Booyse FM, Aikens ML, Grenett HE. Endothelial cell fibrinolysis: transcriptional regulation of fibrinolytic protein gene expression (t-PA, u-PA, and PAI-1) by low alcohol.
Alcohol Clin Exp Res 1999;
23:1119-24. [PMID:
10397301 DOI:
10.1111/j.1530-0277.1999.tb04235.x]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Epidemiological studies have associated moderate alcohol consumption with a reduced risk for coronary artery disease (CAD) and myocardial infarction (MI). This cardioprotection may be attributed to alcohol-induced changes in a variety of cellular functions, including increased fibrinolysis. Fibrinolysis is important in regulating normal hemostasis. Endothelial cells (ECs) synthesize fibrinolytic proteins, t-PA, u-PA, and PAs inhibitor, PAI-1. Systemic factors, i.e., alcohol, that affect one or more of these components, resulting in increased EC fibrinolysis, will reduce the risk for thrombosis, CAD, and MI and afford cardioprotection. These studies will identify/define the effects of low ethanol (< 0.1%, v/v) on the expression of PAs, PAI-1, and surface-localized fibrinolytic activity in cultured ECs. Low ethanol exerted a short-term time- and dose-dependent increase (approximately 5- to 8-fold) in activity at approximately 20 min and 0.05% ethanol, which was sustained for approximately 1 hr. On the other hand, a single brief exposure to low ethanol (< 0.1%, < 120 min), followed by 4-24 hr incubation in the absence of ethanol, showed a time- and dose-dependent increase (approximately 2- to 3-fold) in PAs antigen/mRNA and a concomitant approximately 2- to 3-fold sustained increase (approximately 24 hr) in fibrinolytic activity. Further nuclear transcription run-on assays and transient transfection experiments, using pPAs/luc and pPAI-1/luc promoter constructs, demonstrated that low ethanol transcriptionally upregulates t-PA and u-PA gene expression and downregulates PAI-1 gene expression. These combined studies have described a feasible molecular mechanism by which low ethanol can induce and sustain increased surface-localized EC fibrinolysis that may underlie and contribute, in part, to the cardioprotective benefit associated with moderate alcohol consumption.
Collapse