1
|
Desai RI, Kangas BD, Luc OT, Solakidou E, Smith EC, Dawes MH, Ma X, Makriyannis A, Chatterjee S, Dayeh MA, Muñoz-Jaramillo A, Desai MI, Limoli CL. Complex 33-beam simulated galactic cosmic radiation exposure impacts cognitive function and prefrontal cortex neurotransmitter networks in male mice. Nat Commun 2023; 14:7779. [PMID: 38012180 PMCID: PMC10682413 DOI: 10.1038/s41467-023-42173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 09/28/2023] [Indexed: 11/29/2023] Open
Abstract
Astronauts will encounter extended exposure to galactic cosmic radiation (GCR) during deep space exploration, which could impair brain function. Here, we report that in male mice, acute or chronic GCR exposure did not modify reward sensitivity but did adversely affect attentional processes and increased reaction times. Potassium (K+)-stimulation in the prefrontal cortex (PFC) elevated dopamine (DA) but abolished temporal DA responsiveness after acute and chronic GCR exposure. Unlike acute GCR, chronic GCR increased levels of all other neurotransmitters, with differences evident between groups after higher K+-stimulation. Correlational and machine learning analysis showed that acute and chronic GCR exposure differentially reorganized the connection strength and causation of DA and other PFC neurotransmitter networks compared to controls which may explain space radiation-induced neurocognitive deficits.
Collapse
Affiliation(s)
- Rajeev I Desai
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA.
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA.
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA.
| | - Brian D Kangas
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Oanh T Luc
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Eleana Solakidou
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
- Medical School, University of Crete, Heraklion, Greece
| | - Evan C Smith
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Monica H Dawes
- Department of Psychiatry, Harvard Medical School, Boston, MA, 02115, USA
- Behavioral Biology Program, McLean Hospital, Belmont, MA, 02478, USA
| | - Xiaoyu Ma
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Alexandros Makriyannis
- Center for Drug Discovery, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, 02115, USA
| | | | - Maher A Dayeh
- Southwest Research Institute, San Antonio, TX, 78238, USA
- University of San Antonio, San Antonio, TX, 78249, USA
| | | | - Mihir I Desai
- Southwest Research Institute, San Antonio, TX, 78238, USA
- University of San Antonio, San Antonio, TX, 78249, USA
| | - Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, Orange, CA, 92697, USA
| |
Collapse
|
2
|
Towards sustainable human space exploration-priorities for radiation research to quantify and mitigate radiation risks. NPJ Microgravity 2023; 9:8. [PMID: 36707520 PMCID: PMC9883222 DOI: 10.1038/s41526-023-00262-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Human spaceflight is entering a new era of sustainable human space exploration. By 2030 humans will regularly fly to the Moon's orbit, return to the Moon's surface and preparations for crewed Mars missions will intensify. In planning these undertakings, several challenges will need to be addressed in order to ensure the safety of astronauts during their space travels. One of the important challenges to overcome, that could be a major showstopper of the space endeavor, is the exposure to the space radiation environment. There is an urgent need for quantifying, managing and limiting the detrimental health risks and electronics damage induced by space radiation exposure. Such risks raise key priority topics for space research programs. Risk limitation involves obtaining a better understanding of space weather phenomena and the complex radiation environment in spaceflight, as well as developing and applying accurate dosimetric instruments, understanding related short- and long-term health risks, and strategies for effective countermeasures to minimize both exposure to space radiation and the remaining effects post exposure. The ESA/SciSpacE Space Radiation White Paper identifies those topics and underlines priorities for future research and development, to enable safe human and robotic exploration of space beyond Low Earth Orbit.
Collapse
|
3
|
Desai RI, Limoli CL, Stark CEL, Stark SM. Impact of spaceflight stressors on behavior and cognition: A molecular, neurochemical, and neurobiological perspective. Neurosci Biobehav Rev 2022; 138:104676. [PMID: 35461987 DOI: 10.1016/j.neubiorev.2022.104676] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 11/19/2022]
Abstract
The response of the human body to multiple spaceflight stressors is complex, but mounting evidence implicate risks to CNS functionality as significant, able to threaten metrics of mission success and longer-term behavioral and neurocognitive health. Prolonged exposure to microgravity, sleep disruption, social isolation, fluid shifts, and ionizing radiation have been shown to disrupt mechanisms of homeostasis and neurobiological well-being. The overarching goal of this review is to document the existing evidence of how the major spaceflight stressors, including radiation, microgravity, isolation/confinement, and sleep deprivation, alone or in combination alter molecular, neurochemical, neurobiological, and plasma metabolite/lipid signatures that may be linked to operationally-relevant behavioral and cognitive performance. While certain brain region-specific and/or systemic alterations titrated in part with neurobiological outcome, variations across model systems, study design, and the conspicuous absence of targeted studies implementing combinations of spaceflight stressors, confounded the identification of specific signatures having direct relevance to human activities in space. Summaries are provided for formulating new research directives and more predictive readouts of portending change in neurobiological function.
Collapse
Affiliation(s)
- Rajeev I Desai
- Harvard Medical School, McLean Hospital, Behavioral Biology Program, Belmont, MA 02478, USA.
| | - Charles L Limoli
- Department of Radiation Oncology, University of California Irvine, Medical Sciences I, B146B, Irvine, CA 92697, USA
| | - Craig E L Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| | - Shauna M Stark
- Department of Neurobiology of Behavior, University of California Irvine, 1400 Biological Sciences III, Irvine, CA 92697, USA
| |
Collapse
|
6
|
Abstract
Densely ionizing radiation has always been a main topic in radiobiology. In fact, α-particles and neutrons are sources of radiation exposure for the general population and workers in nuclear power plants. More recently, high-energy protons and heavy ions attracted a large interest for two applications: hadrontherapy in oncology and space radiation protection in manned space missions. For many years, studies concentrated on measurements of the relative biological effectiveness (RBE) of the energetic particles for different end points, especially cell killing (for radiotherapy) and carcinogenesis (for late effects). Although more recently, it has been shown that densely ionizing radiation elicits signalling pathways quite distinct from those involved in the cell and tissue response to photons. The response of the microenvironment to charged particles is therefore under scrutiny, and both the damage in the target and non-target tissues are relevant. The role of individual susceptibility in therapy and risk is obviously a major topic in radiation research in general, and for ion radiobiology as well. Particle radiobiology is therefore now entering into a new phase, where beyond RBE, the tissue response is considered. These results may open new applications for both cancer therapy and protection in deep space.
Collapse
Affiliation(s)
- M Durante
- GSI Helmholtz Center for Heavy Ion Research, Biophysics Department, Darmstadt, Germany
| |
Collapse
|
7
|
Rice OV, Grande AV, Dehktyar N, Bruneus M, Robinson JK, Gatley SJ. Long-term effects of irradiation with iron-56 particles on the nigrostriatal dopamine system. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2009; 48:215-225. [PMID: 19259693 DOI: 10.1007/s00411-009-0220-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 02/13/2009] [Indexed: 05/27/2023]
Abstract
Exposure to heavy ions during a Mars mission might damage the brain, thus compromising mission success and the quality of life of returning astronauts. Several workers have suggested that the dopamine system is particularly sensitive to heavy ion radiation, but direct evidence for this notion is lacking. We examined measures of brain dopamine viability at times up to 15 months after acute exposure of rats to (56)Fe (1.2-2.4 Gy). No effects were seen in brain sections stained for tyrosine hydroxylase, the classical marker for dopamine cells and nerve terminals. Locomotion stimulated by cocaine, which directly activates the dopamine system, was reduced at 6 months but not at 12 months. Furthermore, in a visually cued lever-pressing test, reaction times, which are prolonged by dopamine system damage, were identical in irradiated and control animals. However, learning times were increased by irradiation. Our data suggest that the midbrain dopamine system is not especially sensitive to damage by (56)Fe particles at doses much higher than would be associated with travel to and from Mars.
Collapse
Affiliation(s)
- Onarae V Rice
- Center for Translational Neuroimaging, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | | | | | | | | | |
Collapse
|
8
|
Koike Y, Frey MA, Sahiar F, Dodge R, Mohler S. Effects of HZE particle on the nigrostriatal dopaminergic system in a future Mars mission. ACTA ASTRONAUTICA 2005; 56:367-378. [PMID: 15754475 DOI: 10.1016/j.actaastro.2004.05.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Because of long duration travel outside the Earth's magnetic field, the effect of iron-rich high charge and energy (HZE) particles in Galactic Cosmic Rays on human body is the major concern in radiation protection. Recently attention has been directed to effects on the central nervous system in addition to mutagenic effects. In particular, a reduction in striatal dopamine content on nigrostriatal dopaminergic system has been reported by investigators using accelerated iron ions in ground-based mammalian studies. In addition, studies of the pathophysiology of Parkinson's disease demonstrated that excess iron cause a reduction in the dopamine content in the substantia nigra. This suggests an intriguing possibility to explain the selective detrimental effects of HZE particles on the dopaminergic system. Should these particles have biochemical effects, possible options for countermeasures are: (1) nutritional prevention, (2) medication, and (3) surgical placement of a stimulator electrode at a specific anatomic site in the basal ganglia.
Collapse
Affiliation(s)
- Yu Koike
- Space Medicine Group, Human Space Technology and Astronaut Department, Japan Aerospace Exploration Agency, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
9
|
Higuchi Y, Nelson GA, Vazquez M, Laskowitz DT, Slater JM, Pearlstein RD. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation. JOURNAL OF RADIATION RESEARCH 2002; 43 Suppl:S219-S224. [PMID: 12793762 DOI: 10.1269/jrr.43.s219] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
UNLABELLED Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.
Collapse
Affiliation(s)
- Yoshinori Higuchi
- Department of Radiation Medicine, Loma Linda University Medical Center, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|