1
|
Braun G, Escher BI. Prioritization of mixtures of neurotoxic chemicals for biomonitoring using high-throughput toxicokinetics and mixture toxicity modeling. ENVIRONMENT INTERNATIONAL 2023; 171:107680. [PMID: 36502700 DOI: 10.1016/j.envint.2022.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Modern society continues to pollute the environment with larger quantities of chemicals that have also become more structurally and functionally diverse. Risk assessment of chemicals can hardly keep up with the sheer numbers that lead to complex mixtures of increasing chemical diversity including new chemicals, substitution products on top of still abundant legacy compounds. Fortunately, over the last years computational tools have helped us to identify and prioritize chemicals of concern. These include toxicokinetic models to predict exposure to chemicals as well as new approach methodologies such as in-vitro bioassays to address toxicodynamic effects. Combined, they allow for a prediction of mixtures and their respective effects and help overcome the lack of data we face for many chemicals. In this study we propose a high-throughput approach using experimental and predicted exposure, toxicokinetic and toxicodynamic data to simulate mixtures, to which a virtual population is exposed to and predict their mixture effects. The general workflow is adaptable for any type of toxicity, but we demonstrated its applicability with a case study on neurotoxicity. If no experimental data for neurotoxicity were available, we used baseline toxicity predictions as a surrogate. Baseline toxicity is the minimal toxicity any chemical has and might underestimate the true contribution to the mixture effect but many neurotoxicants are not by orders of magnitude more potent than baseline toxicity. Therefore, including baseline-toxic effects in mixture simulations yields a more realistic picture than excluding them in mixture simulations. This workflow did not only correctly identify and prioritize known chemicals of concern like benzothiazoles, organochlorine pesticides and plasticizers but we were also able to identify new potential neurotoxicants that we recommend to include in future biomonitoring studies and if found in humans, to also include in neurotoxicity screening.
Collapse
Affiliation(s)
- Georg Braun
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany.
| | - Beate I Escher
- Department of Cell Toxicology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Environmental Toxicology, Department of Geosciences, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
2
|
Rozentsveig IB, Nikonova VS, Manuilov VV, Ushakov IA, Borodina TN, Smirnov VI, Korchevin NA. Heterocyclization of Bis(2-chloroprop-2-en-1-yl)sulfide in Hydrazine Hydrate–KOH: Synthesis of Thiophene and Pyrrole Derivatives. Molecules 2022; 27:molecules27206785. [PMID: 36296380 PMCID: PMC9609936 DOI: 10.3390/molecules27206785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 11/30/2022] Open
Abstract
The article is devoted to heterocyclization of bis(2-chloroprop-2-en-1-yl)sulfide which proceeds in hydrazine hydrate–alkali medium and leads to formation of thiophene and pyrrole derivatives: previously described 4,5,9,10-tetrahydrocycloocta[1,2-c;5,8-c’]dithiophene, as well as unknown hydrazone of 5-methylidene-3-methyldihydrothiophen-2-one and 1-amino-2-(propynylsulfanylpropenylsulfanyl)-3,5-dimethylpyrrole. Tentative mechanisms for the formation of the heterocyclic products are discussed. Obtained hydrazone of 5-methylidene-3-methyldihydrothiophen-2-one was used for the synthesis of a range of azine derivatives and in oxidation process with SeO2. The found reactions open up expedient approaches to the formation of various hardly accessible thiophene and pyrrole compounds from 2,3-dichloropropene and elemental sulfur as starting reagents.
Collapse
Affiliation(s)
- Igor B. Rozentsveig
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
- Chemistry Department, Irkutsk State University, Karl Marx Str., 1, 664003 Irkutsk, Russia
- Correspondence:
| | - Valentina S. Nikonova
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Victor V. Manuilov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Igor A. Ushakov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Tatyana N. Borodina
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Vladimir I. Smirnov
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Nikolay A. Korchevin
- A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| |
Collapse
|
3
|
van Vugt-Lussenburg BMA, Capinha L, Reinen J, Rooseboom M, Kranendonk M, Onderwater RCA, Jennings P. " Commandeuring" Xenobiotic Metabolism: Advances in Understanding Xenobiotic Metabolism. Chem Res Toxicol 2022; 35:1184-1201. [PMID: 35768066 PMCID: PMC9297329 DOI: 10.1021/acs.chemrestox.2c00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The understanding
of how exogenous chemicals (xenobiotics) are
metabolized, distributed, and eliminated is critical to determine
the impact of the chemical and its metabolites to the (human) organism.
This is part of the research and educational discipline ADMET (absorption,
distribution, metabolism, elimination, and toxicity). Here, we review
the work of Jan Commandeur and colleagues who have not only made a
significant impact in understanding of phase I and phase II metabolism
of several important compounds but also contributed greatly to the
development of experimental techniques for the study of xenobiotic
metabolism. Jan Commandeur’s work has covered a broad area
of research, such as the development of online screening methodologies,
the use of a combination of enzyme mutagenesis and molecular modeling
for structure–activity relationship (SAR) studies, and the
development of novel probe substrates. This work is the bedrock of
current activities and brings the field closer to personalized (cohort-based)
pharmacology, toxicology, and hazard/risk assessment.
Collapse
Affiliation(s)
| | - Liliana Capinha
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Jelle Reinen
- Charles River Den Bosch, Hambakenwetering 7, 5203 DL Hertogenbosch, The Netherlands
| | - Martijn Rooseboom
- Shell Global Solutions International B.V., 1030 BN The Hague, The Netherlands
| | - Michel Kranendonk
- Center for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/Faculty of Medical Sciences, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria 130, 1169-056 Lisboa, Portugal
| | | | - Paul Jennings
- Division of Computational and Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Amsterdam Institute of Molecular and Life Sciences (AIMMs), Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Gospavic R, Knoll P, Mirzaei S, Popov V. Physiologically Based Pharmacokinetic (PBPK) Model for Biodistribution of Radiolabeled Peptides in Patients with Neuroendocrine Tumours. ASIA OCEANIA JOURNAL OF NUCLEAR MEDICINE & BIOLOGY 2016; 4:90-7. [PMID: 27408897 PMCID: PMC4938879 DOI: 10.7508/aojnmb.2016.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Objective(s): The objectives of this work was to assess the benefits of the application of Physiologically Based Pharmacokinetic (PBPK) models in patients with different neuroendocrine tumours (NET) who were treated with Lu-177 DOTATATE. The model utilises clinical data on biodistribution of radiolabeled peptides (RLPs) obtained by whole body scintigraphy (WBS) of the patients. Methods: The blood flow restricted (perfusion rate limited) type of the PBPK model for biodistribution of radiolabeled peptides (RLPs) in individual human organs is based on the multi-compartment approach, which takes into account the main physiological processes in the organism: absorption, distribution, metabolism and excretion (ADME). The approach calibrates the PBPK model for each patient in order to increase the accuracy of the dose estimation. Datasets obtained using WBS in four patients have been used to obtain the unknown model parameters. The scintigraphic data were acquired using a double head gamma camera in patients with different neuroendocrine tumours who were treated with Lu-177 DOTATATE. The activity administered to each patient was 7400 MBq. Results: Satisfactory agreement of the model predictions with the data obtained from the WBS for each patient has been achieved. Conclusion: The study indicates that the PBPK model can be used for more accurate calculation of biodistribution and absorbed doses in patients. This approach is the first attempt of utilizing scintigraphic data in PBPK models, which was obtained during Lu-177 peptide therapy of patients with NET.
Collapse
Affiliation(s)
- Radovan Gospavic
- Ascend Technologies Ltd, Eastleigh, UK; Faculty of Civil Engineering, University of Belgrade, Belgrade, Serbia
| | - Peter Knoll
- Institute of Nuclear Medicine with PET-Center, Wilhelminenspital, Vienna, Austria
| | - Siroos Mirzaei
- Institute of Nuclear Medicine with PET-Center, Wilhelminenspital, Vienna, Austria
| | | |
Collapse
|
5
|
Dragovic S, Boerma JS, Vermeulen NPE, Commandeur JNM. Effect of Human Glutathione S-Transferases on Glutathione-Dependent Inactivation of Cytochrome P450-Dependent Reactive Intermediates of Diclofenac. Chem Res Toxicol 2013; 26:1632-41. [DOI: 10.1021/tx400204d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Sanja Dragovic
- Division of Molecular Toxicology,
Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty
of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan Simon Boerma
- Division of Molecular Toxicology,
Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty
of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Nico P. E. Vermeulen
- Division of Molecular Toxicology,
Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty
of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| | - Jan N. M. Commandeur
- Division of Molecular Toxicology,
Amsterdam Institute for Molecules Medicines and Systems (AIMMS), Faculty
of Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Chen BC, Chou WC, Chen WY, Liao CM. Assessing the cancer risk associated with arsenic-contaminated seafood. JOURNAL OF HAZARDOUS MATERIALS 2010; 181:161-169. [PMID: 20546995 DOI: 10.1016/j.jhazmat.2010.04.112] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 04/27/2010] [Accepted: 04/28/2010] [Indexed: 05/29/2023]
Abstract
Tens of millions of people worldwide ingest excessive amounts of arsenic (As) through drinking water and food. The dietary intake of seafood is the major As exposure route in humans and can cause As-related adverse health effects including cancers. The aim of this study was to quantify potential cancer risks of As exposure for children and adults through seafood consumption. By coupling the age-specific physiologically based pharmacokinetic (PBPK) model and a Weibull-based dose-response function, a more accurate estimate of urinary arsenic metabolites could be achieved to better characterize potential cancer risks. The simulation results show that the proportion of inorganic As, monomethylarsonic acid (MMA), and dimethylarsinic acid (DMA) in human urine are estimated to total 6.7, 26.9, and 66.4% for children, and 6.2, 27.4, and 66.4% for adults, respectively. The estimated median cumulative cancer incidence ratios were respectively 2.67x10(-6) and 3.83x10(-6) for children and adults, indicating a low cancer risk for local residents exposed to As through the consumption of seafood. However, it is necessary to incorporate other exposure routes into the model to make it more realistic. The methodology proposed here can not only be applied to calculate the concentrations of As metabolites in urine, but also to provide a direct estimation of adverse health effects caused by the calculated internal concentrations.
Collapse
Affiliation(s)
- Bo-Ching Chen
- Department of Post-Modern Agriculture, MingDao University, Changhua, Taiwan, ROC.
| | | | | | | |
Collapse
|
7
|
Aylward LL, Kirman CR, Blount BC, Hays SM. Chemical-specific screening criteria for interpretation of biomonitoring data for volatile organic compounds (VOCs)--application of steady-state PBPK model solutions. Regul Toxicol Pharmacol 2010; 58:33-44. [PMID: 20685286 DOI: 10.1016/j.yrtph.2010.05.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 05/20/2010] [Accepted: 05/21/2010] [Indexed: 12/16/2022]
Abstract
The National Health and Nutrition Examination Survey (NHANES) generates population-representative biomonitoring data for many chemicals including volatile organic compounds (VOCs) in blood. However, no health or risk-based screening values are available to evaluate these data from a health safety perspective or to use in prioritizing among chemicals for possible risk management actions. We gathered existing risk assessment-based chronic exposure reference values such as reference doses (RfDs), reference concentrations (RfCs), tolerable daily intakes (TDIs), cancer slope factors, etc. and key pharmacokinetic model parameters for 47 VOCs. Using steady-state solutions to a generic physiologically-based pharmacokinetic (PBPK) model structure, we estimated chemical-specific steady-state venous blood concentrations across chemicals associated with unit oral and inhalation exposure rates and with chronic exposure at the identified exposure reference values. The geometric means of the slopes relating modeled steady-state blood concentrations to steady-state exposure to a unit oral dose or unit inhalation concentration among 38 compounds with available pharmacokinetic parameters were 12.0 microg/L per mg/kg-d (geometric standard deviation [GSD] of 3.2) and 3.2 microg/L per mg/m(3) (GSD=1.7), respectively. Chemical-specific blood concentration screening values based on non-cancer reference values for both oral and inhalation exposure range from 0.0005 to 100 microg/L; blood concentrations associated with cancer risk-specific doses at the 1E-05 risk level ranged from 5E-06 to 6E-02 microg/L. The distribution of modeled steady-state blood concentrations associated with unit exposure levels across VOCs may provide a basis for estimating blood concentration screening values for VOCs that lack chemical-specific pharmacokinetic data. The screening blood concentrations presented here provide a tool for risk assessment-based evaluation of population biomonitoring data for VOCs and are most appropriately applied to central tendency estimates for such datasets.
Collapse
|
8
|
Physiologically based pharmacokinetic model development and simulations for ethylene dichloride (1,2-dichloroethane) in rats. Regul Toxicol Pharmacol 2008; 51:311-23. [DOI: 10.1016/j.yrtph.2008.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 04/30/2008] [Accepted: 05/13/2008] [Indexed: 11/19/2022]
|
9
|
Liao CM, Lin TL, Chen SC. A Weibull-PBPK model for assessing risk of arsenic-induced skin lesions in children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2008; 392:203-217. [PMID: 18207220 DOI: 10.1016/j.scitotenv.2007.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Revised: 12/06/2007] [Accepted: 12/10/2007] [Indexed: 05/25/2023]
Abstract
Chronic arsenic exposure and skin lesions (keratosis and hyperpigmentation) are inextricably linked. This paper was to quantify the children skin lesions risks and to further recommend safe drinking water arsenic standard based on reported arsenic epidemiological data. We linked the Weibull dose-response function and a physiologically based pharmacokinetic (PBPK) model to estimate safe drinking water arsenic concentrations and to perform the risk characterization. We calculated odds ratios (ORs) to assess the relative magnitude of the effect of the arsenic exposure on the likelihood of the prevalence of children skin lesions by calculating proposed Weibull-based prevalence ratios of exposed to control groups associated with the age group-specific PBPK model predicted dimethylarsinite (MMA(III)) levels in urine. Positive relationships between arsenic exposures and cumulative prevalence ratios of skin lesions were found using Weibull dose-response model (r2=0.91-0.96). We reported that the safe drinking water arsenic standards were recommended to be 2.2 and 1 microg/L for male and 6 and 2.8 microg/L for female in 0-6 and 7-18 years age groups, respectively, based on hyperpigmentation with an excess risk of 10(-3) for a 75 years lifetime exposure. Risk predictions indicate that estimated ORs have 95% confidence intervals of 1.33-5.12, 1.74-19.15, and 2.81-19.27 based on mean drinking water arsenic contents of 283.19, 282.65, and 468.81 microg/L, respectively, in West Bengal, India, Bangladesh, and southwestern Taiwan. Our findings also suggest that increasing urinary monomethylarsonic acid (MMA) levels are associated with an increase in risks of arsenic-induced children skin lesions.
Collapse
Affiliation(s)
- Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan ROC.
| | | | | |
Collapse
|
10
|
Yoon M, Madden MC, Barton HA. Extrahepatic metabolism by CYP2E1 in PBPK modeling of lipophilic volatile organic chemicals: impacts on metabolic parameter estimation and prediction of dose metrics. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2007; 70:1527-41. [PMID: 17710613 DOI: 10.1080/15287390701384684] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Physiologically based pharmacokinetic (PBPK) models are increasingly available for environmental chemicals and applied in risk assessments. Volatile organic compounds (VOCs) are important pollutants in air, soil, and water. CYP2E1 metabolically activates many VOCs in animals and humans. Despite its presence in extrahepatic tissues, the metabolism by CYP2E1 is often described as restricted to the liver in PBPK models, unless target tissue dose metrics in extrahepatic tissues are needed for the model application, including risk assessment. The impact of accounting for extrahepatic metabolism by CYP2E1 on the estimation of metabolic parameters and the prediction of dose metrics was evaluated for three lipophilic VOCs: vinyl chloride, trichloroethylene, and carbon tetrachloride. Metabolic parameters estimated from fitting gas uptake data with and without extrahepatic metabolism were similar. The impact of extrahepatic metabolism on PBPK predictions was evaluated using inhalation exposure scenarios relevant for animal toxicity studies and human risk assessment. Although small, the relative role of extrahepatic metabolism and the differences in the predicted dose metrics were greater at low exposure concentrations. The impact was species dependent and influenced by Km for CYP2E1. The current study indicates that inhalation modeling for several representative VOCs that are CYP2E1 substrates is not affected by the inclusion of extrahepatic metabolism, implying that liver-only metabolism may be a reasonable simplification for PBPK modeling of lipophilic VOCs. The PBPK predictions using this assumption can be applied confidently for risk assessment, but this conclusion should not necessarily be applied to VOCs that are metabolized by other enzymes.
Collapse
Affiliation(s)
- Miyoung Yoon
- National Research Council Research Associateship Program, North Carolina, USA
| | | | | |
Collapse
|
11
|
Ross MK, Pegram RA. In vitro biotransformation and genotoxicity of the drinking water disinfection byproduct bromodichloromethane: DNA binding mediated by glutathione transferase theta 1-1. Toxicol Appl Pharmacol 2004; 195:166-81. [PMID: 14998683 DOI: 10.1016/j.taap.2003.11.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2003] [Accepted: 11/19/2003] [Indexed: 11/19/2022]
Abstract
The drinking water disinfection byproduct bromodichloromethane (CHBrCl(2)) was previously shown to be mutagenic in Salmonella typhimurium that overexpress rat glutathione transferase theta 1-1 (GSTT1-1). Several experimental approaches were undertaken in this study to investigate the DNA covalent binding potential of reactive intermediates generated by GSTT1-1-mediated metabolism of CHBrCl(2). First, rodent hepatic cytosol incubations containing [(14)C]CHBrCl(2), supplemented glutathione (GSH), and calf thymus DNA resulted in approximately 3-fold (rat liver cytosol) and 7-fold (mouse liver cytosol) greater amounts of total radioactivity (RAD) associated with the purified DNA as compared to a control (absence of rodent cytosol) following liquid scintillation counting (LSC) of isolated DNA. The relative increase in DNA labeling is consistent with the conjugation activity of these rodent cytosols toward CHBrCl(2). Second, exposure of GSTT1-1-expressing S. typhimurium to [(14)C]CHBrCl(2) resulted in a concentration-dependent increase of bacterial DNA-associated total radioactivity. Characterization of DNA-associated radioactivity could not be assigned to a specific deoxynucleoside adduct(s) following enzymatic hydrolysis of DNA and subsequent HPLC analysis. A possible explanation for this observation was formation of a 'transient' adduct that was unstable in the DNA isolation and hydrolysis procedures employed. To circumvent problems of adduct instability, reactions of [(14)C]CHBrCl(2) with GSH catalyzed by recombinant rat GSTT1-1 were performed in the presence of calf thymus DNA or, alternatively, the model nucleophile deoxyguanosine. Hydroxyapatite chromatography of [(14)C]-labeled DNA or HPLC chromatography of [(14)C]-labeled deoxyguanosine derivatives demonstrated the covalent binding of [(14)C]CHBrCl(2)-derived metabolites to DNA and deoxyguanosine in low yield (approximately 0.02% of [(14)C]CHBrCl(2) biotransformed by GSTT1-1 resulted in DNA adducts). Cytochrome P450 (CYP)- and GST-catalyzed biotransformation of CHBrCl(2) in rat tissues (kidney and large intestine) that develop tumors following chronic CHBrCl(2) exposure were compared with rat liver (a nontarget tissue). Rat liver had a significant capacity to detoxify CHBrCl(2) (to carbon dioxide) compared with kidney and large intestine as a result of CYP-catalyzed oxidation, liver was approximately 16-fold more efficient than kidney and large intestine when intrinsic clearance values (V(max)/K(m)) were compared. In contrast, the efficiency of GST-mediated GSH conjugation of CHBrCl(2) in kidney and large intestine was only slightly lower than liver (approximately 2- to 4-fold lower), thus, the relative amounts of reactive intermediates that are produced with the capacity to covalently modify DNA may be enhanced in these extrahepatic tissues. The significance of these findings is that conjugation of CHBrCl(2) with GSH can result in the covalent modification of DNA and that cancer target tissues in rats have a much reduced detoxification capacity, but only a modest decrease in bioactivation capacity, as compared to the liver (a nontarget tissue in rats).
Collapse
Affiliation(s)
- Matthew K Ross
- Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
12
|
Abstract
The aim of the current review is to summarise the present status of physiologically based pharmacokinetic (PBPK) modelling and its applications in drug research, and thus serve as a reference point to people interested in the methodology. The review is structured into three major sections. The first discusses the existing methodologies and techniques of PBPK model development. The second describes some of the most interesting PBPK model implementations published. The final section is devoted to a discussion of the current limitations and the possible future developments of the PBPK modelling approach. The current review is focused on papers dealing with the pharmacokinetics and/or toxicokinetics of medicinal compounds; references discussing PBPK models of environmental compounds are mentioned only if they represent considerable methodological developments or reveal interesting interpretations and/or applications.The major conclusion of the review is that, despite its significant potential, PBPK modelling has not seen the development and implementation it deserves, especially in the drug discovery, research and development processes. The main reason for this is that the successful development and implementation of a PBPK model is seen to require the investment of significant experience, effort, time and resources. Yet, a substantial body of PBPK-related research has been accumulated that can facilitate the PBPK modelling and implementation process. What is probably lagging behind is the expertise component, where the demand for appropriately qualified staff far outreaches availability.
Collapse
Affiliation(s)
- Ivan Nestorov
- Pharmacokinetics and Drug Metabolism, Amgen Inc., 30-O-B, One Amgen Center Drive, Thousand Oaks, CA 91320-1789, USA.
| |
Collapse
|
13
|
Hissink EM, Bogaards JJP, Freidig AP, Commandeur JNM, Vermeulen NPE, van Bladeren PJ. The use of in vitro metabolic parameters and physiologically based pharmacokinetic (PBPK) modeling to explore the risk assessment of trichloroethylene. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2002; 11:259-271. [PMID: 21782610 DOI: 10.1016/s1382-6689(02)00019-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2001] [Revised: 03/01/2002] [Accepted: 03/01/2002] [Indexed: 05/31/2023]
Abstract
A physiologically based pharmacokinetic (PBPK) model has been developed for trichloroethylene (1,1,2-trichloroethene, TRI) for rat and humans, based on in vitro metabolic parameters. These were obtained using individual cytochrome P450 and glutathione S-transferase enzymes. The main enzymes involved both for rats and humans are CYP2E1 and the μ- and π-class glutathione S-transferases. Validation experiments were performed in order to test the predictive value of the enzyme kinetic parameters to describe 'whole-body' disposition. Male Wistar rats were dosed orally or intravenously with different doses of trichloroethylene. Obtained exhaled radioactivity, excreted radioactivity in urine, and obtained blood concentration-time curves of trichloroethylene for all dosing groups were compared to predictions from the PBPK model. Subsequently, using the scaling factor derived from the rat experiments predictions were made for the extreme cases to be expected in humans, based on interindividual variations of the key enzymes involved. On comparing these predictions with literature data a very close match was found. This illustrates the potential application of in vitro metabolic parameters in risk assessment, through the use of PBPK modeling as a tool to understand and predict in vivo data. From a hypothetical 8 h exposure scenario to 35 ppm trichloroethylene in rats and humans, and assuming that the glutathione S-transferase pathway is responsible for the toxicity of trichloroethylene, it was concluded that humans are less sensitive for trichloroethylene toxicity than rats.
Collapse
Affiliation(s)
- Erna M Hissink
- Toxicology Division, TNO Nutrition and Food Research Institute, P.O. Box 360, 3700 AJ Zeist, The Netherlands
| | | | | | | | | | | |
Collapse
|
14
|
Sherratt PJ, Williams S, Foster J, Kernohan N, Green T, Hayes JD. Direct comparison of the nature of mouse and human GST T1-1 and the implications on dichloromethane carcinogenicity. Toxicol Appl Pharmacol 2002; 179:89-97. [PMID: 11884241 DOI: 10.1006/taap.2002.9348] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dichloromethane (DCM) is a hepatic and pulmonary carcinogen in mice exposed to high doses by inhalation. It has been shown previously that the incidence of liver and lung tumors does not increase in rats or hamsters exposed to the dihaloalkane under conditions similar to those that produced tumors in mice. The biological consequences of DCM exposure to humans is therefore uncertain. The carcinogenic effects of DCM in the mouse are caused by the interaction with DNA of a glutathione (GSH) conjugate that is produced by the class theta glutathione S-transferase T1-1 (GST T1-1). The species specificity is thought to be due to the greater amount of transferase activity in mouse target organs and specific nuclear localization of GST T1-1 in target cells. This paper directly compares the relative capacity and locality of DCM activation in mouse and human tissues. The results show that mouse GST T1-1 is more efficient in catalyzing the conjugation of DCM with GSH than the orthologous human enzyme. In addition, the mouse expresses higher levels of the transferase than humans in hepatic tissue. Histochemical analysis confirmed the presence of GST T1-1 in the nucleus of mouse liver cells. However, in human liver GST T1-1 was detected in bile duct epithelial cells and hepatocyte nuclei but was also present in the cytoplasm. Taking this information into account, it is unlikely that humans have a sufficiently high capacity to activate DCM for this compound to be considered to represent a carcinogenic risk.
Collapse
Affiliation(s)
- Philip J Sherratt
- Biomedical Research Centre, University of Dundee, Ninewells Hospital and Medical School, Dundee, Scotland, DD1 9SY, United Kingdom
| | | | | | | | | | | |
Collapse
|