematics during lifting. WEARABLE TECHNOLOGIES 2024; 5:e25. [PMID: 39811476 PMCID: PMC11729479 DOI: 10.1017/wtc.2024.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/06/2024] [Accepted: 06/10/2024] [Indexed: 01/16/2025]
Abstract
While active back-support exoskeletons can reduce mechanical loading of the spine, current designs include only one pair of actuated hip joints combined with a rigid structure between the pelvis and trunk attachments, restricting lumbar flexion and consequently intended lifting behavior. This study presents a novel active exoskeleton including actuated lumbar and hip joints as well as subject-specific exoskeleton control based on a real-time active low-back moment estimation. We evaluated the effect of exoskeleton support with different lumbar-to-hip (L/H) support ratios on spine loading, lumbar kinematics, and back muscle electromyography (EMG). Eight healthy males lifted 15 kg loads using three techniques without exoskeleton (NOEXO) and with exoskeleton: minimal impedance mode (MINIMP), L/H support ratio in line with a typical L/H net moment ratio (R0.8), lower (R0.5) and higher (R2.0) L/H support ratio than R0.8, and a mechanically fixed lumbar joint (LF; simulating hip joint-only exoskeleton designs). EMG-driven musculoskeletal model results indicated that R0.8 and R0.5 yielded significant reductions in spinal loading (4-11%, p < .004) across techniques when compared to MINIMP, through reducing active moments (14-30%) while not affecting lumbar flexion and passive moments. R2.0 and LF significantly reduced spinal loading (8-17%, p < .001; 22-26%, p < .001, respectively), however significantly restricted lumbar flexion (3-18%, 24-27%, respectively) and the associated passive moments. An L/H support ratio in line with a typical L/H net moment ratio reduces spinal loading, while allowing normal lifting behavior. High L/H support ratios (e.g., in hip joint-only exoskeleton designs) yield reductions in spinal loading, however, restrict lifting behavior, typically perceived as hindrance.
Collapse
Affiliation(s)
- Niels P. Brouwer
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Ali Tabasi
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Feng Hu
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Idsart Kingma
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | | | | | - Herman van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Armstrong DP, Beach TAC, Fischer SL. The Influence of Contextual and Theoretical Expertise on Generic and Occupation-Specific Lifting Strategy. HUMAN FACTORS 2024; 66:2590-2605. [PMID: 38299447 PMCID: PMC11475631 DOI: 10.1177/00187208231223429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/10/2023] [Indexed: 02/02/2024]
Abstract
OBJECTIVE To determine whether (i) low back loads and/or (ii) kinematic coordination patterns differed across theoretical expert, contextual expert and novice groups when completing both generic and occupation-specific lifts. BACKGROUND Experience has been proposed as a factor that could reduce biomechanical exposures in lifting, but the literature reports mixed effects. The inconsistent relationship between experience and exposures may be partially attributable to the broad classification of experience and experimental lifting protocols not replicating the environment where experience was gained. METHODS Purposive sampling was used to recruit 72 participants including theoretical experts (formal training on lifting mechanics), contextual experts (paramedics), and novices. Participants performed 10 barbell and crate (generic) lifts, as well as backboard and stretcher (occupation-specific) lifts while whole-body kinematics and ground reaction forces were collected. Peak low back compression and anteroposterior shear loads normalized to body mass, as well as kinematic coordination patterns, were calculated as dependent variables. RESULTS No significant differences in low back loads were observed across expertise groups. However, significant differences were seen in kinematic coordination patterns across expertise groups in occupation-specific lifts, but not in generic lifts. CONCLUSION Increasing expertise is unlikely to minimize low back loads in lifting. However, contextual expertise did influence lifting kinematics, but only when performing occupationally specific lifts. APPLICATION Contextual expertise may help lifters adopt lifting kinematics that enhance the tolerance of their musculoskeletal system to withstand applied loads, but does not seem to reduce the applied low back loads relative to noncontextual expert groups.
Collapse
|
12
|
Favennec A, Moissenet F, Frère J, Mornieux G. Effects of a soft back exoskeleton on lower lumbar spine loads during manual materials handling: a musculoskeletal modelling study. Comput Methods Biomech Biomed Engin 2024:1-9. [PMID: 39492646 DOI: 10.1080/10255842.2024.2422925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/23/2024] [Accepted: 10/12/2024] [Indexed: 11/05/2024]
Abstract
The aim of this study was to append a passive soft back exoskeleton to a validated musculoskeletal model and assess its effectiveness in reducing lumbar loads. Fifteen participants lifted a box, with and without wearing a CORFOR® exoskeleton. A full body OpenSim model was used to estimate lumbar joint moments and reaction forces, as well as low back muscles forces. Wearing the exoskeleton reduced the peak flexion moment, muscles forces, as well as peak compressive and shear forces. This musculoskeletal modelling study shows that wearing the exoskeleton may reduce lumbar spine loads and may contribute to prevent low back disorders.
Collapse
Affiliation(s)
| | - Florent Moissenet
- Biomechanics Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Julien Frère
- Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA Lab, 38000 Grenoble, France
| | - Guillaume Mornieux
- Université de Lorraine, UR3450 DevAH, Nancy, France
- Université de Lorraine, Faculty of Sport Sciences, Nancy, France
| |
Collapse
|
13
|
Yan C, Banks JJ, Allaire BT, Quirk DA, Chung J, Walsh CJ, Anderson DE. Musculoskeletal models determine the effect of a soft active exosuit on muscle activations and forces during lifting and lowering tasks. J Biomech 2024; 176:112322. [PMID: 39305855 PMCID: PMC11560613 DOI: 10.1016/j.jbiomech.2024.112322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 09/10/2024] [Indexed: 10/17/2024]
Abstract
Exosuits have the potential to mitigate musculoskeletal stress and prevent back injuries during industrial tasks. This study aimed to 1) validate the implementation of a soft active exosuit into a musculoskeletal model of the spine by comparing model predicted muscle activations versus corresponding surface EMG measurements, and 2) evaluate the effect of the exosuit on peak back and hip muscle forces. Fourteen healthy participants performed squat and stoop lift and lower tasks with boxes of 6 and 10 kg, with and without wearing a 2.7 kg soft active exosuit. Participant-specific musculoskeletal models, which included the exosuit, were created in OpenSim. Model validation focused on the back and hip extensors, where temporal agreement between EMG and model estimated muscle activity was generally strong to excellent (average cross-correlation coefficients ranging from 0.84 to 0.98). Root mean square errors of muscle activity (0.05-0.10) were similar with and without the exosuit, and compared well to prior model validation studies without the exosuit (average root mean square errors ranging from 0.05 to 0.19). In terms of performance, the exosuit reduced the estimated peak erector spinae forces during lifting and lowering phases across all lifting tasks but reduced peak hip extensor muscles forces only in a squat lift task of 10 kg. These reductions in total peak muscle forces were approximately 1.7-4.2 times greater than the corresponding exosuit assistance force, which were 146 ± 19 N and 102 ± 14 N at the times of peak erector spinae forces in lifting and lowering, respectively. Overall, the results support the hypothesis that exosuits reduce soft tissue loading, and thereby potentially reduce fatigue and injury risk during manual materials handling tasks. Incorporating exosuits into musculoskeletal models is a valid approach to understand the impact of exosuit assistance on muscle activity and forces.
Collapse
Affiliation(s)
- Chenxi Yan
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Jacob J Banks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States
| | - Brett T Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States
| | - D Adam Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, United States; Department of Orthopedic Surgery, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
14
|
Davidson JM, McKinnon CD, Dickerson CR, Callaghan JP. An Assessment of Back and Shoulder Postures in Single-Handed Exertions: Expanding Ergonomic Reaching Guidelines to Consider Lumbar Spine Axial Twist. IISE Trans Occup Ergon Hum Factors 2024; 12:189-202. [PMID: 39314007 DOI: 10.1080/24725838.2024.2402690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024]
Abstract
Occupational applicationsAcross a series of standing single-handed exertions performed at different lateral angles, distances, heights, and loads, lumbar axial twist exceeded an angular threshold of 9° in select exertions. Specifically, 9° of rightward axial twist was exceeded for all exertions performed laterally (90° from the body midline). Additionally, for those at the body midline, 9° of leftward axial twist was exceeded for upward exertions and exertions performed at far distances (tertiary reach envelope). Further, the data supports that for many exertions, lumbar flexion-extension and shoulder elevation would be unlikely to increase the potential for injury as angles remained within the in vivo lumbar neutral zone and were not considered overhead. Given the relationship between lateral hand exertions and lumbar axial twist, it is generally recommended that standing single-handed exertions not be performed beyond 60° from the midline. In addition to the current recommendations related to reach distance, future ergonomic reach envelope guidelines could benefit from incorporating recommendations on reach angle from the body midline.
Collapse
Affiliation(s)
- Jessa M Davidson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Colin D McKinnon
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Clark R Dickerson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jack P Callaghan
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|
15
|
Quirk DA, Chung J, Applegate M, Cherin JM, Dalton DM, Awad LN, Walsh CJ. Evaluating adaptiveness of an active back exosuit for dynamic lifting and maximum range of motion. ERGONOMICS 2024; 67:660-673. [PMID: 37482538 PMCID: PMC10803634 DOI: 10.1080/00140139.2023.2240044] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Back exosuits deliver mechanical assistance to reduce the risk of back injury, however, minimising restriction is critical for adoption. We developed the adaptive impedance controller to minimise restriction while maintaining assistance by modulating impedance based on the user's movement direction and nonlinear sine curves. The objective of this study was to compare active assistance, delivered by a back exosuit via our adaptive impedance controller, to three levels of assistance from passive elastics. Fifteen participants completed five experimental blocks (4 exosuits and 1 no-suit) consisting of a maximum flexion and a constrained lifting task. While a higher stiffness elastic reduced back extensor muscle activity by 13%, it restricted maximum range of motion (RoM) by 13°. The adaptive impedance approach did not restrict RoM while reducing back extensor muscle activity by 15%, when lifting. This study highlights an adaptive impedance approach might improve usability by circumventing the assistance-restriction trade-off inherent to passive approaches.Practitioner summary: This study demonstrates a soft active exosuit that delivers assistance with an adaptive impedance approach can provide reductions in overall back muscle activity without the impacts of restricted range of motion or perception of restriction and discomfort.
Collapse
Affiliation(s)
- D. Adam Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Megan Applegate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| | - Jason M Cherin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
| | - Diane M. Dalton
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA
| | - Lou N. Awad
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA
| | - Conor J. Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA
| |
Collapse
|
16
|
Cardoso MR, Armstrong DP, Fischer SL, Albert WJ. Differential effects of sex on upper body kinematics and kinetics during fatiguing, Asymmetric lifting. APPLIED ERGONOMICS 2024; 116:104203. [PMID: 38101162 DOI: 10.1016/j.apergo.2023.104203] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
This study quantified sex-specific biomechanical adaptations to fatigue in asymmetric lifting. Twenty-one females and fifteen males performed a prolonged asymmetric lifting protocol while upper body, trunk and pelvis kinematics were collected. Features of movement identified with principal component analysis, and peak joint angular velocities and moments were calculated. Sex-specific kinematic adaptations to fatigue included females adopting a 'stoop-like' lifting strategy to a greater extent than males. Additionally, females exhibited higher vertical elbow positions during load rotation, moved their body toward the destination for load deposit, and did not reduce peak right shoulder flexion velocities, in contrast to male participants. Females also had greater low back and shoulder peak normalized joint moments. When fatigued, females adopted an asymmetric lifting strategy that minimized metabolic demand as supported by smaller decreases in maximum voluntary contractions. However, females' fatigue-related adaptations increased biomechanical exposures associated with injury risk.
Collapse
Affiliation(s)
| | - Daniel P Armstrong
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada
| | - Steven L Fischer
- Department of Kinesiology and Health Sciences, Faculty of Health, University of Waterloo, Waterloo, ON, Canada
| | - Wayne J Albert
- Faculty of Kinesiology, University of New Brunswick, Fredericton, NB, Canada
| |
Collapse
|
17
|
Kazemi Z, Arjmand N, Mazloumi A, Karimi Z, Keihani A, Ghasemi MS. Effect of muscular fatigue on the cumulative lumbar damage during repetitive lifting task: a comparative study of damage calculation methods. ERGONOMICS 2024; 67:566-581. [PMID: 37418312 DOI: 10.1080/00140139.2023.2234678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Several methods have been put forward to quantify cumulative loads; however, limited evidence exists as to the subsequent damages and the role of muscular fatigue. The present study assessed whether muscular fatigue could affect cumulative damage imposed on the L5-S1 joint. Trunk muscle electromyographic (EMG) activities and kinematics/kinetics of 18 healthy male individuals were evaluated during a simulated repetitive lifting task. A traditional EMG-assisted model of the lumbar spine was modified to account for the effect of erector spinae fatigue. L5-S1 compressive loads for each lifting cycle were estimated based on varying (i.e. actual), fatigue-modified, and constant Gain factors. The corresponding damages were integrated to calculate the cumulative damage. Moreover, the damage calculated for one lifting cycle was multiplied by the lifting frequency, as the traditional approach. Compressive loads and the damages obtained through the fatigue-modified model were predicted in close agreement with the actual values. Similarly, the difference between actual damages and those driven by the traditional approach was not statistically significant (p = 0.219). However, damages based on a constant Gain factor were significantly greater than those based on the actual (p = 0.012), fatigue-modified (p = 0.017), and traditional (p = 0.007) approaches.Practitioner summary: In this study, we managed to include the effect of muscular fatigue on cumulative lumbar damage calculations. Including the effect of muscular fatigue leads to an accurate estimation of cumulative damages while eliminating computational complexity. However, using the traditional approach also appears to provide acceptable estimates for ergonomic assessments.
Collapse
Affiliation(s)
- Zeinab Kazemi
- Department of Industrial Engineering, Clemson University, Clemson, SC, USA
| | - Navid Arjmand
- Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
| | - Adel Mazloumi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Sports Medicine Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Zanyar Karimi
- Department of Ergonomics, School of Public Health, Urmia University of Medical Sciences, Tehran, Iran
| | - Ahmadreza Keihani
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
18
|
Armstrong DP, Davidson JB, Fischer SL. Determining whether biomechanical variables that describe common 'safe lifting' cues are associated with low back loads. J Electromyogr Kinesiol 2024; 75:102867. [PMID: 38325138 DOI: 10.1016/j.jelekin.2024.102867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/09/2024] Open
Abstract
Lift technique training programs have been implemented to help reduce injury risk, but the underlying content validity of cues used within these programs is not clear. The objective of this study was to determine whether biomechanical variables, that commonly used lifting cues aim to elicit, are associated with resultant low back extensor moment exposures. A sample of 72 participants were recruited to perform 10 repetitions of a floor-to-waist height barbell lift while whole-body kinematics and ground reaction forces were collected. Kinematic, kinetic, and energetic variables representative of characteristics commonly targeted by lifting cues were calculated as predictor variables, while peak and cumulative low back moments were calculated as dependent measures. Multiple regression revealed that 56.6-59.2% of variance in low back moments was explained by predictor variables. From these regression models, generating motion with the legs (both greater hip and knee work), minimizing the horizontal distance of the body to the load, maintaining a stable body position, and minimizing lift time were associated with lower magnitudes of low back moments. These data support that using cues targeting these identified variables may be more effective at reducing peak low back moment exposures via lift training.
Collapse
Affiliation(s)
- Daniel P Armstrong
- Department of Kinesiology, Faculty of Health Sciences, University of Waterloo, Waterloo, Canada
| | - Justin B Davidson
- Department of Kinesiology, Faculty of Health Sciences, University of Waterloo, Waterloo, Canada
| | - Steven L Fischer
- Department of Kinesiology, Faculty of Health Sciences, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
19
|
Brandl C, Bender A, Schmachtenberg T, Dymke J, Damm P. Comparing risk assessment methods for work-related musculoskeletal disorders with in vivo joint loads during manual materials handling. Sci Rep 2024; 14:6041. [PMID: 38472286 PMCID: PMC10933320 DOI: 10.1038/s41598-024-56580-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
The validity of observational methods in ergonomics is still challenging research. Criterion validity in terms of concurrent validity is the most commonly studied. However, studies comparing observational methods with biomechanical values are rare. Thus, the aim of this study is to compare the Ovako Working Posture Analysing System (OWAS) and the Rapid Entire Body Assessment (REBA) with in vivo load measurements at hip, spine, and knee during stoop and squat lifting of 14 participants. The results reveal that OWAS and REBA action levels (AL) can distinguish between different in vivo load measurements during manual lifting. However, the results also reveal that the same OWAS- and REBA-AL do not necessarily provide equal mean values of in vivo load measurements. For example, resultant contact force in the vertebral body replacement for squat lifting ranged from 57% body weight (%BW) in OWAS-AL1 to 138%BW in OWAS-AL3 compared to 46%BW in REBA-AL0 and 173%BW in REBA-AL3. Furthermore, the results suggest that the performed squat lifting techniques had a higher risk for work-related musculoskeletal disorders than the performed stoop lifting techniques.
Collapse
Affiliation(s)
- Christopher Brandl
- Institute of Industrial Engineering and Ergonomics, RWTH Aachen University, Eilfschornsteinstr. 27, 52062, Aachen, Germany.
- Fraunhofer Institute for Communication, Information Processing and Ergonomics FKIE, Aachen, Germany.
| | - Alwina Bender
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Tim Schmachtenberg
- Institute of Industrial Engineering and Ergonomics, RWTH Aachen University, Eilfschornsteinstr. 27, 52062, Aachen, Germany
| | - Jörn Dymke
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Philipp Damm
- Julius Wolff Institute of Biomechanics and Musculoskeletal Regeneration, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
20
|
Qureshi SM, Greig MA, Bookey-Bassett S, Purdy N, Kelly H, vanDeursen A, Neumann WP. Computer simulation as a macroergonomic approach to assessing nurse workload and biomechanics related to COVID-19 patient care. APPLIED ERGONOMICS 2024; 114:104124. [PMID: 37657241 DOI: 10.1016/j.apergo.2023.104124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/03/2023]
Abstract
This study uses Digital Human Modelling (DHM) and Discrete Event Simulation (DES) to examine how caring for COVID-19-positive (C+) patients affects nurses' workload and care-quality. DHM inputs include: nurse anthropometrics, task postures, and hand forces. DES inputs include: unit-layout, patient care data, COVID-19 status & impact on tasks, and task execution-logic. The study shows that reducing nurses' biomechanical workload increases mental workload and decreases direct patient care, potentially leading to stress, burnout, and errors. Compared to pre-pandemic conditions, when nurses were assigned five C+ patients, cumulative bilateral shoulder moments and lumbar load decreased by 38%, 36%, and 46%, respectively. However, this was accompanied by increases in mental workload (242%), task waiting-time (70%), and missed-care (353%). These effects were driven by the large increase in required infection control routines. Combining DHM and DES can help evaluate workplace/task designs and provide valuable insights for healthcare system design-policy setting and operational management decision-making.
Collapse
Affiliation(s)
- Sadeem Munawar Qureshi
- Human Factors Engineering Lab, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University (formerly Ryerson University), Toronto, Ontario, Canada.
| | - Michael A Greig
- Human Factors Engineering Lab, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University (formerly Ryerson University), Toronto, Ontario, Canada
| | - Sue Bookey-Bassett
- Daphne Cockwell School of Nursing, Toronto Metropolitan University (formerly Ryerson University), Toronto, Canada
| | - Nancy Purdy
- Daphne Cockwell School of Nursing, Toronto Metropolitan University (formerly Ryerson University), Toronto, Canada
| | - Helen Kelly
- University Health Network, Toronto, Ontario, Canada
| | | | - W Patrick Neumann
- Human Factors Engineering Lab, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University (formerly Ryerson University), Toronto, Ontario, Canada
| |
Collapse
|
21
|
Brouwer NP, Kingma I, van Dijk W, van Dieën JH. Can intermittent changes in trunk extensor muscle length delay muscle fatigue development? J Biomech 2024; 162:111881. [PMID: 38049364 DOI: 10.1016/j.jbiomech.2023.111881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/01/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023]
Abstract
Muscle length changes may evoke alternating activity and consequently reduce local fatigue and pain during prolonged static bending. The aim of this study was to assess whether a postural intervention involving intermittent trunk extensor muscle length changes (INTERMITTENT) can delay muscle fatigue during prolonged static bending when compared to a near-isometric condition (ISOMETRIC) or when participants were allowed to voluntarily vary muscle length (VOLUNTARY). These three conditions were completed by 11 healthy fit male participants, in three separate sessions of standing with 30 ± 3 degrees trunk inclination until exhaustion. Conventional and high-density electromyography (convEMG and HDsEMG, respectively) were measured on the left and right side of the spine, respectively. The endurance time for INTERMITTENT was 33.6% greater than ISOMETRIC (95% CI: [3.8, 63.5]; p = 0.027) and 29.4% greater than VOLUNTARY (95% CI: [7.0, 51.7]; p = 0.010), but not different between ISOMETRIC and VOLUNTARY. The convEMG and HDsEMG amplitude coefficient of variation was significantly greater for INTERMITTENT versus ISOMETRIC. The rate of change in convEMG and HDsEMG spectral content did not reveal significant differences between conditions as found in endurance time. Additional regression analyses between endurance time and rate of change in convEMG (p > 0.05) and HDsEMG (R2 = 0.39-0.65, p = 0.005-0.039) spectral content indicated that HDsEMG better reflects fatigue development in low-level contractions. In conclusion, imposed intermittent trunk extensor muscle length changes delayed muscle fatigue development when compared to a near-isometric condition or when participants were allowed to voluntarily vary muscle length, possibly due to evoking alternating activity between/within trunk extensor muscles.
Collapse
Affiliation(s)
- Niels P Brouwer
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Idsart Kingma
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | | | - Jaap H van Dieën
- Department of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| |
Collapse
|
22
|
Xiang X, Tanaka M, Umeno S, Kikuchi Y, Kobayashi Y. Dynamic assessment for low back-support exoskeletons during manual handling tasks. Front Bioeng Biotechnol 2023; 11:1289686. [PMID: 38026894 PMCID: PMC10667710 DOI: 10.3389/fbioe.2023.1289686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/01/2023] [Indexed: 12/01/2023] Open
Abstract
Exoskeletons can protect users' lumbar spine and reduce the risk of low back injury during manual lifting tasks. Although many exoskeletons have been developed, their adoptability is limited by their task- and movement-specific effects on reducing burden. Many studies have evaluated the safety and effectiveness of an exoskeleton using the peak/mean values of biomechanical variables, whereas the performance of the exoskeleton at other time points of the movement has not been investigated in detail. A functional analysis, which presents discrete time-series data as continuous functions, makes it possible to highlight the features of the movement waveform and determine the difference in each variable at each time point. This study investigated an assessment method for exoskeletons based on functional ANOVA, which made it possible to quantify the differences in the biomechanical variables throughout the movement when using an exoskeleton. Additionally, we developed a method based on the interpolation technique to estimate the assistive torque of an exoskeleton. Ten men lifted a 10-kg box under symmetric and asymmetric conditions five times each. Lumbar load was significantly reduced during all phases (flexion, lifting, and laying) under both conditions. Additionally, reductions in kinematic variables were observed, indicating the exoskeleton's impact on motion restrictions. Moreover, the overlap F-ratio curves of the lumbar load and kinematic variables imply that exoskeletons reduce the lumbar load by restricting the kinematic variables. The results suggested that at smaller trunk angles (<25°), an exoskeleton neither significantly reduces the lumbar load nor restricts trunk movement. Our findings will help increasing exoskeleton safety and designing effective products for reducing lumbar injury risks.
Collapse
Affiliation(s)
- Xiaohan Xiang
- Institute of Agricultural Machinery, National Agriculture and Food Research Organization (NARO), Saitama, Japan
| | | | | | | | | |
Collapse
|
23
|
Alemi MM, Banks JJ, Lynch AC, Allaire BT, Bouxsein ML, Anderson DE. EMG Validation of a Subject-Specific Thoracolumbar Spine Musculoskeletal Model During Dynamic Activities in Older Adults. Ann Biomed Eng 2023; 51:2313-2322. [PMID: 37353715 PMCID: PMC11426388 DOI: 10.1007/s10439-023-03273-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/01/2023] [Indexed: 06/25/2023]
Abstract
Musculoskeletal models can uniquely estimate in vivo demands and injury risk. In this study, we aimed to compare muscle activations from subject-specific thoracolumbar spine OpenSim models with recorded muscle activity from electromyography (EMG) during five dynamic tasks. Specifically, 11 older adults (mean = 65 years, SD = 9) lifted a crate weighted to 10% of their body mass in axial rotation, 2-handed sagittal lift, 1-handed sagittal lift, and lateral bending, and simulated a window opening task. EMG measurements of back and abdominal muscles were directly compared to equivalent model-predicted activity for temporal similarity via maximum absolute normalized cross-correlation (MANCC) coefficients and for magnitude differences via root-mean-square errors (RMSE), across all combinations of participants, dynamic tasks, and muscle groups. We found that across most of the tasks the model reasonably predicted temporal behavior of back extensor muscles (median MANCC = 0.92 ± 0.07) but moderate temporal similarity was observed for abdominal muscles (median MANCC = 0.60 ± 0.20). Activation magnitude was comparable to previous modeling studies, and median RMSE was 0.18 ± 0.08 for back extensor muscles. Overall, these results indicate that our thoracolumbar spine model can be used to estimate subject-specific in vivo muscular activations for these dynamic lifting tasks.
Collapse
Affiliation(s)
- Mohammad Mehdi Alemi
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA.
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, 330 Brookline Ave, RN119, Boston, MA, 02215, USA.
| | - Jacob J Banks
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Andrew C Lynch
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Brett T Allaire
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Mary L Bouxsein
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| | - Dennis E Anderson
- Center for Advanced Orthopaedic Studies, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Orthopaedic Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Wang Z, Feng W, Jin Q. Occupational factors and low back pain: a Mendelian randomization study. Front Public Health 2023; 11:1236331. [PMID: 37711245 PMCID: PMC10498534 DOI: 10.3389/fpubh.2023.1236331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Background Low back pain (LBP) is a common condition and a leading cause of health function loss worldwide. This study assessed the impact of occupational factors on LBP using Mendelian Randomization (MR) method, controlling for confounding variables. Methods Based on publicly available genome-wide association studies (GWAS), two-sample univariate and multivariate MR analyses were performed to assess the causal effect of occupational factors on LBP. We used the inverse variance weighted (IVW) method and sensitivity analyses to generate the total results for the univariate MR analysis. Furthermore, we performed multivariate MR analysis to assess the direct causal association between occupational factors and LBP after accounting for potential confounding variables. Results The total causal effect of genetically predicted job involves heavy manual or physical work on LBP was found to be significant (IVW OR, 2.117; 95% CI, 1,288-3.479; p = 0.003). Upon adjusting for potential confounding variables, the direct effect of job involves heavy manual or physical work on LBP remained statistically significant. Similarly, the total causal effect of genetically predicted job involves mainly walking or standing on LBP was also found to be significant (IVW OR, 1.429; 95% CI, 1,035-1.975; p = 0.030). However, upon adjusting for potential confounding variables, the direct effect of job involves mainly walking or standing on LBP became insignificant. In contrast, the findings from the MR analysis indicated a lack of association between work/job satisfaction and LBP. Sensitivity analysis consistently supported these trends. Conclusion Our results supported a causal link between job involves heavy manual or physical work and increased risk of LBP, while finding no significant associations between prolonged walking/standing at work, job satisfaction, and LBP, providing valuable insights for the development of targeted prevention and intervention strategies for LBP.
Collapse
Affiliation(s)
- Zifeng Wang
- Department of Orthopedics, Taicang Shaxi People’s Hospital, Taicang, China
| | - Wubing Feng
- Department of Orthopedics, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Qi Jin
- Department of Orthopedics, No.1 Traditional Chinese Medicine Hospital in Changde, Changde, China
| |
Collapse
|
25
|
Quirk DA, Chung J, Schiller G, Cherin JM, Arens P, Sherman DA, Zeligson ER, Dalton DM, Awad LN, Walsh CJ. Reducing Back Exertion and Improving Confidence of Individuals with Low Back Pain with a Back Exosuit: A Feasibility Study for Use in BACPAC. PAIN MEDICINE (MALDEN, MASS.) 2023; 24:S175-S186. [PMID: 36794907 PMCID: PMC10403307 DOI: 10.1093/pm/pnad003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 02/17/2023]
Abstract
OBJECTIVE Low back pain (LBP) is hallmarked by activity limitations, especially for tasks involving bending. Back exosuit technology reduces low back discomfort and improves self-efficacy of individuals with LBP during bending and lifting tasks. However, the biomechanical efficacy of these devices in individuals with LBP is unknown. This study sought to determine biomechanical and perceptual effects of a soft active back exosuit designed to assist individuals with LBP sagittal plane bending. To understand patient-reported usability and use cases for this device. METHODS Fifteen individuals with LBP performed two experimental lifting blocks once with and without an exosuit. Trunk biomechanics were measured by muscle activation amplitudes, and whole-body kinematics and kinetics. To evaluate device perception, participants rated task effort, low back discomfort, and their level of concern completing daily activities. RESULTS The back exosuit reduced peak back extensor: moments by 9%, and muscle amplitudes by 16% when lifting. There were no changes in abdominal co-activation and small reductions maximum trunk flexion compared to lifting without an exosuit. Participants reported lower task effort, back discomfort, and concern about bending and lifting with an exosuit compared to without. CONCLUSIONS This study demonstrates a back exosuit not only imparts perceptual benefits of reduced task effort, discomfort, and increased confidence in individuals with LBP but that it achieves these benefits through measurable biomechanical reductions in back extensor effort. The combined effect of these benefits implies back exosuits might be a potential therapeutic aid to augment physical therapy, exercises, or daily activities.
Collapse
Affiliation(s)
- D Adam Quirk
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Jinwon Chung
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| | - Gregory Schiller
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Jason M Cherin
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - Philipp Arens
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
| | - David A Sherman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Emma R Zeligson
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Diane M Dalton
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Lou N Awad
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
- College of Health & Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, United States
| | - Conor J Walsh
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA, United States
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, United States
| |
Collapse
|
26
|
Moya-Esteban A, Durandau G, van der Kooij H, Sartori M. Real-time lumbosacral joint loading estimation in exoskeleton-assisted lifting conditions via electromyography-driven musculoskeletal models. J Biomech 2023; 157:111727. [PMID: 37499430 DOI: 10.1016/j.jbiomech.2023.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/13/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023]
Abstract
Lumbar joint compression forces have been linked to the development of chronic low back pain, which is specially present in occupational environments. Offline methodologies for lumbosacral joint compression force estimation are not commonly integrated in occupational or medical applications due to the highly time-consuming and complex post-processing procedures. Hence, applications such as real-time adjustment of assistive devices (i.e., back-support exoskeletons) for optimal modulation of compression forces remains unfeasible. Here, we present a real-time electromyography (EMG)-driven musculoskeletal model, capable of estimating accurate lumbosacral joint moments and plausible compression forces. Ten participants performed box-lifting tasks (5 and 15 kg) with and without the Laevo Flex back-support exoskeleton using squat and stoop lifting techniques. Lumbosacral kinematics and EMGs from abdominal and thoracolumbar muscles were used to drive, in real-time, subject-specific EMG-driven models, and estimate lumbosacral joint moments and compression forces. Real-time EMG-model derived moments showed high correlations (R2 = 0.76 - 0.83) and estimation errors below 30% with respect to reference inverse dynamic moments. Compared to unassisted lifting conditions, exoskeleton liftings showed mean lumbosacral joint moments and compression forces reductions of 11.9 - 18.7 Nm (6 - 12% of peak moment) and 300 - 450 N (5 - 10%), respectively. Our modelling framework was capable of estimating in real-time, valid lumbosacral joint moments and compression forces in line with in vivo experimental data, as well as detecting the biomechanical effects of a passive back-support exoskeleton. Our presented technology may lead to a new class of bio-protective robots in which personalized assistance profiles are provided based on subject-specific musculoskeletal variables.
Collapse
Affiliation(s)
- A Moya-Esteban
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands.
| | - G Durandau
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| | - H van der Kooij
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands; Department of Biomechanical Engineering, Delft University of Technology, Delft, The Netherlands
| | - M Sartori
- Department of Biomechanical Engineering, University of Twente, Enschede, The Netherlands
| |
Collapse
|
27
|
Callihan M, Somers B, Dinesh D, Aldred L, Clamp K, Treglown A, Custred C, Porteous K, Szukala E. Proof of Concept Testing of Safe Patient Handling Intervention Using Wearable Sensor Technology. SENSORS (BASEL, SWITZERLAND) 2023; 23:5769. [PMID: 37420937 DOI: 10.3390/s23125769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/17/2023] [Indexed: 07/09/2023]
Abstract
BACKGROUND Healthcare workers make up one of the occupations in the United States that experience the most musculoskeletal injuries. These injuries are often related to the movement and repositioning of patients. Despite previous injury prevention attempts, injury rates remain at an unsustainable level. The purpose of this proof-of-concept study is to provide preliminary testing of the impact of a lifting intervention on common biomechanical risk factors for injury during high-risk patient movements.; Methods: A before-and-after (quasi-experimental) design was utilized to compare biomechanical risk factors before and after a lifting intervention. Kinematic data were collected using the Xsens motion capture system, while muscle activations were collected with the Delsys Trigno EMG system. RESULTS Improvements were noted in the lever arm distance, trunk velocity, and muscle activations during the movements following the intervention; Conclusions: The contextual lifting intervention shows a positive impact on the biomechanical risk factors for musculoskeletal injury among healthcare workers without increasing the biomechanical risk. A larger, prospective study is needed to determine the intervention's ability to reduce injuries among healthcare workers.
Collapse
Affiliation(s)
- Michael Callihan
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| | - Brylan Somers
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| | - Dhruv Dinesh
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| | - Lauren Aldred
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| | - Kaitlyn Clamp
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| | - Alyssa Treglown
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| | - Cole Custred
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| | - Kathryn Porteous
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| | - Emily Szukala
- Capstone College of Nursing, The University of Alabama, Tuscaloosa, AL 35401, USA
| |
Collapse
|
28
|
Devecchi V, Falla D, Cabral HV, Gallina A. Neuromuscular adaptations to experimentally induced pain in the lumbar region: systematic review and meta-analysis. Pain 2023; 164:1159-1180. [PMID: 36730706 DOI: 10.1097/j.pain.0000000000002819] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/20/2022] [Indexed: 02/04/2023]
Abstract
ABSTRACT Experimental pain models are frequently used to understand the influence of pain on the control of human movement. In this systematic review, we assessed the effects of experimentally induced pain in the lumbar region of healthy individuals on trunk muscle activity and spine kinematics. Databases were searched from inception up to January 31, 2022. In total, 26 studies using either hypertonic saline injection (n = 19), heat thermal stimulation (n = 3), nociceptive electrical stimulation (n = 3), or capsaicin (n = 1) were included. The identified adaptations were task dependent, and their heterogeneity was partially explained by the experimental pain model adopted. Meta-analyses revealed an increase of erector spinae activity (standardized mean difference = 0.71, 95% confidence interval [CI] = 0.22-1.19) during full trunk flexion and delayed onset of transversus abdominis to postural perturbation tasks (mean difference = 25.2 ms, 95% CI = 4.09-46.30) in the presence of pain. Low quality of evidence supported an increase in the activity of the superficial lumbar muscles during locomotion and during voluntary trunk movements during painful conditions. By contrast, activity of erector spinae, deep multifidus, and transversus abdominis was reduced during postural perturbation tasks. Reduced range of motion of the lumbar spine in the presence of pain was supported by low quality of evidence. Given the agreement between our findings and the adaptations observed in clinical populations, the use of experimental pain models may help to better understand the mechanisms underlying motor adaptations to low back pain.
Collapse
Affiliation(s)
- Valter Devecchi
- Centre of Precision Rehabilitation for Spinal Pain (CPR Spine), School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | | | | | | |
Collapse
|
29
|
Kim JH, Vaughan A, Kincl L. Characterization of Musculoskeletal Injury Risk in Dungeness Crab Fishing. J Agromedicine 2023; 28:309-320. [PMID: 35440281 PMCID: PMC9869738 DOI: 10.1080/1059924x.2022.2068715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Commercial Dungeness crab fishermen's manual crab pot handling activities can be done in harsh outdoor working environments at sea and can pose well-known physical risk factors associated with musculoskeletal injury including forceful exertion, repetition and awkward posture. The nonfatal injury rate in this fishing fleet is 3.4 per 1,000 full-time equivalent workers. Two-thirds of self-reported injuries in the fleet were musculoskeletal sprains and strains. To date, no objective biomechanical assessment of musculoskeletal disorder (MSD) risk has been conducted due to the challenging work environment. METHODS The aim of this study was to determine the feasibility of collecting objective biomechanical assessments (i.e., posture and repetition) using inertial measurement unit (IMU) sensors placed on the arms and torso of professional deckhands (n = 7) while at sea, harvesting Dungeness crab. Based on the IMU-measured posture data, fishermen's anthropometry, and crab pot weights, biomechanical loading of the low back and both shoulders was estimated. RESULTS The IMU sensor data showed that commercial Dungeness crab fishing is highly repetitive and poses awkward postures in the shoulders and back. The estimated static low back compression, shear force, and flexion moment about the shoulders and low back (L5/S1) indicate potential injury risk associated with harvesting crab. CONCLUSION The results indicate that objective biomechanical assessment using the IMU sensors is feasible in the commercial fishing environment.
Collapse
Affiliation(s)
- Jeong Ho Kim
- Environmental and Occupational Health Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Amelia Vaughan
- Environmental and Occupational Health Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| | - Laurel Kincl
- Environmental and Occupational Health Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
30
|
Luger T, Bär M, Seibt R, Rieger MA, Steinhilber B. Using a Back Exoskeleton During Industrial and Functional Tasks-Effects on Muscle Activity, Posture, Performance, Usability, and Wearer Discomfort in a Laboratory Trial. HUMAN FACTORS 2023; 65:5-21. [PMID: 33861139 PMCID: PMC9846378 DOI: 10.1177/00187208211007267] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/10/2021] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To investigate the effect of using a passive back-support exoskeleton (Laevo V2.56) on muscle activity, posture, heart rate, performance, usability, and wearer comfort during a course of three industrial tasks (COU; exoskeleton worn, turned-on), stair climbing test (SCT; exoskeleton worn, turned-off), timed-up-and-go test (TUG; exoskeleton worn, turned-off) compared to no exoskeleton. BACKGROUND Back-support exoskeletons have the potential to reduce work-related physical demands. METHODS Thirty-six men participated. Activity of erector spinae (ES), biceps femoris (BF), rectus abdominis (RA), vastus lateralis (VL), gastrocnemius medialis (GM), trapezius descendens (TD) was recorded by electromyography; posture by trunk, hip, knee flexion angles; heart rate by electrocardiography; performance by time-to-task accomplishment (s) and perceived task difficulty (100-mm visual analogue scale; VAS); usability by the System Usability Scale (SUS) and all items belonging to domains skepticism and user-friendliness of the Technology Usage Inventory; wearer comfort by the 100-mm VAS. RESULTS During parts of COU, using the exoskeleton decreased ES and BF activity and trunk flexion, and increased RA, GM, and TD activity, knee and hip flexion. Wearing the exoskeleton increased time-to-task accomplishment of SCT, TUG, and COU and perceived difficulty of SCT and TUG. Average SUS was 75.4, skepticism 11.5/28.0, user-friendliness 18.0/21.0, wearer comfort 31.1 mm. CONCLUSION Using the exoskeleton modified muscle activity and posture depending on the task applied, slightly impaired performance, and was evaluated mildly uncomfortable. APPLICATION These outcomes require investigating the effects of this passive back-supporting exoskeleton in longitudinal studies with longer operating times, providing better insights for guiding their application in real work settings.
Collapse
Affiliation(s)
- Tessy Luger
- University of Tübingen and University Hospital Tübingen,
Wilhelmstraße, Germany
| | - Mona Bär
- University of Tübingen and University Hospital Tübingen,
Wilhelmstraße, Germany
| | - Robert Seibt
- University of Tübingen and University Hospital Tübingen,
Wilhelmstraße, Germany
| | - Monika A. Rieger
- University of Tübingen and University Hospital Tübingen,
Wilhelmstraße, Germany
| | - Benjamin Steinhilber
- University of Tübingen and University Hospital Tübingen,
Wilhelmstraße, Germany
| |
Collapse
|
31
|
Peters SLA, Tabasi A, Kingma I, van Dijk W, van Dieën JH. Development of a real time estimation method of L5S1 moments in occupational lifting. J Biomech 2023; 146:111417. [PMID: 36563410 DOI: 10.1016/j.jbiomech.2022.111417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 12/05/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022]
Abstract
Mechanical loading of the low-back is an important risk factor for the development of low-back pain. Real-time estimation of the L5S1 joint moment (ML5S1) can give an insight to reduce mechanical loading. Model accuracy depends on sensor information, limiting the number of input variables to estimate ML5S1 increases practical feasibility, but may decrease accuracy. This study aimed to find a model with a limited set of input variables without a large reduction in accuracy. We compared two approaches. The first was based on a simplified inverse dynamics model (SM) that requires a limited number of input variables (EMG/ground reaction forces, and orientations derived from an optoelectronic system (OMC)). Two variations were examined, to determine to what extent arm orientations were needed. The second approach was based on a regression model (RM) that uses the SMs as ground-truth. Two variations in terms of sensor use and calibration were examined. Test trials consisted of re-stacking a stack of 3 boxes. A high-end lab-based OMC-system was used as the gold standard (GS). Fifteen healthy participants, 9 males and 6 females (age 21-30) participated in this study. R2, RMSE, and peak-difference with the GS ML5S1 estimate were compared between models with a repeated-measures ANOVA. The SM including arm sensors performed similar or better than the regression models (r > 0.9 and RMSE < 15 % of average peak moment). However, from the perspective of practical feasibility and minimizing the required number of sensors during work, the best approach would be using one of the two regression model approaches.
Collapse
Affiliation(s)
- Sjoerd L A Peters
- Dept. of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Ali Tabasi
- Dept. of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| | - Idsart Kingma
- Dept. of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands.
| | | | - Jaap H van Dieën
- Dept. of Human Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, the Netherlands
| |
Collapse
|
32
|
Influence of Spine-Focused Verbal Instruction on Spine Flexion During Lifting. J Hum Kinet 2022; 84:12-20. [DOI: 10.2478/hukin-2022-0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Abstract
Lifting with a flexed spine, especially near the end range of motion, has been identified as a potential risk factor for low back injury/pain. Therefore, individuals who develop discomfort from repetitive, prolonged and/or loaded flexed or slouched postures may benefit from a greater awareness of how to control and/or modify their spinal posture to avoid irritating their backs in these situations. This study was therefore designed to test the ability of spine-oriented verbal instructions to reduce intersegmental spine flexion during three lifting tasks. The lifts were first performed without any instructions on lifting technique. An audio recording was then played with instructions to limit bending in the lower back before repeating the lifts. Following the verbal instructions, maximum spine flexion angles significantly (p < 0.05) decreased at intersegmental levels in the lower thoracic and upper lumbar (T8/T9 to L2/L3) regions, but no significant changes were observed at the lower lumbar levels (L3/L4 to L5/S1). Thus, it is concluded that spine-oriented verbal instructions can decrease spine flexion during lifting; however, other cues/instructions may be required to target lower lumbar levels which have been identified as the most prone to injury/pain.
Collapse
|
33
|
Kolus A, Wells RP, Neumann WP. Examining the relationship between human factors related quality risk factors and work related musculoskeletal disorder risk factors in manufacturing. ERGONOMICS 2022:1-22. [PMID: 36039042 DOI: 10.1080/00140139.2022.2119285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
This study addresses the relationship between human factors (HF) related quality deficits in manufacturing and work-related musculoskeletal disorder (WMSD) risk factors in production staff. A recent systematic review identified 60 HF-related quality risk factors (QRFs) in manufacturing related to product, process and workstation design stages. We investigate the extent to which these identified QRFs are also WMSD risk factors. Each QRF was examined for its relationship with WMSD using a 0 (no relationship) to 10 (strong relationship) scale rubric. The authors rated each QRF separately and then discussed and adjusted their ratings in a review session. Results showed that average median ratings were the highest for QRFs related to product design (8/10), intermediate for QRFs related to workstation design (7/10) and the lowest for QRFs related to process design (5/10). This emphasises the significant role of HF in system design in reducing both quality deficits and risk of developing WMSDs for manufacturing personnel. Practitioner summary: This study investigates whether human-related risk factors for product quality are also risk factors for work-related musculoskeletal disorders in manufacturing. Results showed a substantial relationship between quality risk factors and WMSD risk factors. This indicates the significant role of human factors in operations design in improving both system performance and human wellbeing.
Collapse
Affiliation(s)
- Ahmet Kolus
- Department of Industrial and Systems Engineering, College of Computing and Mathematics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
- Interdisciplinary Research Center of Smart Mobility and Logistics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Richard P Wells
- Department of Kinesiology, Faculty of Applied Health Sciences, University of Waterloo, Waterloo, Canada
| | - W Patrick Neumann
- Department of Mechanical and Industrial Engineering, Faculty of Engineering and Architectural Science, Toronto Metropolitan University, Toronto, Canada
| |
Collapse
|
34
|
Tang R, Kapellusch JM, Hegmann KT, Thiese MS, Wang I, Merryweather AS. Evaluating Different Measures of Low Back Pain Among U.S. Manual Materials Handling Workers: Comparisons of Demographic, Psychosocial, and Job Physical Exposure. HUMAN FACTORS 2022; 64:973-996. [PMID: 33300376 DOI: 10.1177/0018720820971101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To examine differences in demographic, psychosocial, and job physical exposure risk factors between multiple low back pain (LBP) outcomes in a prospective cohort of industrial workers. BACKGROUND LBP remains a leading cause of lost industrial productivity. Different case definitions involving pain (general LBP), medication use (M-LBP), seeking healthcare (H-LBP), and lost time (L-LBP) are often used to study LBP outcomes. However, the relationship between these outcomes remains unclear. METHOD Demographic, health status, psychosocial, and job physical exposure risk factors were quantified for 635 incident-eligible industrial workers. Incident cases of LBP outcomes and pain symptoms were quantified and compared across the four outcomes. RESULTS Differences in age, gender, medical history, and LBP history were found between the four outcomes. Most incident-eligible workers (67%) suffered an LBP outcome during follow-up. Cases decreased from 420 for LBP (25.4 cases/100 person-years) to 303 for M-LBP (22.0 cases/100 person-years), to 151 for H-LBP (15.6 cases/100 person-years), and finally to 56 for L-LBP (8.7 cases/100 person-years). Conversely, pain intensity and duration increased from LBP to H-LBP. However, pain duration was relatively lower for L-LBP than for H-LBP. CONCLUSION Patterns of cases, pain intensity, and pain duration suggest the influence of the four outcomes. However, few differences in apparent risk factors were observed between the outcomes. Further research is needed to establish consistent case definitions. APPLICATION Knowledge of patterns between different LBP outcomes can improve interpretation of research and guide future research and intervention studies in industry.
Collapse
Affiliation(s)
- Ruoliang Tang
- 12530 Sichuan University-Pittsburgh Institute, Chengdu, China
- 14751 University of Wisconsin-Milwaukee, USA
| | | | | | | | - Inga Wang
- 14751 University of Wisconsin-Milwaukee, USA
| | | |
Collapse
|
35
|
Qureshi SM, Purdy N, Greig MA, Kelly H, vanDeursen A, Neumann WP. Developing a simulation tool to quantify biomechanical load and quality of care in nursing. ERGONOMICS 2022:1-18. [PMID: 35975403 DOI: 10.1080/00140139.2022.2113921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Nursing is a high musculoskeletal disorder (MSD) risk job with high workload demands. This study combines Digital Human Modelling (DHM) and Discrete Event Simulation (DES) to address the need for tools to better manage MSD risk. This novel approach quantifies physical-workload, work-performance, and quality-of-care, in response to varying geographical patient-bed assignments, patient-acuity levels, and nurse-patient ratios. Lumbar loads for 86 care-delivery tasks in an acute care hospital unit were used as inputs in a DES model of the care-delivery process, creating a shift-long time trace of the biomechanical load. Peak L4/L5 compression and moment were 3574 N and 111.58 Nm, respectively. This study reports trade-offs in all three experiments: (i) increasing geographical patient-bed assignment distance decreased L4/L5 compression (8.8%); (ii) increased patient-acuity decreased L4/L5 moment (4%); (iii) Increased nurse-patient ratio decreased L4/L5 compression (10%) and moment (17%). However, in all experiments, Quality of care indicators deteriorated (20, 19, and 29%, respectively). Practitioner Summary: This research has the potential to support decision-makers by developing a simulation tool that quantifies the impact of varying operational and design-policies in terms of biomechanical-load and quality of care. The demonstrator-model reports: as geographical patient-bed distance, patient-acuity levels, and nurse-patient ratios increase, biomechanical-load reduces, and quality of care deteriorates.
Collapse
Affiliation(s)
- Sadeem Munawar Qureshi
- Human Factors Engineering Lab, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
| | - Nancy Purdy
- Daphne Cockwell School of Nursing, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
| | - Michael A Greig
- Human Factors Engineering Lab, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
| | | | | | - W Patrick Neumann
- Human Factors Engineering Lab, Department of Mechanical and Industrial Engineering, Toronto Metropolitan University (Formerly Ryerson University), Toronto, Canada
| |
Collapse
|
36
|
Heo U, Feng J, Kim SJ, Kim J. sEMG-Triggered Fast Assistance Strategy for a Pneumatic Back Support Exoskeleton. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2175-2185. [PMID: 35925857 DOI: 10.1109/tnsre.2022.3196361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To prevent lower back pain (LBP) in the industrial workplace, various powered back support exoskeletons (BSEs) have been developed. However, conventional kinematics-triggered assistance (KA) strategies induce latency, degrading assistance efficiency. Therefore, we proposed and experimentally evaluated a surface electromyography (sEMG)-triggered assistance (EA) strategy. Nine healthy subjects participated in the lifting experiments: 1) external loads test, 2) extra latency test, and 3) repetitive lifting test. In the external loads test, subject performed lifting with four different external loads (0 kg, 7.5 kg, 15 kg, and 22.5 kg). The assistance was triggered earlier by EA compared to KA from 114 ms to 202 ms, 163 ms to 269 ms for squat and stoop lifting respectively, as external loads increased from 0 kg to 22.5 kg. In the extra latency test, the effects of extra latency (manual switch, 0 ms, 100 ms and 200 ms) in EA on muscle activities were investigated. Muscle activities were minimized in the fast assistance (0 ms and 100 ms) condition and increased with extra latency. In the repetitive lifting test, the EA strategy significantly reduced L1 muscle fatigue by 70.4% in stoop lifting, compared to KA strategy. Based on the experimental results, we concluded that fast assistance triggered by sEMG improved assistance efficiency in BSE and was particularly beneficial in heavy external loads situations. The proposed assistive strategy can be used to prevent LBP by reducing back muscle fatigue and is easily applicable to various industrial exoskeleton applications.
Collapse
|
37
|
Lamooki SR, Cavuoto LA, Kang J. Adjustments in Shoulder and Back Kinematics during Repetitive Palletizing Tasks. SENSORS (BASEL, SWITZERLAND) 2022; 22:5655. [PMID: 35957219 PMCID: PMC9370918 DOI: 10.3390/s22155655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Repetitive task performance is a leading cause of musculoskeletal injuries among order-picking workers in warehouses. The repetition of lifting tasks increases the risk of back and shoulder injuries among these workers. While lifting in this industry is composed of loaded and unloaded picking and placing, the existing literature does not address the separate analysis of the biomechanics of the back and shoulder for these events. To that end, we investigated the kinematics of the back and shoulder movements of nine healthy male participants who performed three sessions of a simulated de/palletization task. Their back and shoulder kinematics were sensed using an optical motion capture system to determine the back inclination and shoulder flexion. Comparison of the kinematics between the first and last sessions indicated statistically significant changes in the timings, angles, coordination between the back and shoulder, and moments around the shoulder (p<0.05). The majority of the significant changes were observed during the loaded events, which confirms the importance of the separation of these events for biomechanical analysis. This finding suggests that focusing worker evaluation on the loaded periods can provide important information to detect kinematic changes that may affect musculoskeletal injury risk.
Collapse
Affiliation(s)
- Saeb R. Lamooki
- Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| | - Lora A. Cavuoto
- Industrial and Systems Engineering, University at Buffalo, Buffalo, NY 14260, USA
| | - Jiyeon Kang
- Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA;
| |
Collapse
|
38
|
Tröster M, Budde S, Maufroy C, Andersen MS, Rasmussen J, Schneider U, Bauernhansl T. Biomechanical Analysis of Stoop and Free-Style Squat Lifting and Lowering with a Generic Back-Support Exoskeleton Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9040. [PMID: 35897411 PMCID: PMC9332239 DOI: 10.3390/ijerph19159040] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/16/2022]
Abstract
Musculoskeletal disorders (MSDs) induced by industrial manual handling tasks are a major issue for workers and companies. As flexible ergonomic solutions, occupational exoskeletons can decrease critically high body stress in situations of awkward postures and motions. Biomechanical models with detailed anthropometrics and motions help us to acquire a comprehension of person- and application-specifics by considering the intended and unintended effects, which is crucial for effective implementation. In the present model-based analysis, a generic back-support exoskeleton model was introduced and applied to the motion data of one male subject performing symmetric and asymmetric dynamic manual handling tasks. Different support modes were implemented with this model, including support profiles typical of passive and active systems and an unconstrained optimal support mode used for reference to compare and quantify their biomechanical effects. The conducted simulations indicate that there is a high potential to decrease the peak compression forces in L4/L5 during the investigated heavy loaded tasks for all motion sequences and exoskeleton support modes (mean reduction of 16.0% without the optimal support mode). In particular, asymmetric motions (mean reduction of 11.9%) can be relieved more than symmetric ones (mean reduction of 8.9%) by the exoskeleton support modes without the optimal assistance. The analysis of metabolic energy consumption indicates a high dependency on lifting techniques for the effectiveness of the exoskeleton support. While the exoskeleton support substantially reduces the metabolic cost for the free-squat motions, a slightly higher energy consumption was found for the symmetric stoop motion technique with the active and optimal support mode.
Collapse
Affiliation(s)
- Mark Tröster
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (S.B.); (C.M.); (U.S.); (T.B.)
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, 70569 Stuttgart, Germany
| | - Sarah Budde
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (S.B.); (C.M.); (U.S.); (T.B.)
| | - Christophe Maufroy
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (S.B.); (C.M.); (U.S.); (T.B.)
| | - Michael Skipper Andersen
- Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark; (M.S.A.); (J.R.)
| | - John Rasmussen
- Department of Materials and Production, Aalborg University, 9220 Aalborg, Denmark; (M.S.A.); (J.R.)
| | - Urs Schneider
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (S.B.); (C.M.); (U.S.); (T.B.)
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, 70569 Stuttgart, Germany
| | - Thomas Bauernhansl
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, 70569 Stuttgart, Germany; (S.B.); (C.M.); (U.S.); (T.B.)
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
39
|
Mechanically induced histochemical and structural damage in the annulus fibrosus and cartilaginous endplate: a multi-colour immunofluorescence analysis. Cell Tissue Res 2022; 390:59-70. [PMID: 35790585 DOI: 10.1007/s00441-022-03649-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/02/2022] [Indexed: 11/02/2022]
Abstract
The annulus fibrosus (AF) and endplate (EP) are collagenous spine tissues that are frequently injured due to gradual mechanical overload. Macroscopic injuries to these tissues are typically a by-product of microdamage accumulation. Many existing histochemistry and biochemistry techniques are used to examine microdamage in the AF and EP; however, there are several limitations when used in isolation. Immunofluorescence may be sensitive to histochemical and structural damage and permits the simultaneous evaluation of multiple proteins-collagen I (COL I) and collagen II (COL II). This investigation characterized the histochemical and structural damage in initially healthy porcine spinal joints that were either unloaded (control) or loaded via biofidelic compression loading. The mean fluorescence area and mean fluorescence intensity of COL II significantly decreased (- 54.9 and - 44.8%, respectively) in the loaded AF (p ≤ 0.002), with no changes in COL I (p ≥ 0.471). In contrast, the EP displayed similar decreases in COL I and COL II fluorescence area (- 35.6 and - 37.7%, respectively) under loading conditions (p ≤ 0.027). A significant reduction (-31.1%) in mean fluorescence intensity was only observed for COL II (p = 0.043). The normalized area of pores was not altered on the endplate surface (p = 0.338), but a significant increase (+ 7.0%) in the void area was observed on the EP-subchondral bone interface (p = 0.002). Colocalization of COL I and COL II was minimal in all tissues (R < 0.34). In conclusion, the immunofluorescence analysis captured histochemical and structural damage in collagenous spine tissues, namely, the AF and EP.
Collapse
|
40
|
Clusiault D, Davidson JB, Armstrong DP, Fischer SL. The influence of sex and strength capacity on normalized low-back exposure during lifting: Insights from a joint power analysis. APPLIED ERGONOMICS 2022; 102:103756. [PMID: 35413576 DOI: 10.1016/j.apergo.2022.103756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
OBJECTIVE Investigate the influence of sex, strength capacity, and relative load mass on low-back exposure and lower extremity joint power generation in backboard lifting. BACKGROUND Sex and strength have been shown to influence lifting strategy, but without load mass being scaled to strength it is unknown which factor influences low-back exposures, and whether there are interactions with load mass. METHODS Motion capture and force plate data from 28 participants were collected during backboard lifting at load masses scaled to strength capacity. Differences in normalized peak low-back moment, peak knee-to-hip power magnitude ratio and timing were tested as a function of sex, strength, and load mass. RESULTS Stronger participants had lower normalized peak low-back moments (average 32% change from low-capacity across all load masses), with no significant sex effect (p = 0.582). As load mass increased, normalized peak low-back moment, peak knee-to-hip power magnitude and synchronicity decreased. CONCLUSION Training to both increase strength capacity and hip-joint power generation may be a strategy to reduce low-back exposure in backboard lifting.
Collapse
Affiliation(s)
- David Clusiault
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Justin B Davidson
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | | | - Steven L Fischer
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada.
| |
Collapse
|
41
|
Zhang D, Feng M, Liu W, Yu J, Wei X, Yang K, Zhan J, Peng W, Luo M, Han T, Jin Z, Yin H, Sun K, Yin X, Zhu L. From Mechanobiology to Mechanical Repair Strategies: A Bibliometric Analysis of Biomechanical Studies of Intervertebral Discs. J Pain Res 2022; 15:2105-2122. [PMID: 35923841 PMCID: PMC9342884 DOI: 10.2147/jpr.s361938] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Neck pain and low back pain are major challenges in public health, and intervertebral disc (IVD) biomechanics is an important multidisciplinary field. To date, no bibliometric literature review of the relevant literature has been performed, so we explored the emerging trends, landmark studies, and major contributors to IVD biomechanics research. We searched the Web of Science core collection (1900–2022) using keywords mainly composed of “biomechanics” and “intervertebral disc” to conduct a bibliometric analysis of original papers and their references, focusing on citations, authors, journals, and countries/regions. A co-citation analysis and clustering of the references were also completed. A total of 3189 records met the inclusion criteria. In the co-citation network, cluster #0, labeled as “annulus fibrosus tissue engineering”, and cluster #1, labeled as “micromechanical environment”, were the biggest clusters. References by MacLean et al and Holzapfel et al were positioned exactly between them and had high betweenness centrality. There existed a research topic evolution between mechanobiology and mechanical repair strategies of IVDs, and the latter had been identified as an emerging trend in IVD biomechanics. Numerous landmark studies had contributed to several fields, including mechanical testing of normal and pathological IVDs, mechanical evaluation of new repair strategies and development of finite element model. Adams MA was the author most cited by IVD biomechanics papers. Spine, the European Spine Journal, and the Journal of Biomechanics were the three journals where the most original articles and their references have been published. The United States has contributed most to the literature (n = 1277 papers); however, the research output of China is increasing. In conclusion, the present study suggests that IVD repair is an emerging trend in IVD biomechanics.
Collapse
Affiliation(s)
- Dian Zhang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Minshan Feng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Liu
- Department of Nursing, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| | - Jie Yu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xu Wei
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kexin Yang
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jiawen Zhan
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Wei Peng
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Mingyi Luo
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Tao Han
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhefeng Jin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - He Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Kai Sun
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xunlu Yin
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Xunlu Yin; Liguo Zhu, Department of Spine, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, 100102, People’s Republic of China, Email ;
| | - Liguo Zhu
- Department of Spinal Surgery, Wangjing Hospital of China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
42
|
Wang C, Li X, Guo Y, Du W, Guo H, Chen W. The Kinematic and Kinetic Responses of the Trunk and Lower Extremity Joints during Walking with and without the Spinal Orthosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116952. [PMID: 35682535 PMCID: PMC9180275 DOI: 10.3390/ijerph19116952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/01/2023]
Abstract
Spinal orthoses are an effective option for restoring the spine to its original position and controlling poor posture. However, the effects of poor posture and spinal orthoses on the kinematics and kinetics of trunk and lower extremity joints remain unclear. A six-camera Vicon motion capture system and two AMTI force plates were employed to collect gait parameters, including joint angle (spine, thorax, hip, knee, and ankle), range of motion (ROM), and ground reaction forces (GRFs). Furthermore, joint moments and joint reaction forces (JRFs) were calculated using a full-body musculoskeletal model in OpenSim. One-way repeated-measures ANOVA (p < 0.05) was used to compare significant differences among three trial conditions. These three conditions were walking in a normal posture, poor posture, and spinal orthosis. The results showed that spine ROM in the coronal and transverse plane was significantly lower when walking with a spinal orthosis compared to walking in normal and poor posture (p < 0.05). Compared to normal posture, the lumbar moments and back compressive forces were significantly increased when walking in poor posture (p < 0.05). However, when walking with a spinal orthosis, there was a significant decrease in trunk moments and reaction forces compared to walking in poor posture (p < 0.05). Individuals with poor posture could potentially induce instability and disorders, as evidenced by an increase in trunk moments and JRF compared to the normal posture. Spinal orthosis not only restricts spine ROM but also reduces the load on the spine and thus increases balance and stability.
Collapse
|
43
|
Li JM, Molinaro DD, King AS, Mazumdar A, Young AJ. Design and Validation of a Cable-Driven Asymmetric Back Exosuit. IEEE T ROBOT 2022. [DOI: 10.1109/tro.2021.3112280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jared M. Li
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dean D. Molinaro
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrew S. King
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anirban Mazumdar
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron J. Young
- Institute of Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
44
|
Characterizing Lumbar Spine Kinematics and Kinetics During Simulated Low-Speed Rear Impact Collisions. J Appl Biomech 2022; 38:155-163. [PMID: 35580842 DOI: 10.1123/jab.2021-0189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Recent work has demonstrated that low back pain is a common complaint following low-speed collisions. Despite frequent pain reporting, no studies involving human volunteers have been completed to examine the exposures in the lumbar spine during low-speed rear impact collisions. METHODS Twenty-four participants were recruited and a custom-built crash sled simulated rear impact collisions, with a change in velocity of 8 km/h. Randomized collisions were completed with and without lumbar support. Inverse dynamics analyses were conducted, and outputs were used to generate estimates of peak L4/L5 joint compression and shear. RESULTS Average (SD) peak L4/L5 compression and shear reaction forces were not significantly different without lumbar support (compression = 498.22 N [178.0 N]; shear = 302.2 N [98.5 N]) compared to with lumbar support (compression = 484.5 N [151.1 N]; shear = 291.3 N [176.8 N]). Lumbar flexion angle at the time of peak shear was 36° (12°) without and 33° (11°) with lumbar support. CONCLUSION Overall, the estimated reaction forces were 14% and 30% of existing National Institute of Occupational Safety and Health occupational exposure limits for compression and shear during repeated lifting, respectively. Findings also demonstrate that, during a laboratory collision simulation, lumbar support does not significantly influence the total estimated L4/L5 joint reaction force.
Collapse
|
45
|
Banks JJ, Umberger BR, Caldwell GE. EMG optimization in OpenSim: A model for estimating lower back kinetics in gait. Med Eng Phys 2022; 103:103790. [PMID: 35500997 DOI: 10.1016/j.medengphy.2022.103790] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 03/14/2022] [Indexed: 12/13/2022]
Abstract
Participant-specific musculoskeletal models are needed to accurately estimate lower back internal kinetic demands and injury risk. In this study we developed the framework for incorporating an electromyography optimization (EMGopt) approach within OpenSim (https://simtk.org/projects/emg_opt_tool) and evaluated lower back demands estimated from the model during gait. Kinematic, external kinetic, and EMG data were recorded from six participants as they performed walking and carrying tasks on a treadmill. For evaluation, predicted lumbar vertebral joint forces were compared to those from a generic static optimization approach (SOpt) and to previous studies. Further, model-estimated muscle activations were compared to recorded EMG, and model sensitivity to day-to-day EMG variability was evaluated. Results showed the vertebral joint forces from the model were qualitatively similar in pattern and magnitude to literature reports. Compared to SOpt, the EMGopt approach predicted larger joint loads (p<.01) with muscle activations better matching individual participant EMG patterns. L5/S1 vertebral joint forces from EMGopt were sensitive to the expected variability of recorded EMG, but the magnitude of these differences (±4%) did not impact between-task comparisons. Despite limitations inherent to such models, the proposed musculoskeletal model and EMGopt approach appears well-suited for evaluating internal lower back demands during gait tasks.
Collapse
Affiliation(s)
- Jacob J Banks
- University of Massachusetts Amherst, Department of Kinesiology, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003, United States; Beth Israel Deaconess Medical Center, Center for Advanced Orthopaedic Studies, 330 Brookline Avenue, RN 115, Boston, MA 02215, United States; Harvard Medical School, Department of Orthopaedic Surgery, Boston, MA 02115, United States.
| | - Brian R Umberger
- University of Michigan, School of Kinesiology, 830 North University Avenue, Ann Arbor, MI 48109, United States.
| | - Graham E Caldwell
- University of Massachusetts Amherst, Department of Kinesiology, 110 Totman Building, 30 Eastman Lane, Amherst, MA 01003, United States.
| |
Collapse
|
46
|
Meng Z, Zheng J, Fu K, Kang Y, Wang L. Curative Effect of Foraminal Endoscopic Surgery and Efficacy of the Wearable Lumbar Spine Protection Equipment in the Treatment of Lumbar Disc Herniation. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6463863. [PMID: 35368945 PMCID: PMC8975632 DOI: 10.1155/2022/6463863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 11/21/2022]
Abstract
Lumbar disc herniation is a common and frequently-occurring disease in pain clinics. The incidence rate of affliction is increasing with every passing year. Besides the aged, young people also suffer from long-term pain, which not only affects their daily routines but may also lead to serious impairment. The causes of chronic low back and leg pain caused by lumbar disc herniation are mainly related to mechanical compression, the adhesion of epidural space, intervertebral space, and aseptic inflammatory reaction. The treatment of lumbar disc herniation should follow the principle of step-by-step treatment. An appropriate treatment scheme needs to be adopted according to the patient's condition. About 80% of patients received nonsurgical treatment to get relief from the pain symptoms. However, 10% to 15% of patients still need traditional open surgery. Spinal foraminal surgery is a new method for the treatment of lumbar disc herniation, lumbar surgery failure syndrome, and lumbar spinal stenosis. However, there are only scattered clinical reports on the efficacy of spinal foraminal surgery. Based on it, this paper proposes a method to explore the efficacy of spinal foraminal mirror surgery in the treatment of lumbar disc herniation. Besides, postoperative wearable lumbar protective equipment is proposed to ensure a seamless rehabilitation effect on the patients. Statistical analysis performed using a t-test revealed that there was a significant difference between the visual analog scales (VAS) scores of the two groups after 3 and 6 months of treatment (P < 0.05). The paper analyzes and summarizes the cases with definite and poor curative effects, which not only provides the basis for clinical practice but also paves the way to multicenter clinical research.
Collapse
Affiliation(s)
- ZhaoWu Meng
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| | - JinYang Zheng
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| | - Kai Fu
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| | - YiZhao Kang
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| | - Liang Wang
- Sunshine Union Hospitai,Spinal Surgery, Weifang, Shandong 261000, China
| |
Collapse
|
47
|
The Importance of Lifting Height and Load Mass for Muscular Workload during Supermarket Stocking: Cross-Sectional Field Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053030. [PMID: 35270722 PMCID: PMC8910655 DOI: 10.3390/ijerph19053030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/21/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023]
Abstract
High physical work demands increase the risk of musculoskeletal disorders and sickness absence. Supermarket work involves a high amount of manual material handling. Identifying specific ergonomic risk factors is an important part of occupational health and safety efforts in the supermarket sector. In this cross-sectional field study among 64 supermarket workers, we used electromyography during the workday to determine the influence of lifting height and load mass on muscular workload of the low-back and neck/shoulder muscles during un-restricted manual material handling (grocery stocking). We found a significant effect of load mass, i.e., higher loads associated with higher muscular workload in the low-back and neck/shoulder muscles. We demonstrated a significant interaction between start and end position, i.e., lifts performed from 'Low' start positions to 'High' end positions demonstrated the highest low-back muscular workload, whereas 'High' positions were associated with increased neck/shoulder workload. In conclusion, lifting higher loads and lifting goods from low to high positions (low-back) and at high positions (neck/shoulder) are associated with higher muscular workload. These results can be used to guide highly warranted preventive initiatives to reduce the physical workload during supermarket work.
Collapse
|
48
|
Zelik KE, Nurse CA, Schall MC, Sesek RF, Marino MC, Gallagher S. An ergonomic assessment tool for evaluating the effect of back exoskeletons on injury risk. APPLIED ERGONOMICS 2022; 99:103619. [PMID: 34740072 PMCID: PMC9827614 DOI: 10.1016/j.apergo.2021.103619] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/14/2021] [Accepted: 10/20/2021] [Indexed: 06/01/2023]
Abstract
Low back disorders (LBDs) are a leading injury in the workplace. Back exoskeletons (exos) are wearable assist devices that complement traditional ergonomic controls and reduce LBD risks by alleviating musculoskeletal overexertion. However, there are currently no ergonomic assessment tools to evaluate risk for workers wearing back exos. Exo-LiFFT, an extension of the Lifting Fatigue Failure Tool, is introduced as a means to unify the etiology of LBDs with the biomechanical function of exos. We present multiple examples demonstrating how Exo-LiFFT can assess or predict the effect of exos on LBD risk without costly, time-consuming electromyography studies. For instance, using simulated and real-world material handling data we show an exo providing a 30 Nm lumbar moment is projected to reduce cumulative back damage by ∼70% and LBD risk by ∼20%. Exo-LiFFT provides a practical, efficient ergonomic assessment tool to assist safety professionals exploring back exos as part of a comprehensive occupational health program.
Collapse
Affiliation(s)
- Karl E Zelik
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Physical Medicine and Rehabilitation, Vanderbilt University, Nashville, TN, USA; HeroWear, LLC, Nashville, TN, USA.
| | - Cameron A Nurse
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Mark C Schall
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | - Richard F Sesek
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| | | | - Sean Gallagher
- Department of Industrial and Systems Engineering, Auburn University, Auburn, AL, USA
| |
Collapse
|
49
|
Technical field measurements of muscular workload during stocking activities in supermarkets: cross-sectional study. Sci Rep 2022; 12:934. [PMID: 35042941 PMCID: PMC8766430 DOI: 10.1038/s41598-022-04879-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 01/03/2022] [Indexed: 01/03/2023] Open
Abstract
Multiple studies have reported high prevalence of musculoskeletal disorders among supermarket workers. Technical field measurements can provide important knowledge about ergonomic risk factors for musculoskeletal disorders in the physical working environment, but these measurements are lacking in the supermarket sector. Therefore, using wearable electromyography and synchronous video recording in 75 supermarket workers, this cross-sectional study measured muscular workload during stocking activities in six different types of general store departments and during the thirteen most common work tasks across five different supermarket chains. Our results showed that muscular workload varies, especially for the low-back muscles, across (1) supermarket chains, (2) departments, and (3) specific stocking activities. Highest workloads of the low-back and neck/shoulders were seen in the fruit and vegetables department and during heavy, two-handed lifts of parcels (especially without using technical aids). In conclusion, physical work demands during supermarket stocking activities differ between chains, departments, and work tasks. These results can be used by company representatives and work environment professionals to specifically address and organize the stocking procedures to reduce the muscular workload during supermarket stocking.
Collapse
|
50
|
Tabasi A, Lazzaroni M, Brouwer NP, Kingma I, van Dijk W, de Looze MP, Toxiri S, Ortiz J, van Dieën JH. Optimizing Calibration Procedure to Train a Regression-Based Prediction Model of Actively Generated Lumbar Muscle Moments for Exoskeleton Control. SENSORS (BASEL, SWITZERLAND) 2021; 22:87. [PMID: 35009627 PMCID: PMC8747305 DOI: 10.3390/s22010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/15/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The risk of low-back pain in manual material handling could potentially be reduced by back-support exoskeletons. Preferably, the level of exoskeleton support relates to the required muscular effort, and therefore should be proportional to the moment generated by trunk muscle activities. To this end, a regression-based prediction model of this moment could be implemented in exoskeleton control. Such a model must be calibrated to each user according to subject-specific musculoskeletal properties and lifting technique variability through several calibration tasks. Given that an extensive calibration limits the practical feasibility of implementing this approach in the workspace, we aimed to optimize the calibration for obtaining appropriate predictive accuracy during work-related tasks, i.e., symmetric lifting from the ground, box stacking, lifting from a shelf, and pulling/pushing. The root-mean-square error (RMSE) of prediction for the extensive calibration was 21.9 nm (9% of peak moment) and increased up to 35.0 nm for limited calibrations. The results suggest that a set of three optimally selected calibration trials suffice to approach the extensive calibration accuracy. An optimal calibration set should cover each extreme of the relevant lifting characteristics, i.e., mass lifted, lifting technique, and lifting velocity. The RMSEs for the optimal calibration sets were below 24.8 nm (10% of peak moment), and not substantially different than that of the extensive calibration.
Collapse
Affiliation(s)
- Ali Tabasi
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, 1081BT Amsterdam, The Netherlands; (N.P.B.); (I.K.); (J.H.v.D.)
| | - Maria Lazzaroni
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (M.L.); (S.T.); (J.O.)
| | - Niels P. Brouwer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, 1081BT Amsterdam, The Netherlands; (N.P.B.); (I.K.); (J.H.v.D.)
| | - Idsart Kingma
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, 1081BT Amsterdam, The Netherlands; (N.P.B.); (I.K.); (J.H.v.D.)
| | | | | | - Stefano Toxiri
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (M.L.); (S.T.); (J.O.)
| | - Jesús Ortiz
- Department of Advanced Robotics, Istituto Italiano di Tecnologia, 16163 Genova, Italy; (M.L.); (S.T.); (J.O.)
| | - Jaap H. van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit, Amsterdam Movement Sciences, 1081BT Amsterdam, The Netherlands; (N.P.B.); (I.K.); (J.H.v.D.)
| |
Collapse
|