1
|
The effects of gravity and compression on interstitial fluid transport in the lower limb. Sci Rep 2022; 12:4890. [PMID: 35318426 PMCID: PMC8941011 DOI: 10.1038/s41598-022-09028-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Edema in the limbs can arise from pathologies such as elevated capillary pressures due to failure of venous valves, elevated capillary permeability from local inflammation, and insufficient fluid clearance by the lymphatic system. The most common treatments include elevation of the limb, compression wraps and manual lymphatic drainage therapy. To better understand these clinical situations, we have developed a comprehensive model of the solid and fluid mechanics of a lower limb that includes the effects of gravity. The local fluid balance in the interstitial space includes a source from the capillaries, a sink due to lymphatic clearance, and movement through the interstitial space due to both gravity and gradients in interstitial fluid pressure (IFP). From dimensional analysis and numerical solutions of the governing equations we have identified several parameter groups that determine the essential length and time scales involved. We find that gravity can have dramatic effects on the fluid balance in the limb with the possibility that a positive feedback loop can develop that facilitates chronic edema. This process involves localized tissue swelling which increases the hydraulic conductivity, thus allowing the movement of interstitial fluid vertically throughout the limb due to gravity and causing further swelling. The presence of a compression wrap can interrupt this feedback loop. We find that only by modeling the complex interplay between the solid and fluid mechanics can we adequately investigate edema development and treatment in a gravity dependent limb.
Collapse
|
2
|
André A, Touré AK, Stien D, Eparvier V. 2,5-diketopiperazines mitigate the amount of advanced glycation end products accumulated with age in human dermal fibroblasts. Int J Cosmet Sci 2020; 42:596-604. [PMID: 32767373 DOI: 10.1111/ics.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 07/29/2020] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Glycation is a common non-enzymatic reaction between proteins and sugars, resulting in the formation of advanced glycation end products (AGEs) in the human body. As can be seen in diabetic patients, the accumulation of AGEs in the skin has aesthetic consequences (wrinkles, brown spots and yellowish complexion). Therefore, the objective of this work was to find compounds isolated from natural sources that could eliminate the final AGEs accumulated in the skin with ageing. METHODS AND RESULTS A preliminary screening performed on a bank of microbial extracts and pure compounds showed that 2,5-Diketopiperazines (DKPs), as well as the extract of Sphingobacterium sp (SNB-CN13), reduced the presence of AGEs in fibroblasts by -28% and -23%, respectively. In this article, we present the dereplication approach used to reveal the presence of 26 different DKPs in the crude extract of Sphingobacterium sp. Bioguided fractionation has led to the isolation of 12 of them, whose identity has been confirmed by HRMS and NMR. A green synthesis approach has been developed to synthesize 3 symmetrical DKPs. The biological activity of all DKPs was evaluated by the development of an in vitro test using immunocytochemistry to reveal the presence of AGE carboxymethyl-lysine in human dermal fibroblasts. CONCLUSION Our work shows for the first time that DKPs decrease the amount of carboxymethyl-lysine AGE in elderly human dermal fibroblasts grown in vitro. Therefore, diketopiperazines can be considered as compounds of interest for dermatological and cosmetic applications with an anti-ageing aim.
Collapse
Affiliation(s)
- A André
- CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, Gif-sur-Yvette, 91198, France.,Laboratoire Shigeta, 62 boulevard Davout, Paris, 75020, France
| | - A K Touré
- Laboratoire Shigeta, 62 boulevard Davout, Paris, 75020, France
| | - D Stien
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, Sorbonne Université, CNRS, USR 3579, Banyuls-sur-mer, 66650, France
| | - V Eparvier
- Laboratoire Shigeta, 62 boulevard Davout, Paris, 75020, France
| |
Collapse
|
3
|
Alania Y, Trevelin LT, Hussain M, Zamperini CA, Mustafa G, Bedran-Russo AK. On the bulk biomechanical behavior of densely cross-linked dentin matrix: The role of induced-glycation, regional dentin sites and chemical inhibitor. J Mech Behav Biomed Mater 2020; 103:103589. [PMID: 32090918 PMCID: PMC7042333 DOI: 10.1016/j.jmbbm.2019.103589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/17/2019] [Accepted: 12/07/2019] [Indexed: 10/25/2022]
Abstract
Collagen glycation takes place under physiological conditions during chronological aging, leading to the formation of advanced glycation end-products (AGEs). AGEs accumulation induces non-enzymatic collagen cross-links increasing tissue stiffness and impairing function. Here, we focused on determining the cumulative effect of induced glycation on the mechanical behavior of highly collagen cross-linked dentin matrices and assess the topical inhibition potential of aminoguanidine. Bulk mechanical characterization suggests that early glycation cross-links significantly increase the tensile strength and stiffness of the dentin matrix and promote a brittle failure response. Histologically, glycation yielded a more mature type I collagen in a densely packed collagen matrix. The time-dependent effect of glycation indicates cumulative damage of dentin matrices that is partially inhibited by aminoguanidine. The regional dentin sites were differently affected by induced-glycation, revealing the crown dentin to be mechanically more affected by the glycation protocol. These findings in human dentin set the foundation for the proposed in vitro ribose-induced glycation model, which produces an early matrix stiffening mechanism by reducing tissue viscoelasticity and can be partially inhibited by topical aminoguanidine.
Collapse
Affiliation(s)
- Yvette Alania
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Livia T Trevelin
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA; Department of Restorative Dentistry, School of Dentistry, University of São Caetano Do Sul, Rua Santo Antônio 50, São Caetano Do Sul, São Paulo, 09521-160, Brazil
| | - Mohammad Hussain
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Camila A Zamperini
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Gresa Mustafa
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA
| | - Ana K Bedran-Russo
- Department of Restorative Dentistry, College of Dentistry, University of Illinois at Chicago, 801 South Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
4
|
Nicolas C, Jaisson S, Gorisse L, Tessier FJ, Niquet-Léridon C, Jacolot P, Pietrement C, Gillery P. Carbamylation and glycation compete for collagen molecular aging in vivo. Sci Rep 2019; 9:18291. [PMID: 31797985 PMCID: PMC6892850 DOI: 10.1038/s41598-019-54817-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/11/2019] [Indexed: 12/11/2022] Open
Abstract
Tissue aging is a complex phenomenon involving molecular aging of matrix proteins, which mainly results from their progressive alteration by nonenzymatic post-translational modifications (NEPTMs) such as glycation and carbamylation. These two reactions, which correspond to the binding of reactive metabolites (i.e. reducing sugars and urea-derived cyanate, respectively) on amino groups of proteins, occur during aging and are amplified in various chronic diseases such as diabetes mellitus or chronic renal disease (CKD). Since these reactions target the same functional groups, they can reciprocally compete for protein modification. Determining which NEPTM is predominant in tissues is necessary to better understand their role in the development of long-term complications of chronic diseases. For that purpose, two different murine models were used for reproducing such a competitive context: a CKD-diabetic mice model and a cyanate-consuming mice model. The competition has been evaluated by quantifying glycation and carbamylation products by LC-MS/MS in skin and aorta total extracts as well as in skin type I collagen. The results showed that the simultaneous enhancement of glycation and carbamylation reactions resulted in a decrease of the formation of glycation products (especially Amadori products) whereas the concentrations of homocitrulline, a carbamylation product, remained similar. These results, which have been obtained in both tissues and in purified skin type I collagen, suggest that carbamylation takes precedence over glycation for the modification of tissue proteins, but only in pathological conditions favouring these two NEPTMs. While glycation has been considered for a long time the predominant NEPTM of matrix proteins, carbamylation seems to also play an important role in tissue aging. The existence of competition between these NEPTMs must be taken into account to better understand the consequences of molecular aging of matrix proteins in tissue aging.
Collapse
Affiliation(s)
- Camille Nicolas
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France.,University Hospital of Reims, Department of Pediatrics (Nephrology unit), Reims, France
| | - Stéphane Jaisson
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France.,University Hospital of Reims, Laboratory of Pediatric Biology and Research, Reims, France
| | - Laëtitia Gorisse
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France
| | - Frédéric J Tessier
- University of Lille, CHU Lille, Inserm U995 - LIRIC - Lille Inflammation Research International Center, Lille, France
| | - Céline Niquet-Léridon
- Institut Polytechnique UniLaSalle, "Transformations & Agro-ressources" Unit, Beauvais, France
| | - Philippe Jacolot
- Institut Polytechnique UniLaSalle, "Transformations & Agro-ressources" Unit, Beauvais, France
| | - Christine Pietrement
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France.,University Hospital of Reims, Department of Pediatrics (Nephrology unit), Reims, France
| | - Philippe Gillery
- University of Reims Champagne-Ardenne, Laboratory of Biochemistry and Molecular Biology, CNRS/URCA UMR N° 7369 MEDyC, Reims, France. .,University Hospital of Reims, Laboratory of Pediatric Biology and Research, Reims, France.
| |
Collapse
|
5
|
ZHANG HAIXIA, ZHANG DI, QIN XIAO, WANG HUI, LI LIN. STUDY OF THE TRANSVERSAL DEFORMATION OF CORNEAL STRIP UNDER UNIAXIAL LOADING. J MECH MED BIOL 2018. [DOI: 10.1142/s0219519418400183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Uniaxial test is easy to access and to obtain accuracy data, but it is difficult to acquire two-dimensional deformation information. We investigated the relationship between the two strain components of corneal strip in uniaxial tests, which is the basis for determining of anisotropic strain energy function of cornea via uniaxial tests. Nine rabbits were taken. The left and right corneas were cut along superior-inferior (SI) and nasal-temporal (NT) direction, respectively. For each strip the uniaxial test was carried out, and the tensile displacements, strip images and loads were recorded. Then the stretching strain, the transversal strains and stress were obtained. Optimization based inverse analysis was utilized to find the best among six fitting models that characterizes the relationship between two strain components in uniaxial tests. All models fitted well the experimental data gathered for corneal strips ([Formula: see text]). According to the model selection index, the power model achieved the best performance index: 0.1268 for SI strips and 0.1063 for NT strips versus 0.151 (SI strips) and 0.107 (NT strips) found at most by other models. Thus, it is the most suitable one for describing the relationship between the two strain components of corneal strip during uniaxial stretching.
Collapse
Affiliation(s)
- HAIXIA ZHANG
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, P. R. China
| | - DI ZHANG
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, P. R. China
| | - XIAO QIN
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, P. R. China
| | - HUI WANG
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, P. R. China
| | - LIN LI
- School of Biomedical Engineering, Capital Medical University, Beijing 100069, P. R. China
- Beijing Key Laboratory of Fundamental Research on Biomechanics in Clinical Application, Capital Medical University, Beijing 100069, P. R. China
| |
Collapse
|
6
|
Extracellular matrix regulation of fibroblast function: redefining our perspective on skin aging. J Cell Commun Signal 2018; 12:35-43. [PMID: 29455303 DOI: 10.1007/s12079-018-0459-1] [Citation(s) in RCA: 175] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 01/31/2018] [Indexed: 01/22/2023] Open
Abstract
The dermal extracellular matrix (ECM) comprises the bulk of skin and confers strength and resiliency. In young skin, fibroblasts produce and adhere to the dermal ECM, which is composed primarily of type I collagen fibrils. Adherence allows fibroblasts to spread and exert mechanical force on the surrounding ECM. In this state, fibroblasts display a "youthful" phenotype characterized by maintenance of the composition and structural organization of the dermal ECM. During aging, fibroblast-ECM interactions become disrupted due to fragmentation of collagen fibrils. This disruption causes loss of fibroblast spreading and mechanical force, which inextricably lead to an "aged" phenotype; fibroblasts synthesize less ECM proteins and more matrix-degrading metalloproteinases. This imbalance of ECM homeostasis further drives collagen fibril fragmentation in a self-perpetuating cycle. This article summarizes age-related changes in the dermal ECM and the mechanisms by which these changes alter the interplay between fibroblasts and their extracellular matrix microenvironment that drive the aging process in human skin.
Collapse
|
7
|
Zgheib C, Hodges M, Hu J, Beason DP, Soslowsky LJ, Liechty KW, Xu J. Mechanisms of mesenchymal stem cell correction of the impaired biomechanical properties of diabetic skin: The role of miR-29a. Wound Repair Regen 2016; 24:237-46. [PMID: 26808714 DOI: 10.1111/wrr.12412] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/21/2016] [Indexed: 12/26/2022]
Abstract
Diabetic skin has impaired wound healing properties following injury. We have further shown that diabetic skin has weakened biomechanical properties at baseline. We hypothesize that the biomechanical properties of diabetic skin decline during the progression of the diabetic phenotype, and that this decline is due to the dysregulation of miR-29a, resulting in decreased collagen content. We further hypothesize that treatment with mesenchymal stem cells (MSCs) may improve diabetic wound healing by correction of the dysregulated miR-29a expression. We analyzed the biomechanical properties, collagen gene expression, collagen protein production, and miR-29a levels in skin harvested from 6 to 18 week old mice during the development of the diabetic phenotype. We also examined the correction of these impairments by both MSC treatment and the inhibition of miR-29a. Diabetic skin demonstrated a progressive impairment of biomechanical properties, decreased collagen content, and increased miR-29a levels during the development of the diabetic phenotype. MSC treatment decreased miR-29a levels, increased collagen content, and corrected the impaired biomechanical properties of diabetic skin. Additionally, direct inhibition of miR-29a also increased collagen content in diabetic skin. This decline in the biomechanical properties of diabetic skin during the progression of diabetes may increase the susceptibility of diabetic skin to injury and miR-29a appears to play a key role in this process.
Collapse
Affiliation(s)
- Carlos Zgheib
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver-Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Maggie Hodges
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver-Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Junyi Hu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver-Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - David P Beason
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Louis J Soslowsky
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania
| | - Kenneth W Liechty
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver-Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| | - Junwang Xu
- Laboratory for Fetal and Regenerative Biology, Department of Surgery, University of Colorado Denver-Anschutz Medical Campus and Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
8
|
Tracy LE, Minasian RA, Caterson E. Extracellular Matrix and Dermal Fibroblast Function in the Healing Wound. Adv Wound Care (New Rochelle) 2016; 5:119-136. [PMID: 26989578 DOI: 10.1089/wound.2014.0561] [Citation(s) in RCA: 566] [Impact Index Per Article: 70.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Significance: Fibroblasts play a critical role in normal wound healing. Various extracellular matrix (ECM) components, including collagens, fibrin, fibronectin, proteoglycans, glycosaminoglycans, and matricellular proteins, can be considered potent protagonists of fibroblast survival, migration, and metabolism. Recent Advances: Advances in tissue culture, tissue engineering, and ex vivo models have made the examination and precise measurements of ECM components in wound healing possible. Likewise, the development of specific transgenic animal models has created the opportunity to characterize the role of various ECM molecules in healing wounds. In addition, the recent characterization of new ECM molecules, including matricellular proteins, dermatopontin, and FACIT collagens (Fibril-Associated Collagens with Interrupted Triple helices), further demonstrates our cursory knowledge of the ECM in coordinated wound healing. Critical Issues: The manipulation and augmentation of ECM components in the healing wound is emerging in patient care, as demonstrated by the use of acellular dermal matrices, tissue scaffolds, and wound dressings or topical products bearing ECM proteins such as collagen, hyaluronan (HA), or elastin. Once thought of as neutral structural proteins, these molecules are now known to directly influence many aspects of cellular wound healing. Future Directions: The role that ECM molecules, such as CCN2, osteopontin, and secreted protein, acidic and rich in cysteine, play in signaling homing of fibroblast progenitor cells to sites of injury invites future research as we continue investigating the heterotopic origin of certain populations of fibroblasts in a healing wound. Likewise, research into differently sized fragments of the same polymeric ECM molecule is warranted as we learn that fragments of molecules such as HA and tenascin-C can have opposing effects on dermal fibroblasts.
Collapse
Affiliation(s)
- Lauren E. Tracy
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raquel A. Minasian
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - E.J. Caterson
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Ameliorating Effect of Akebia quinata Fruit Extracts on Skin Aging Induced by Advanced Glycation End Products. Nutrients 2015; 7:9337-52. [PMID: 26569300 PMCID: PMC4663606 DOI: 10.3390/nu7115478] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/29/2015] [Accepted: 11/06/2015] [Indexed: 01/18/2023] Open
Abstract
The accumulation of free radicals and advanced glycation end products (AGEs) in the skin plays a very important role in skin aging. Both are known to interact with each other. Therefore, natural compounds or extracts that possess both antioxidant and antiglycation activities might have great antiageing potential. Akebia quinata fruit extract (AQFE) has been used to treat urinary tract inflammatory disease in traditional Korean and Chinese medicines. In the present study, AQFE was demonstrated to possess antioxidant and antiglycation activity. AQFE protects human dermal fibroblasts (HDFs) from oxidative stress and inhibits cellular senescence induced by oxidative stress. We also found that AQFE inhibits glycation reaction between BSA and glucose. The antiglycation activity of AQFE was dose-dependent. In addition, the antiglycation activity of AQFE was confirmed in a human skin explant model. AQFE reduced CML expression and stimulated fibrillin-1 expression in comparison to the methyglyoxal treatment. In addition, the possibility of the extract as an anti-skin aging agent has also been clinically validated. Our analysis of the crow’s feet wrinkle showed that there was a decrease in the depth of deep furrows in RI treated with AQFE cream over an eight-week period. The overall results suggest that AQFE may work as an anti-skin aging agent by preventing oxidative stress and other complications associated with AGEs formation.
Collapse
|
10
|
Pageon H, Zucchi H, Dai Z, Sell DR, Strauch CM, Monnier VM, Asselineau D. Biological Effects Induced by Specific Advanced Glycation End Products in the Reconstructed Skin Model of Aging. Biores Open Access 2015; 4:54-64. [PMID: 26309782 PMCID: PMC4497626 DOI: 10.1089/biores.2014.0053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Advanced glycation end products (AGEs) accumulate in the aging skin. To understand the biological effects of individual AGEs, skin reconstructed with collagen selectively enriched with Nɛ-(carboxymethyl)-lysine (CML), Nɛ-(carboxyethyl)-lysine (CEL), methylglyoxal hydroimidazolone (MG-H1), or pentosidine was studied. Immunohistochemistry revealed increased expression of α6 integrin at the dermal epidermal junction by CEL and CML (p<0.01). Laminin 5 was diminished by CEL and MG-H1 (p<0.05). Both CML and CEL induced a robust increase (p<0.01) in procollagen I. In the culture medium, IL-6, VEGF, and MMP1 secretion were significantly decreased (p<0.05) by MG-H1. While both CEL and CML decreased MMP3, only CEL decreased IL-6 and TIMP1, while CML stimulated TIMP1 synthesis significantly (p<0.05). mRNA expression studies using qPCR in the epidermis layer showed that CEL increased type 7 collagen (COL7A1), β1, and α6 integrin, while CML increased only COL7A1 (p<0.05). MG-H1-modified collagen had no effect. Importantly, in the dermis layer, MMP3 mRNA expression was increased by both CML and MG-H1. CML also significantly increased the mRNAs of MMP1, TIMP1, keratinocyte growth factor (KGF), IL-6, and monocyte chemoattractant protein 1 (MCP1) (p<0.05). Mixed effects were present in CEL-rich matrix. Minimally glycoxidized pentosidine-rich collagen suppressed most mRNAs of the genes studied (p<0.05) and decreased VEGF and increased MCP1 protein expression. Taken together, this model of the aging skin suggests that a combination of AGEs tends to counterbalance and thus minimizes the detrimental biological effects of individual AGEs.
Collapse
Affiliation(s)
- Hervé Pageon
- L'Oréal, Research & Innovation , Aulnay-sous-bois, France
| | - Hélène Zucchi
- L'Oréal, Research & Innovation , Aulnay-sous-bois, France
| | - Zhenyu Dai
- Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | - David R Sell
- Department of Pathology, Case Western Reserve University , Cleveland, Ohio
| | | | - Vincent M Monnier
- Department of Pathology, Case Western Reserve University , Cleveland, Ohio. ; Department of Biochemistry, Case Western Reserve University , Cleveland, Ohio
| | | |
Collapse
|
11
|
Pageon H, Zucchi H, Rousset F, Monnier VM, Asselineau D. Skin aging by glycation: lessons from the reconstructed skin model. Clin Chem Lab Med 2014; 52:169-74. [PMID: 23770560 DOI: 10.1515/cclm-2013-0091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 05/24/2013] [Indexed: 11/15/2022]
Abstract
BACKGROUND Aging is the result of several mechanisms which operate simultaneously. Among them, glycation is of particular interest because it is a reaction which affects slowly renewing tissues and macromolecules with elevated half-life, like the dermis, a skin compartment highly affected by aging. Glycation produces crosslinks between macromolecules thereby providing an explanation for the increased age-related stiffness of the skin. Glycation products, also called AGEs (advanced glycation end products), accumulate primarily in extracellular matrix molecules like collagen or elastin. METHODS In order to reproduce this phenomenon in vitro we have created a model of reconstructed skin modified by glycation of the collagen used to fabricate the dermal compartment. RESULTS This system allowed us to uncover biological modifications of dermal markers, and more surprisingly epidermal markers, as well as an increase of metalloproteinases responsible for degradation of the dermal matrix. Consequently, the imbalance between synthesis and degradation that results from glycation, may contribute to skin aging, as shown in this model. Moreover these modifications were shown to be prevented by the addition of aminoguanidine, a well-known inhibitor of glycation. CONCLUSIONS Using this experimental approach our results taken together stress the importance and possibly central role of glycation in skin aging and the usefulness of the reconstructed skin as a model of physiological aging.
Collapse
|
12
|
Fang M, Peng CW, Yuan JP, Zhang ZL, Pang DW, Li Y. Coevolution of the tumor microenvironment revealed by quantum dot-based multiplexed imaging of hepatocellular carcinoma. Future Oncol 2014; 9:1029-37. [PMID: 23837765 DOI: 10.2217/fon.13.63] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
AIM This study aimed to provide new insights into the mechanisms of hepatocellular carcinoma (HCC) invasion by simultaneously imaging tumor cells and major components of the tumor microenvironment. MATERIALS & METHODS Formalin-fixed paraffin-embedded human HCC tissues were studied by conventional immunohistochemistry and quantum dot-based multiplexed imaging to reveal type IV collagen, LOX and tumor angiogenesis. RESULTS Type IV collagen degradation and repatterning in the extracellular matrix (ECM) was a continuous process, making the ECM harder, although more fragile and less resistant to cancer invasion. The distribution of LOX among cancer nests was heterogeneous, with higher expression in small cancer nests and lower expression in large cancer nests. LOX expression in cancer cells was associated with rigid stroma and tumor angiogenesis. Tumor angiogenesis occurred with type IV collagen presence. At the cancer invasion front, the ECM was hydrolyzed, with the prominent linear reorientation of type IV collagen surrounding cancer nests adjacent to neovessels. CONCLUSION The visualization of the temporal-spatial relationship between type IV collagen, LOX and tumor angiogenesis revealed the coevolution process of HCC cells and their microenvironment, emphasizing an active role of the ECM during cancer invasion.
Collapse
Affiliation(s)
- Min Fang
- Department of Oncology, Zhongnan Hospital of Wuhan University & Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center, Number 169 Donghu Road, Wuchang District, Wuhan, 430071, PR China
| | | | | | | | | | | |
Collapse
|
13
|
Gkogkolou P, Böhm M. Advanced glycation end products: Key players in skin aging? DERMATO-ENDOCRINOLOGY 2013; 4:259-70. [PMID: 23467327 PMCID: PMC3583887 DOI: 10.4161/derm.22028] [Citation(s) in RCA: 351] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Aging is the progressive accumulation of damage to an organism over time leading to disease and death. Aging research has been very intensive in the last years aiming at characterizing the pathophysiology of aging and finding possibilities to fight age-related diseases. Various theories of aging have been proposed. In the last years advanced glycation end products (AGEs) have received particular attention in this context. AGEs are formed in high amounts in diabetes but also in the physiological organism during aging. They have been etiologically implicated in numerous diabetes- and age-related diseases. Strategies inhibiting AGE accumulation and signaling seem to possess a therapeutic potential in these pathologies. However, still little is known on the precise role of AGEs during skin aging. In this review the existing literature on AGEs and skin aging will be reviewed. In addition, existing and potential anti-AGE strategies that may be beneficial on skin aging will be discussed.
Collapse
Affiliation(s)
- Paraskevi Gkogkolou
- Department of Dermatology; Laboratory for Neuroendocrinology of the Skin and Interdisciplinary Endocrinology; University of Münster; Münster, Germany
| | | |
Collapse
|
14
|
Abstract
Biothermomechanics of skin tissue is highly interdisciplinary, involving bioheat transfer, burn damage, biomechanics and physiology. Characterization of the thermomechanical behavior of skin tissue is of great importance and can contribute to a variety of medical applications. However, few studies have attempted to address the influence of heat induced thermal damage on the mechanical properties of skin tissue. This paper presents the compressive behavior of pigskin at different thermal damage levels and discusses the possible mechanisms of thermal damage–dependent compressive behavior of skin. The results demonstrate that skin stiffness decreases with increasing thermal damage degree and there exists strain rate sensitivity at different damage levels, caused mainly by hydration changes.
Collapse
Affiliation(s)
- F. XU
- Engineering Department, Cambridge University, Cambridge CB2 1PZ, UK
| | - T. J. LU
- MOE Key Laboratory of Strength and Vibration, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - K. A. SEFFEN
- Engineering Department, Cambridge University, Cambridge CB2 1PZ, UK
| |
Collapse
|
15
|
Lázaro-Martínez JL, Aragón-Sánchez FJ, Beneit-Montesinos JV, González-Jurado MA, García Morales E, Martínez Hernández D. Foot biomechanics in patients with diabetes mellitus: doubts regarding the relationship between neuropathy, foot motion, and deformities. J Am Podiatr Med Assoc 2011; 101:208-14. [PMID: 21622632 DOI: 10.7547/1010208] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND We sought to identify the biomechanical characteristics of the feet of patients with diabetes mellitus and the interrelationship with diabetic neuropathy by determining the range of joint mobility and the presence and locations of calluses and foot deformities. METHODS This observational comparative study involved 281 patients with diabetes mellitus who underwent neurologic and vascular examinations. Joint mobility studies were performed, and deformities and hyperkeratosis locations were assessed. RESULTS No substantial differences were found between patients with and without neuropathy in joint mobility range. Neuropathy was seen as a risk factor only in the passive range of motion of the first metatarsophalangeal joint (mean ± SD: 57.2° ± 19.5° versus 50.3° ± 22.5°, P = .008). Mean ± SD ankle joint mobility values were similar in both groups (83.0° ± 5.2° versus 82.8° ± 9.3°, P = .826). Patients without neuropathy had a higher rate of foot deformities such as hallux abductus valgus and hammer toes. There was also a higher presence of calluses in patients without neuropathy (82.8% versus 72.6%; P = .039). CONCLUSIONS Diabetic neuropathy was not related to limited joint mobility and the presence of calluses. Patients with neuropathy did not show a higher risk of any of the deformities examined. These findings suggest that the etiology of biomechanical alterations in diabetic people is complex and may involve several anatomically and pathologically predisposing factors.
Collapse
Affiliation(s)
- José Luis Lázaro-Martínez
- Diabetic Foot Unit, University Podiatric Clinic, College of Podiatry, Universidad Complutense de Madrid, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
16
|
Bermudez DM, Herdrich BJ, Xu J, Lind R, Beason DP, Mitchell ME, Soslowsky LJ, Liechty KW. Impaired biomechanical properties of diabetic skin implications in pathogenesis of diabetic wound complications. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2215-23. [PMID: 21514435 DOI: 10.1016/j.ajpath.2011.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Revised: 01/17/2011] [Accepted: 01/25/2011] [Indexed: 12/15/2022]
Abstract
Diabetic skin is known to have deficient wound healing properties, but little is known of its intrinsic biomechanical properties. We hypothesize that diabetic skin possesses inferior biomechanical properties at baseline, rendering it more prone to injury. Skin from diabetic and nondiabetic mice and humans underwent biomechanical testing. Real-time PCR was performed for genes integral to collagen synthesis and degradation. MMP-2 and MMP-9, and TIMP-1 protein levels were assessed by ELISA and zymography. Collagen I and III content was assessed using Western blot analysis. At baseline, both murine and human diabetic skin was biomechanically inferior compared to nondiabetic skin, with decreased maximum stress and decreased modulus (P < 0.001 and < 0.05, respectively). Surprisingly, the expression of genes involved in collagen synthesis were significantly up-regulated, and genes involved in collagen degradation were significantly down-regulated in murine diabetic skin (P < 0.01). In addition, MMP-2 and MMP-9/TIMP-1 protein ratios were significantly lower in murine diabetic skin (P < 0.05). Collagen I levels and I:III ratios were lower in diabetic skin (P < 0.05). These findings suggest that the predisposition of diabetics to wounds may be the result of impaired tissue integrity at baseline, and are due, in part, to a defect in the regulation of collagen protein synthesis at the post-transcriptional level.
Collapse
Affiliation(s)
- Dustin M Bermudez
- Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Verma SB, Wollina U. Looking through the cracks of diabetic candidal balanoposthitis! Int J Gen Med 2011; 4:511-3. [PMID: 21845057 PMCID: PMC3150172 DOI: 10.2147/ijgm.s17875] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Indexed: 12/30/2022] Open
Abstract
India is becoming an epicentre of type II diabetes mellitus with a crude prevalence rate of about 9%. Candida balanoposthitis is a known feature of diabetes mellitus especially in Indian males who are predominantly uncircumcised. In this country, diabetes is often diagnosed for the first time by dermatologists. Diabetes is much more frequently the cause of candida balanoposthitis than sexual intercourse in India. Fissuring along with balanoposthitis was found to be more common in sexually active males. The biomechanical basis of fissuring and the effect of diabetes in this phenomenon are explained. The issue of circumcision is debated under various aspects.
Collapse
|
18
|
Reaction of glycation and human skin: The effects on the skin and its components, reconstructed skin as a model. ACTA ACUST UNITED AC 2010; 58:226-31. [DOI: 10.1016/j.patbio.2009.09.009] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 09/14/2009] [Indexed: 11/20/2022]
|
19
|
Francis-Sedlak ME, Moya ML, Huang JJ, Lucas SA, Chandrasekharan N, Larson JC, Cheng MH, Brey EM. Collagen glycation alters neovascularization in vitro and in vivo. Microvasc Res 2010; 80:3-9. [PMID: 20053366 DOI: 10.1016/j.mvr.2009.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Revised: 12/13/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
Abstract
Microvascular network formation is required for the success of many therapies in regenerative medicine. The process of vessel assembly is fundamentally altered, however, in many people within the potential patient population, including the elderly and people with diabetes. Significant research has been performed to determine how cellular dysfunction contributes to this inadequate neovascularization, but alterations in the extracellular matrix (ECM) may also influence this process. Glycation of ECM proteins, specifically type I collagen, increases as people age and is accelerated due to uncontrolled diabetes. This glycation results in increased ECM stiffness and resistance to degradation. The goal of this research is to determine whether collagen glycation consistent with changes in aged (defined as people older than 80 years old) and diabetic individuals influences neovascularization. Collagen gels that were incubated in glucose-6-phopshate (G6P) for varying times exhibited cross-linking (26.2+/-8.1% and 31.3+/-5.6% for incubation in 375 mM G6P for 5 and 8 days, respectively), autofluorescence, and advanced glycation end product levels (666+/-481 and 2122+/-501 pmol/mg protein for 5 and 8 days of 375 mM G6P, respectively) consistent with aged and diabetic populations. Three-dimensional culture models showed that sprouting angiogenesis was delayed in collagen gels with high levels of glycation. When implanted in vivo, glycated gels were degraded (44.4+/-4.2% and 49.5+/-11.7% nondegraded gel remaining for gels incubated for 5 and 8 days in 375 mM G6P, respectively) and vascularized (75.5+/-32.0 and 73.7+/-23.6 vessels/mm(2)) more slowly than controls (22.3+/-9.9% gel remaining and 133.3+/-31.0 vessels/mm(2)). These results suggest that glycation of collagen can alter neovascularization and may contribute to alterations in vessel assembly observed as people age and due to diabetes.
Collapse
Affiliation(s)
- Megan E Francis-Sedlak
- Pritzker Institute of Biomedical Science and Engineering, Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60630, USA.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Sassi-Gaha S, Loughlin DT, Kappler F, Schwartz ML, Su B, Tobia AM, Artlett CM. Two dicarbonyl compounds, 3-deoxyglucosone and methylglyoxal, differentially modulate dermal fibroblasts. Matrix Biol 2009; 29:127-34. [PMID: 19800404 DOI: 10.1016/j.matbio.2009.09.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Revised: 09/14/2009] [Accepted: 09/21/2009] [Indexed: 11/26/2022]
Abstract
Advanced glycation endproducts accumulate on long-lived proteins such as collagens as a function of diet and age and mediate the cross-linking of those proteins causing changes in collagen pathophysiology resulting in the disruption of normal collagen matrix remodeling. Two commonly studied advanced glycation endproduct precursors 3-deoxyglucosone and methylglyoxal were investigated for their role in the modification of collagen and on extracellular matrix expression. Fibroblasts cultured on methylglyoxal cross-linked matrices increased the expression of collagen, active TGF-beta1, beta1-integrin, and decreased Smad7; whereas 3-deoxyglucosone decreased collagen, active TGF-beta1, beta1-integrin but increased Smad7. Purified collagen modified by 3-deoxyglucosone or methylglyoxal had different molecular weights; methylglyoxal increased the apparent molecular weight by approximately 20 kDa, whereas 3-deoxyglucosone did not. The differences in collagen expression by 3-deoxyglucosone and methylglyoxal raise the provocative idea that a genetic or environmental background leading to the predominance of one of these advanced glycation endproduct precursors may precipitate a fibrotic or chronic wound in susceptible individuals, particularly in the diabetic.
Collapse
Affiliation(s)
- Sihem Sassi-Gaha
- Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Abstract
Cells within tissues are continuously exposed to physical forces including hydrostatic pressure, shear stress, and compression and tension forces. Cells dynamically adapt to force by modifying their behaviour and remodelling their microenvironment. They also sense these forces through mechanoreceptors and respond by exerting reciprocal actomyosin- and cytoskeletal-dependent cell-generated force by a process termed 'mechanoreciprocity'. Loss of mechanoreciprocity has been shown to promote the progression of disease, including cancer. Moreover, the mechanical properties of a tissue contribute to disease progression, compromise treatment and might also alter cancer risk. Thus, the changing force that cells experience needs to be considered when trying to understand the complex nature of tumorigenesis.
Collapse
Affiliation(s)
- Darci T Butcher
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California at San Francisco, San Francisco, California 94143, USA
| | | | | |
Collapse
|
22
|
Corstjens H, Dicanio D, Muizzuddin N, Neven A, Sparacio R, Declercq L, Maes D. Glycation associated skin autofluorescence and skin elasticity are related to chronological age and body mass index of healthy subjects. Exp Gerontol 2008; 43:663-667. [DOI: 10.1016/j.exger.2008.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/29/2008] [Accepted: 01/31/2008] [Indexed: 10/22/2022]
|
23
|
Pageon H, Técher MP, Asselineau D. Reconstructed skin modified by glycation of the dermal equivalent as a model for skin aging and its potential use to evaluate anti-glycation molecules. Exp Gerontol 2008; 43:584-8. [PMID: 18485649 DOI: 10.1016/j.exger.2008.04.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 03/17/2008] [Accepted: 04/01/2008] [Indexed: 10/22/2022]
Abstract
Glycation is a slow chemical reaction which takes place between amino residues in protein and a reducing sugar. In skin this reaction creates new residues or induces the formation of cross-links (advanced glycation end products or AGEs) in the extracellular matrix of the dermis. Formation of such cross-links between macromolecules may be responsible for loss of elasticity or modification of other properties of the dermis observed during aging. We had previously developed a reconstructed skin model which enabled us to study the consequences of matrix alteration by preglycation of the collagen and have reported several modifications of interest induced by glycation in the dermal and epidermal compartments of reconstructed skin as well as at the level of the dermal-epidermal junction. For example we showed that collagen IV and laminin were increased in the basement membrane zone and that alpha6 and beta1 integrins in epidermis were expanded to suprabasal layers. The aim of this new study was to look at the biological effects of glycation inhibitors like aminoguanidine in the skin model. Aminoguanidine was mixed with collagen in the presence of ribose as reducing sugar, and immunostaining was used to visualize its effects on AGE Products and biological markers. After aminoguanidine treatment, we found a low amount of AGE products and a possible return to the normal pattern of distribution of markers in skin constructs as compared to those treated with ribose only. Interestingly similar results were also obtained, although to a lesser extent, with a blueberry extract. In conclusion the glycation inhibitory effect has been functionally demonstrated in the reconstructed skin model and it is shown that this model can be used to assess anti-glycation agents.
Collapse
Affiliation(s)
- Hervé Pageon
- L'Oréal, Life Sciences Advanced Research, Centre Charles Zviak, 90 rue du Général Roguet, 92583 Clichy, France.
| | | | | |
Collapse
|
24
|
Layton BE, Sastry AM. Equal and local-load-sharing micromechanical models for collagens: quantitative comparisons in response of non-diabetic and diabetic rat tissue. Acta Biomater 2006; 2:595-607. [PMID: 16905373 DOI: 10.1016/j.actbio.2006.05.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2006] [Revised: 05/09/2006] [Accepted: 05/17/2006] [Indexed: 12/14/2022]
Abstract
Chemical crosslinks in collagens resulting from binding of advanced glycation end-products, have long been presumed to alter the stiffness and permeability of glycated tissues. Recently, we developed a stochastic mechanical model for the response and failure of uniaxially deformed sciatic nerve tissue from diabetic and control rats. Here, we use our model to determine the likely correlation of fibril glycation with failure response, by quantifying statistical differences in their response. Our four-parameter model describes both the non-linear toe region and non-linear failure region of these tissues; the four parameters consist of (1) collagen fibril alignment, (2) fiber bundle waviness, (3) Weibull shape parameter for fibrillar strength, and (4) modulus-normalized Weibull scale parameter for fibrillar strength. Using an equal load sharing model we find that diabetic and control tissues had shape parameters of 9.88+/-5.50 and 4.33+/-3.67 (p=0.043), respectively, and scale parameters of 0.28+/-0.07 and 0.58+/-0.25 (p=0.033), respectively, implying that the diabetic tissue behaves in a more brittle manner, consistent with more highly crosslinked fibrils. We conclude that biochemical crosslinking directly affects measured mechanical properties. Further, this mechanical characterization may prove useful in mapping alterations in stiffness and permeability observed in glycated tissues.
Collapse
Affiliation(s)
- Bradley E Layton
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA, USA
| | | |
Collapse
|
25
|
Yang J, Zhao J, Liao D, Gregersen H. Biomechanical properties of the layered oesophagus and its remodelling in experimental type-1 diabetes. J Biomech 2006; 39:894-904. [PMID: 16488228 DOI: 10.1016/j.jbiomech.2005.01.022] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Accepted: 01/23/2005] [Indexed: 01/11/2023]
Abstract
Passive biomechanical properties in term of the stress-strain relationship and the shear modulus were studied in separated muscle layer and mucosa-submucosa layer in the oesophagus of normal and STZ (streptozotocin)-induced diabetic rats. The mucosa-submucosa and muscle layers were separated using microsurgery and studied in vitro using a self-developed test machine. Stepwise elongation and inflation plus continuous twist were applied to the samples. A constitutive equation based on a strain energy function was used for the stress-strain analysis. Five material constants were obtained for both layers. The mucosa-submucosa layer was significantly stiffer than the muscle layer in longitudinal, circumferential and circumferential-longitudinal shear direction. The mechanical constants of the oesophagus show that the oesophageal wall was anisotropic, the stiffness in the longitudinal direction was higher than in the circumferential direction in the intact oesophagus (P < 0.001) and in the muscle layer (P < 0.05). Diabetes-induced pronounced increase in the outer perimeter, inner perimeter and lumen area in both the muscle and mucosa-submucosa layer. The growth of the mucosa-submucosa layer (P < 0.001) was more pronounced than the muscle layer (P < 0.05). Furthermore, the circumferential stiffness of the mucosa-submucosa layer increased 28 days after STZ treatment. In conclusion, the oesophagus is a non-homogeneous anisotropic tube. Thus, the mechanical properties differed between layers as well as in different directions. Morphological and biomechanical remodelling is prominent in the diabetic oesophagus.
Collapse
Affiliation(s)
- Jian Yang
- Centre of Excellence in Visceral Biomechanics and Pain, Aalborg Hospital and Centre of Sensory-Motor Interaction, Aalborg University, DK-9100 Aalborg, Nord Jylland, Denmark
| | | | | | | |
Collapse
|
26
|
Abstract
Wound healing is a complicated and integrated process. Although there is some tolerance in terms of redundancy and interrelated control mechanisms, pushing beyond such limits may contribute to delayed wound healing, and in extreme cases lead to chronic wounds/ulcers and thus potentially to lower extremity amputation. Diabetes is associated with such disruption in wound healing. Research in humans and in animal models has identified a large number of changes associated with diabetes at the molecular level in delayed wound healing and to a lesser extent in chronic diabetic ulcers. Better overall understanding of these changes and how they are interrelated would allow for specifically targeted treatment, thus ensuring improved quality of life for patients and providing savings to the high costs that are associated with all aspects of chronic diabetic ulcers. This review examines the work done at the molecular level on chronic diabetic ulcers, as well as considering changes seen in diabetes in general, both in humans and animal models, that may in turn contribute to ulcer formation.
Collapse
Affiliation(s)
- R Blakytny
- Fachklinik Hornheide, Tumor Forschung, Münster, Germany
| | | |
Collapse
|
27
|
Layton BE, Sastry AM. A mechanical model for collagen fibril load sharing in peripheral nerve of diabetic and nondiabetic rats. J Biomech Eng 2005; 126:803-14. [PMID: 15796339 DOI: 10.1115/1.1824118] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Peripheral neuropathy affects approximately 50% of the 15 million Americans with diabetes. It has been suggested that mechanical effects related to collagen glycation are related to the permanence of neuropathy. In the present paper, we develop a model for load transfer in a whole nerve, using a simple pressure vessel approximation, in order to assess the significant of stiffening of the collagenous nerve sheath on endoneurial fluid pressure. We also develop a fibril-scale mechanics model for the nerve, to model the straightening of wavy fibrils, producing the toe region observed in nerve tissue, and also to interrogate the effects of interfibrillar crosslinks on the overall properties of the tissue. Such collagen crosslinking has been implicated in complications in diabetic tissues. Our fibril-scale model uses a two-parameter Weibull model for fibril strength, in combination with statistical parameters describing fibril modulus, angle, wave-amplitude, and volume fraction to capture both toe region and failure region behavior of whole rat sciatic nerve. The extrema of equal and local load-sharing assumptions are used to map potential differences in diabetic and nondiabetic tissues. This work may ultimately be useful in differentiating between the responses of normal and heavily crosslinked tissue.
Collapse
Affiliation(s)
- B E Layton
- Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI 48109-2125, USA
| | | |
Collapse
|
28
|
Klaesner JW, Hastings MK, Zou D, Lewis C, Mueller MJ. Plantar tissue stiffness in patients with diabetes mellitus and peripheral neuropathy. Arch Phys Med Rehabil 2002; 83:1796-801. [PMID: 12474190 DOI: 10.1053/apmr.2002.35661] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To determine if a difference exists in the plantar soft tissue of patients with diabetes mellitus (DM) and peripheral neuropathy (PN) compared with age-matched controls. DESIGN Case-control study with a parallel 3-element 1-dimensional viscoelastic model developed to characterize indentation data. SETTING Data collection performed in an academic physical therapy laboratory. PARTICIPANTS Forty subjects were recruited into 2 groups (20 subjects with DM, PN, and history of plantar ulcers; 20 control subjects), matched for age (DM: 55.22+/-9.39 y; control: 55.91+/-10.97 y), gender (DM: 14 men, 6 women; control: 14 men, 6 women), and body mass index (DM: 32.96+/-8.39 kg/m(2); control: 32.58+/-7.69 kg/m(2)). INTERVENTIONS The plantar soft tissue stiffness was measured over the first, third, and fifth metatarsals, and heel of each subject using an indentor system that accurately measures force/displacement (F/D) data. A parallel 3-element viscoelastic mechanical model was then used to transform the F/D data into values that were used to make stiffness assessments. MAIN OUTCOME MEASURE The element coefficients of our model indicated the stiffness of the plantar tissue. RESULTS The plantar tissue of the subjects with DM over the metatarsal heads was stiffer than the control population as indicated by one of the spring constants in the parallel 3-element model (first: 1.13+/-0.55 N/mm vs.72+/-.32 N/mm; third:.96+/-.32 N/mm vs.79+/-.17 N/mm; fifth:.90+/-.31 N/mm vs.69+/-.28 N/mm; P<.05). CONCLUSIONS The plantar tissue of subjects with DM, PN, and a history of ulcers was stiffer than control subjects. However, additional research is needed to determine the relationship among increased soft tissue stiffness, plantar pressures, and skin breakdown.
Collapse
Affiliation(s)
- Joseph W Klaesner
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO 63108, USA.
| | | | | | | | | |
Collapse
|