1
|
Chang H, Zhang X, Lu Z, Gao B, Shen H. Metabolite correlation permutation after mice acute exposure to PM 2.5: Holistic exploration of toxicometabolomics by network analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124128. [PMID: 38729510 DOI: 10.1016/j.envpol.2024.124128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Many environmental toxicants can cause systemic effects, such as fine particulate matter (PM2.5), which can penetrate the respiratory barrier and induce effects in multiple tissues. Although metabolomics has been used to identify biomarkers for PM2.5, its multi-tissue toxicology has not yet been explored holistically. Our objective is to explore PM2.5 induced metabolic alterations and unveil the intra-tissue responses along with inter-tissue communicational effects. In this study, following a single intratracheal instillation of multiple doses (0, 25, and 150 μg as the control, low, and high dose), non-targeted metabolomics was employed to evaluate the metabolic impact of PM2.5 across multiple tissues. PM2.5 induced tissue-specific and dose-dependent disturbances of metabolites and their pathways. The remarkable increase of both intra- and inter-tissue correlations was observed, with emphasis on the metabolism connectivity among lung, spleen, and heart; the tissues' functional specificity has marked their toxic modes. Beyond the inter-status comparison of the metabolite fold-changes, the current correlation network built on intra-status can offer additional insights into how the multiple tissues and their metabolites coordinately change in response to external stimuli such as PM2.5 exposure.
Collapse
Affiliation(s)
- Hao Chang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Xi Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Biling Gao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China
| | - Heqing Shen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory & State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, 361102, PR China; Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, 361003, PR China.
| |
Collapse
|
2
|
Liu Y, Li J, Xiong Y, Tan C, Li C, Cao Y, Xie W, Deng Z. Long-term exposure to PM 2.5 leads to mitochondrial damage and differential expression of associated circRNA in rat hepatocytes. Sci Rep 2024; 14:11870. [PMID: 38789588 PMCID: PMC11126672 DOI: 10.1038/s41598-024-62748-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
Fine particulate matter (PM2.5) is one of the four major causes of mortality globally. The objective of this study was to investigate the mechanism underlying liver injury following exposure to PM2.5 and the involvement of circRNA in its regulation. A PM2.5 respiratory tract exposure model was established in SPF SD male rats with a dose of 20 mg/kg, and liver tissue of rats in control group and PM2.5-exposed groups rats were detected. The results of ICP-MS showed that Mn, Cu and Ni were enriched in the liver. HE staining showed significant pathological changes in liver tissues of PM2.5-exposed group, transmission electron microscopy showed significant changes in mitochondrial structure of liver cells, and further mitochondrial function detection showed that the PM2.5 exposure resulted in an increase in cell reactive oxygen species content and a decrease in mitochondrial transmembrane potential, while the expression of SOD1 and HO-1 antioxidant oxidase genes was upregulated. Through high-throughput sequencing of circRNAs, we observed a significant down-regulation of 10 and an up-regulation of 17 circRNAs in the PM2.5-exposed groups. The functional enrichment and pathway analyses indicated that the differentially expressed circRNAs by PM2.5 exposure were primarily associated with processes related to protein ubiquitination, zinc ion binding, peroxisome function, and mitochondrial regulation. These findings suggest that the mechanism underlying liver injury induced by PM2.5-exposure may be associated with mitochondrial impairment resulting from the presence of heavy metal constituents. Therefore, this study provides a novel theoretical foundation for investigating the molecular mechanisms underlying liver injury induced by PM2.5 exposure.
Collapse
Affiliation(s)
- Ying Liu
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Jing Li
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Yican Xiong
- Department of Ophthalmology and Stomatology, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Chaochao Tan
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Cunyan Li
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Youde Cao
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Wanying Xie
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China
| | - Zhonghua Deng
- Department of Medical Laboratory, Hunan Provincial People's Hospital, the First Affiliated Hospital of Hunan Normal University, Changsha, 410005, People's Republic of China.
| |
Collapse
|
3
|
Cheng J, Sun J, Niu R, Wang X, Hu G, Li F, Gu K, Wu H, Pu Y, Shen F, Hu H, Shen Z. Chronic exposure to PM 10 induces anxiety-like behavior via exacerbating hippocampal oxidative stress. Free Radic Biol Med 2024; 216:12-22. [PMID: 38458393 DOI: 10.1016/j.freeradbiomed.2024.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/10/2024]
Abstract
As one of the most environmental concerns, inhaled particulate matter (PM10) causes numerous health problems. However, the associations between anxiety behavior and toxicity caused by PM10 have rarely been reported so far. To investigate the changes of behavior after PM10 exposure and to identify the potential mechanisms of toxicity, PM10 samples (with doses of 15 mg/kg and 30 mg/kg) were intratracheally instilled into rats to simulate inhalation of polluted air by the lungs. After instillation for eight weeks, anxiety-like behavior was evaluated, levels of oxidative stress and morphological changes of hippocampus were measured. The behavioral results indicated that PM10 exposure induced obvious anxiety-like behavior in the open field and elevated plus maze tests. Both PM10 concentrations tested could increase whole blood viscosity and trigger hippocampal neuronal damage and oxidative stress by increasing superoxide dismutase (SOD) activities and malondialdehyde levels, and decreasing the expressions of antioxidant-related proteins (e.g., nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and heme oxygenase 1). Furthermore, through collecting and analyzing questionnaires, the data showed that the participants experienced obvious anxiety-related emotions and negative somatic responses under heavily polluted environments, especially PM10 being the main pollutant. These results show that PM10 exposure induces anxiety-like behavior, which may be related to suppressing the Nrf2/Keap1-SOD1 pathway.
Collapse
Affiliation(s)
- Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Rui Niu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Medical College, Xi'an Peihua University, Xi'an, 710125, China
| | - Xiaoqing Wang
- Department of Biochemistry and Molecular Biology, Cell Signal Transduction Laboratory, School of Basic Medicine, Bioinformatics Center, Henan University, Kaifeng, 475004, China; Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Kaifeng, 475004, China
| | - Guilin Hu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Kunrong Gu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Wu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yuanchun Pu
- Grade 2016, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanqi Shen
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Ministry of Education of China, Xi'an, 710049, China.
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
4
|
Niu R, Cheng J, Sun J, Li F, Fang H, Lei R, Shen Z, Hu H, Li J. Alveolar Type II Cell Damage and Nrf2-SOD1 Pathway Downregulation Are Involved in PM 2.5-Induced Lung Injury in Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12893. [PMID: 36232201 PMCID: PMC9566353 DOI: 10.3390/ijerph191912893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
The general toxicity of fine particulate matter (PM2.5) has been intensively studied, but its pulmonary toxicities are still not fully understood. To investigate the changes of lung tissue after PM2.5 exposure and identify the potential mechanisms of pulmonary toxicity, PM2.5 samples were firstly collected and analyzed. Next, different doses of PM2.5 samples (5 mg/kg, 10 mg/kg, 20 mg/kg) were intratracheally instilled into rats to simulate lung inhalation of polluted air. After instillation for eight weeks, morphological alterations of the lung were examined, and the levels of oxidative stress were detected. The data indicated that the major contributors to PM2.5 mass were organic carbon, elemental carbon, sulfate, nitrate, and ammonium. Different concentrations of PM2.5 could trigger oxidative stress through increasing reactive oxygen species (ROS) and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels, and decreasing expression of antioxidant-related proteins (nuclear factor erythroid 2-related factor 2 (Nrf2), superoxide dismutase 1 (SOD1) and catalase). Histochemical staining and transmission electron microscopy displayed pulmonary inflammation, collagen deposition, mitochondrial swelling, and a decreasing number of multilamellar bodies in alveolar type II cells after PM2.5 exposure, which was related to PM2.5-induced oxidative stress. These results provide a basis for a better understanding of pulmonary impairment in response to PM2.5.
Collapse
Affiliation(s)
- Rui Niu
- Medical College, Xi’an Peihua University, Xi’an 710061, China
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jie Cheng
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Jian Sun
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Fan Li
- Basic Medical Experiment Teaching Center, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Huanle Fang
- Medical College, Xi’an Peihua University, Xi’an 710061, China
| | - Ronghui Lei
- School of Public Health, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
| | - Zhenxing Shen
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
| | - Hao Hu
- Department of Pharmacology, School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Basic Medical Experiment Teaching Center, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China
- Key Laboratory of Environment and Genes Related to Diseases, Xi’an Jiaotong University, Ministry of Education of China, Xi’an 710061, China
| | - Jianjun Li
- Key Lab of Aerosol Chemistry & Physics, SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China
| |
Collapse
|
5
|
Wang S, Zhou Q, Tian Y, Hu X. The Lung Microbiota Affects Pulmonary Inflammation and Oxidative Stress Induced by PM 2.5 Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12368-12379. [PMID: 35984995 DOI: 10.1021/acs.est.1c08888] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fine particulate matter (PM2.5) exposure causes respiratory diseases by inducing inflammation and oxidative stress. However, the correlation between the pulmonary microbiota and the progression of pulmonary inflammation and oxidative stress caused by PM2.5 is poorly understood. This study tested the hypothesis that the lung microbiota affects pulmonary inflammation and oxidative stress induced by PM2.5 exposure. Mice were exposed to PM2.5 intranasally for 12 days. Then, pulmonary microbiota transfer and antibiotic intervention were performed. Histological examinations, biomarker index detection, and transcriptome analyses were conducted. Characterization of the pulmonary microbiota using 16S rRNA gene sequencing showed that its diversity decreased by 75.2% in PM2.5-exposed mice, with increased abundance of Proteobacteria and decreased abundance of Bacteroidota. The altered composition of the microbiota was significantly correlated with pulmonary inflammation and oxidative stress-related indicators. Intranasal transfer of the pulmonary microbiota from PM2.5-exposed mice affected pulmonary inflammation and oxidative stress caused by PM2.5, as shown by increased proinflammatory cytokine levels and dysregulated oxidative damage-related biomarkers. Antibiotic intervention during PM2.5 exposure alleviated pulmonary inflammation and oxidative damage in mice. The pulmonary microbiota also showed substantial changes after antibiotic treatment, as reflected by the increased microbiota diversity, decreased abundance of Proteobacteria and increased abundance of Bacteroidota. These results suggest that pulmonary microbial dysbiosis can promote and affect pulmonary inflammation and oxidative stress during PM2.5 exposure.
Collapse
Affiliation(s)
- Simin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Xiangang Hu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education)/Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Wang D, Li Q, Pan CS, Yan L, Sun K, Wang XY, Anwaier G, Liao QZ, Xie TT, Fan JY, Huo XM, Wang Y, Han JY. Yu-Ping-Feng Formula Ameliorates Alveolar-Capillary Barrier Injury Induced by Exhausted-Exercise via Regulation of Cytoskeleton. Front Pharmacol 2022; 13:891802. [PMID: 35814249 PMCID: PMC9263595 DOI: 10.3389/fphar.2022.891802] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/12/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Yu-ping-feng powder (YPF) is a compound traditional Chinese medicine extensively used in China for respiratory diseases. However, the role of YPF in alveolar-capillary barrier dysfunction remains unknown. This study aimed to explore the effect and potential mechanism of YPF on alveolar-capillary barrier injury induced by exhausted exercise. Methods: Male Sprague–Dawley rats were used to establish an exhausted-exercise model by using a motorized rodent treadmill. YPF at doses of 2.18 g/kg was administrated by gavage before exercise training for 10 consecutive days. Food intake-weight/body weight, blood gas analysis, lung water percent content, BALF protein concentration, morphological observation, quantitative proteomics, real-time PCR, and Western blot were performed. A rat pulmonary microvascular endothelial cell line (PMVEC) subjected to hypoxia was applied for assessing the related mechanism. Results: YPF attenuated the decrease of food intake weight/body weight, improved lung swelling and hemorrhage, alleviated the increase of lung water percent content and BALF protein concentration, and inhibited the impairment of lung morphology. In addition, YPF increased the expression of claudin 3, claudin 18, occludin, VE-cadherin, and β-catenin, attenuated the epithelial and endothelial hyperpermeability in vivo and/or in vitro, and the stress fiber formation in PMVECs after hypoxia. Quantitative proteomics discovered that the effect of YPF implicated the Siah2-ubiquitin-proteasomal pathway, Gng12-PAK1-MLCK, and RhoA/ROCK, which was further confirmed by Western blot. Data are available via ProteomeXchange with identifier PXD032737. Conclusion: YPF ameliorated alveolar-capillary barrier injury induced by exhausted exercise, which is accounted for at least partly by the regulation of cytoskeleton.
Collapse
Affiliation(s)
- Di Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Quan Li
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Chun-Shui Pan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Li Yan
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Kai Sun
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xiao-Yi Wang
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Gulinigaer Anwaier
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Qian-Zan Liao
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Ting-Ting Xie
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Jing-Yu Fan
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Xin-Mei Huo
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
| | - Yuan Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jing-Yan Han
- Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Tasly Microcirculation Research Center, Peking University Health Science Center, Beijing, China
- Key Laboratory of Microcirculation, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- Key Laboratory of Stasis and Phlegm, State Administration of Traditional Chinese Medicine of the People’s Republic of China, Beijing, China
- State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tianjin, China
- *Correspondence: Jing-Yan Han,
| |
Collapse
|
7
|
Zhou J, Argikar UA, Miners JO. Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). Methods Mol Biol 2021; 2342:301-338. [PMID: 34272700 DOI: 10.1007/978-1-0716-1554-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bisubstrate reaction that requires the aglycone and the cofactor, UDP-GlcUA. Accumulating evidence suggests that the bisubstrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modeling of glucuronidation reactions in vitro, UDP-GlcUA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for during experimental design and data interpretation. While the assessment of drug-drug interactions resulting from UGT inhibition has been challenging in the past, the increasing availability of UGT enzyme-selective substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of drug-drug interaction potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often underpredicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation. Physiologically based pharmacokinetic (PBPK) modeling has also shown to be of value for predicting PK of drugs eliminated by glucuronidation.
Collapse
Affiliation(s)
- Jin Zhou
- Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, CT, USA.
| | - Upendra A Argikar
- Translational Medicine, Novartis Institutes for BioMedical Research, Inc., Cambridge, MA, USA
| | - John O Miners
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
8
|
Lautz LS, Jeddi MZ, Girolami F, Nebbia C, Dorne JLCM. Metabolism and pharmacokinetics of pharmaceuticals in cats (Felix sylvestris catus) and implications for the risk assessment of feed additives and contaminants. Toxicol Lett 2020; 338:114-127. [PMID: 33253781 DOI: 10.1016/j.toxlet.2020.11.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/25/2023]
Abstract
In animal health risk assessment, hazard characterisation of feed additives has been often using the default uncertainty factor (UF) of 100 to translate a no-observed-adverse-effect level in test species (rat, mouse, dog, rabbit) to a 'safe' level of chronic exposure in farm and companion animal species. Historically, both 10-fold factors have been further divided to include chemical-specific data in both dimensions when available. For cats (Felis Sylvestris catus), an extra default UF of 5 is applied due to the species' deficiency in particularly glucuronidation and glycine conjugation. This paper aims to assess the scientific basis and validity of the UF for inter-species differences in kinetics (4.0) and the extra UF applied for cats through a comparison of kinetic parameters between rats and cats for 30 substrates of phase I and phase II metabolism. When the parent compound undergoes glucuronidation the default factor of 4.0 is exceeded, with exceptions for zidovudine and S-carprofen. Compounds that were mainly renally excreted did not exceed the 4.0-fold default. Mixed results were obtained for chemicals which are metabolised by CYP3A in rats. When chemicals were administered intravenously the 4.0-fold default was not exceeded with the exception of clomipramine, lidocaine and alfentanil. The differences seen after oral administration might be due to differences in first-pass metabolism and bioavailability. Further work is needed to further characterise phase I, phase II enzymes and transporters in cats to support the development of databases and in silico models to support hazard characterisation of chemicals particularly for feed additives.
Collapse
Affiliation(s)
- L S Lautz
- Radboud University Nijmegen, Houtlaan 4, 6525 XZ Nijmegen, the Netherlands
| | - M Z Jeddi
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy
| | - F Girolami
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - C Nebbia
- University of Torino, Department of Veterinary Sciences, Largo P. Braccini 2, 10095 Grugliasco, Italy
| | - J L C M Dorne
- European Food Safety Authority, Scientific Committee and Emerging Risks Unit, Via Carlo Magno, 1A, 43126 Parma, Italy.
| |
Collapse
|
9
|
Li Q, Sun J, Chen X, Li S, Wang Y, Xu C, Zhao J, Zhu Z, Tian L. Integrative characterization of fine particulate matter-induced chronic obstructive pulmonary disease in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135687. [PMID: 31785907 DOI: 10.1016/j.scitotenv.2019.135687] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
The impacts of ambient fine particulate matter (PM2.5) on public health are a worldwide concern. Epidemiological evidence has shown that PM2.5-triggered inflammatory cascades and lung tissue damage are important causes of chronic obstructive pulmonary disease (COPD). However, most laboratory studies of COPD have focused on animal models of cigarette smoke exposure or combined exposure to cigarette smoke and PM2.5. Furthermore, a single method is used to evaluate the development of COPD without integrality. In this study, we investigated pulmonary pathophysiological alterations using integrated functional, morphological, and biochemical techniques and a mouse model exposed to PM2.5 alone for 3 months. Emphysema in this model was confirmed by reconstructed three-dimensional micro-CT images. Typical histopathological signs were neutrophil/macrophage infiltration and accumulation at 2 months after exposure and emphysema/atelectasis at 3 months. Respiratory mechanical parameters confirmed that PM2.5 caused a decline in respiratory function. PM2.5 also triggered complex cytokine profile changes in the lungs with characteristic inflammation-related tissue destruction. This study showed that chronic PM2.5 exposure impaired lung function, triggered emphysematous lesions, and induced pulmonary inflammation and airway wall remodeling. Most importantly, prolonged exposure to PM2.5 alone caused COPD in mice. These results improve the understanding of the mechanisms and mediators underlying PM2.5-induced COPD.
Collapse
Affiliation(s)
- Qiuyue Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jingping Sun
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xiaowei Chen
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Siling Li
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Yan Wang
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Jing Zhao
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Zhonghui Zhu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| | - Lin Tian
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
10
|
Darney K, Testai E, Buratti FM, Di Consiglio E, Kasteel EE, Kramer N, Turco L, Vichi S, Roudot AC, Dorne JL, Béchaux C. Inter-ethnic differences in CYP3A4 metabolism: A Bayesian meta-analysis for the refinement of uncertainty factors in chemical risk assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Wiecek W, Dorne JL, Quignot N, Bechaux C, Amzal B. A generic Bayesian hierarchical model for the meta-analysis of human population variability in kinetics and its applications in chemical risk assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Pietruk K, Olejnik M, Posyniak A. Coccidiostats in milk: development of a multi-residue method and transfer of salinomycin and lasalocid from contaminated feed. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2018; 35:1508-1518. [PMID: 29648988 DOI: 10.1080/19440049.2018.1461256] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
A confirmatory multi-residue method was developed for the determination in milk of 19 coccidiostats (amprolium, arprinocid, clazuril, clopidol, decoquinate, diclazuril, ethopabate, halofuginone, lasalocid, maduramicin, monensin, narasin, nicarbazin, nequinate, robenidine, salinomycin, semduramicin, toltrazuril sulfone and toltrazuril sulfoxide). Sample preparation utilising extraction with organic solvent and clean up by SPE and freezing was found reliable and time-efficient. Optimised chromatography and MS conditions with positive and negative ESI achieved sufficient sensitivity and selectivity. Validation experiments has proven method usefulness for routine analysis of coccidiostats in milk samples. An on-farm study conducted on dairy cows fed with experimentally contaminated feed with salinomycin and lasalocid showed negligible transfer to milk. No residues of lasalocid were found in collected samples. Salinomycin was found only in 5 of 168 samples analysed, while the concentrations of salinomycin in those samples (0.119-0.179 µg kg-1) was significantly below the limit of salinomycin in milk set by European Union legislation. Such low concentrations of both coccidiostats cannot be explained by conjugation during dairy cows' metabolism, as shown by experiments with enzymatic hydrolysis.
Collapse
Affiliation(s)
- Konrad Pietruk
- a Department of Pharmacology and Toxicology , National Veterinary Research Institute , Pulawy , Poland
| | - Małgorzata Olejnik
- a Department of Pharmacology and Toxicology , National Veterinary Research Institute , Pulawy , Poland
| | - Andrzej Posyniak
- a Department of Pharmacology and Toxicology , National Veterinary Research Institute , Pulawy , Poland
| |
Collapse
|
13
|
Wang X, Jiang S, Liu Y, Du X, Zhang W, Zhang J, Shen H. Comprehensive pulmonary metabolome responses to intratracheal instillation of airborne fine particulate matter in rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:41-50. [PMID: 28297636 DOI: 10.1016/j.scitotenv.2017.03.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/05/2017] [Accepted: 03/07/2017] [Indexed: 06/06/2023]
Abstract
Airborne fine particulate matter (PM2.5) has been closely related with a variety of lung diseases. Although some modes of action (e.g. oxidative stress, inflammations) have been proposed, but the pulmonary toxicological mechanism remains obscure. In this paper, in order to understand the comprehensive pulmonary response to PM2.5 stress, a non-targeted high-throughput metabolomics strategy was adopted to characterize the overall metabolic changes and relevant toxicological pathways. PM2.5 samples were collected from Tangshan, one of the most polluted cities in China. Adult male rats were treated with PM2.5 suspension once a week at the dose of 1mg/kg/week through intratracheal instillation in three months. Aqueous and organic metabolite extracts of the lung tissues were subjected to metabolomics analysis using ultra-high performance liquid chromatograph/mass spectrometry. Along with a significant increase of oxidative stress, significant metabolome alterations were observed in the lung tissues of the treated rats. Nineteen metabolites were found decreased and 31 metabolites increased, which are mainly involved in lipid and nucleotide metabolism. Integrated pathway analysis suggests that PM2.5 can induce pulmonary toxicity through disturbing pro-oxidant/antioxidant balance, which may further correlate with metabolism changes of phospholipid, glycerophospholipid, sphingolipid and purine. These findings improve our understanding of the toxicological pathways of PM2.5 exposure.
Collapse
Affiliation(s)
- Xiaofei Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Shoufang Jiang
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Ying Liu
- Department of Occupational and Environmental Health, Hebei Province Key Laboratory of Occupational Health and Safety for Coal Industry, School of Public Health, North China University of Science and Technology, Tangshan, Hebei, China
| | - Xiaoyan Du
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Weibing Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Jie Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China.
| | - Heqing Shen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| |
Collapse
|
14
|
Futran Fuhrman V, Tal A, Arnon S. Why endocrine disrupting chemicals (EDCs) challenge traditional risk assessment and how to respond. JOURNAL OF HAZARDOUS MATERIALS 2015; 286:589-611. [PMID: 25646754 DOI: 10.1016/j.jhazmat.2014.12.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 12/02/2014] [Accepted: 12/08/2014] [Indexed: 05/11/2023]
Abstract
Endocrine disrupting compounds (EDCs) are a diverse group of "chemicals of emerging concern" which have attracted much interest from the research community since the 1990s. Today there is still no definitive risk assessment tool for EDCs. While some decision making organizations have attempted to design methodology guidelines to evaluate the potential risk from this broadly defined group of constituents, risk assessors still face many uncertainties and unknowns. Until a risk assessment paradigm is designed specifically for EDCs and is vetted by the field, traditional risk assessment tools may be used with caution to evaluate EDCs. In doing so, each issue of contention should be addressed with transparency in order to leverage available information and technology without sacrificing integrity or accuracy. The challenges that EDCs pose to traditional risk assessment are described in this article to assist in this process.
Collapse
Affiliation(s)
- Vivian Futran Fuhrman
- Institute for Dryland, Environmental and Desert Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| | - Alon Tal
- Institute for Dryland, Environmental and Desert Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| | - Shai Arnon
- Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer 84990, Israel.
| |
Collapse
|
15
|
Abstract
Glucuronidation, catalyzed by uridine diphosphate glucuronosyltransferases (UGTs), is an important process for the metabolism and clearance of many lipophilic chemicals, including drugs, environmental chemicals, and endogenous compounds. Glucuronidation is a bi-substrate reaction that requires the aglycone and a cofactor, UDPGA. Accumulating evidence suggests that the bi-substrate reaction follows a compulsory-order ternary mechanism. To simplify the kinetic modelling of glucuronidation reactions in vitro, UDPGA is usually added to incubations in large excess. Many factors have been shown to influence UGT activity and kinetics in vitro, and these must be accounted for in experimental design and data interpretation. Assessing drug-drug interactions (DDIs) involving UGT inhibition remains challenging. However, the increasing availability of UGT enzyme-specific substrate and inhibitor "probes" provides the prospect for more reliable reaction phenotyping and assessment of DDI potential. Although extrapolation of the in vitro intrinsic clearance of a glucuronidated drug often under-predicts in vivo clearance, careful selection of in vitro experimental conditions and inclusion of extrahepatic glucuronidation may improve the predictivity of in vitro-in vivo extrapolation (IVIVE).
Collapse
|
16
|
El-Sheikh AAK, Koenderink JB, Wouterse AC, van den Broek PHH, Verweij VGM, Masereeuw R, Russel FGM. Renal glucuronidation and multidrug resistance protein 2-/ multidrug resistance protein 4-mediated efflux of mycophenolic acid: interaction with cyclosporine and tacrolimus. Transl Res 2014; 164:46-56. [PMID: 24486136 DOI: 10.1016/j.trsl.2014.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 10/25/2022]
Abstract
Mycophenolic acid (MPA) is an immunosuppressant used in transplant rejection, often in combination with cyclosporine (CsA) and tacrolimus (Tac). The drug is cleared predominantly via the kidneys, and 95% of the administered dose appears in urine as 7-hydroxy mycophenolic acid glucuronide (MPAG). The current study was designed to unravel the renal excretory pathway of MPA and MPAG, and their potential drug-drug interactions. The role of multidrug resistance protein (MRP) 2 and MRP4 in MPA disposition was studied using human embryonic kidney 293 (HEK293) cells overexpressing the human transporters, and in isolated, perfused kidneys of Mrp2-deficient rats and Mrp4-deficient mice. Using these models, we identified MPA as substrate of MRP2 and MRP4, whereas its MPAG appeared to be a substrate of MRP2 only. CsA inhibited MPAG transport via MRP2 for 50% at 8 μM (P < 0.05), whereas Tac had no effect. This was confirmed by cell survival assays, showing a 10-fold increase in MPA cytotoxicity (50% reduction in cell survival changed from 12.2 ± 0.3 μM to 1.33 ± 0.01 μM by MPA + CsA; P < 0.001) and in perfused kidneys, showing a 50% reduction in MPAG excretion (P < 0.05). The latter effect was observed in Mrp2-deficient animals as well, supporting the importance of Mrp2 in MPAG excretion. CsA, but not Tac, inhibited MPA glucuronidation by rat kidney homogenate and human uridine 5'-diphospho-glucuronosyltransferase-glucuronosyltransferase 1A9 (P < 0.05 and P < 0.01, respectively). We conclude that MPA is a substrate of both MRP2 and MRP4, but MRP2 is the main transporter involved in renal MPAG excretion. In conclusion, CsA, but not Tac, influences MPA clearance by inhibiting renal MPA glucuronidation and MRP2-mediated MPAG secretion.
Collapse
Affiliation(s)
- Azza A K El-Sheikh
- Department of Pharmacology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Jan B Koenderink
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Alfons C Wouterse
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Petra H H van den Broek
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Vivienne G M Verweij
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Rosalinde Masereeuw
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Frans G M Russel
- Department of Pharmacology and Toxicology, Radboudumc, Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands.
| |
Collapse
|
17
|
Abass K, Reponen P, Mattila S, Rautio A, Pelkonen O. Comparative metabolism of benfuracarb in in vitro mammalian hepatic microsomes model and its implications for chemical risk assessment. Toxicol Lett 2014; 224:290-9. [PMID: 23958702 DOI: 10.1016/j.toxlet.2013.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/07/2013] [Indexed: 10/26/2022]
|
18
|
Martin OV, Martin S, Andreas K. Dispelling urban myths about default uncertainty factors in chemical risk assessment--sufficient protection against mixture effects? Environ Health 2013; 12:53. [PMID: 23816180 PMCID: PMC3708776 DOI: 10.1186/1476-069x-12-53] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/21/2013] [Indexed: 05/28/2023]
Abstract
Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment.
Collapse
Affiliation(s)
- Olwenn V Martin
- Institute for the Environment, Brunel University, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | - Scholze Martin
- Institute for the Environment, Brunel University, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| | - Kortenkamp Andreas
- Institute for the Environment, Brunel University, Kingston Lane, Uxbridge UB8 3PH, United Kingdom
| |
Collapse
|
19
|
Tralau T, Riebeling C, Pirow R, Oelgeschläger M, Seiler A, Liebsch M, Luch A. Wind of change challenges toxicological regulators. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1489-94. [PMID: 22871563 PMCID: PMC3556610 DOI: 10.1289/ehp.1104782] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Accepted: 08/07/2012] [Indexed: 05/09/2023]
Abstract
BACKGROUND In biomedical research, the past two decades have seen the advent of in vitro model systems based on stem cells, humanized cell lines, and engineered organotypic tissues, as well as numerous cellular assays based on primarily established tumor-derived cell lines and their genetically modified derivatives. OBJECTIVE There are high hopes that these systems might replace the need for animal testing in regulatory toxicology. However, despite increasing pressure in recent years to reduce animal testing, regulators are still reluctant to adopt in vitro approaches on a large scale. It thus seems appropriate to consider how we could realistically perform regulatory toxicity testing using in vitro assays only. DISCUSSION AND CONCLUSION Here, we suggest an in vitro-only approach for regulatory testing that will benefit consumers, industry, and regulators alike.
Collapse
Affiliation(s)
- Tewes Tralau
- German Federal Institute for Risk Assessment (BfR), Center for Alternative Methods to Animal Experiments (ZEBET), Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
Eichenbaum G, Hsu CP, Subrahmanyam V, Chen J, Scicinski J, Galemmo RA, Tuman RW, Johnson DL. Oral Coadministration of β-Glucuronidase to Increase Exposure of Extensively Glucuronidated Drugs that Undergo Enterohepatic Recirculation. J Pharm Sci 2012; 101:2545-56. [DOI: 10.1002/jps.23113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Revised: 01/28/2012] [Accepted: 02/21/2012] [Indexed: 12/20/2022]
|
21
|
Honey, Thareja S, Kumar M, Sinha V. Self-organizing molecular field analysis of NSAIDs: Assessment of pharmacokinetic and physicochemical properties using 3D-QSPkR approach. Eur J Med Chem 2012; 53:76-82. [DOI: 10.1016/j.ejmech.2012.03.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 03/19/2012] [Accepted: 03/21/2012] [Indexed: 10/28/2022]
|
22
|
Dorne JLCM, Fink-Gremmels J. Human and animal health risk assessments of chemicals in the food chain: comparative aspects and future perspectives. Toxicol Appl Pharmacol 2012; 270:187-95. [PMID: 22484160 DOI: 10.1016/j.taap.2012.03.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/17/2012] [Accepted: 03/19/2012] [Indexed: 11/17/2022]
Abstract
Chemicals from anthropogenic and natural origins enter animal feed, human food and water either as undesirable contaminants or as part of the components of a diet. Over the last five decades, considerable efforts and progress to develop methodologies to protect humans and animals against potential risks associated with exposure to such potentially toxic chemicals have been made. This special issue presents relevant methodological developments and examples of risk assessments of undesirable substances in the food chain integrating the animal health and the human health perspective and refers to recent Opinions of the Scientific Panel on Contaminants in the Food Chain (CONTAM) of the European Food Safety Authority (EFSA). This introductory review aims to give a comparative account of the risk assessment steps used in human health and animal health risk assessments for chemicals in the food chain and provides a critical view of the data gaps and future perspectives for this cross-disciplinary field.
Collapse
Affiliation(s)
- J L C M Dorne
- Emerging Risk Unit, Via Carlo Magno 1A, 43126 Parma, Italy.
| | | |
Collapse
|
23
|
Hu T, Peng T, Li XJ, Chen DD, Dai HH, Deng XJ, Yue ZF, Wang GM, Shen JZ, Xia X, Ding SY, Zhou YN, Zhu AL, Jiang HY. Simultaneous determination of thirty non-steroidal anti-inflammatory drug residues in swine muscle by ultra-high-performance liquid chromatography with tandem mass spectrometry. J Chromatogr A 2011; 1219:104-13. [PMID: 22142970 DOI: 10.1016/j.chroma.2011.11.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 10/28/2011] [Accepted: 11/06/2011] [Indexed: 10/15/2022]
Abstract
An ultra-high-performance liquid chromatography with tandem mass spectrometric detection (UHPLC-MS/MS) method was established for the simultaneous determination of residues of thirty non-steroidal anti-inflammatory drugs (NSAIDs) in swine muscle. The samples were extracted with acetonitrile and phosphoric acid. The extracts were defatted with n-hexane, and then purified by HLB solid-phase extraction cartridge. Analysis was carried out on UHPLC-ESI-MS/MS working with multiple reaction monitoring mode with polarity switching. Limits of detection were between 0.4 μg/kg and 2.0 μg/kg, and limits of quantification were between 1.0 μg/kg and 5.0 μg/kg. The recoveries of NSAIDs were between 61.7% and 125.7% at spiked levels of 1.0-500 μg/kg. The repeatability was less than 8% and the within-laboratory reproducibility was not more than 12.3%. The method was reliable, convenient and sensitive.
Collapse
Affiliation(s)
- Ting Hu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Steel D. Extrapolation, uncertainty factors, and the precautionary principle. STUDIES IN HISTORY AND PHILOSOPHY OF BIOLOGICAL AND BIOMEDICAL SCIENCES 2011; 42:356-364. [PMID: 21802639 DOI: 10.1016/j.shpsc.2011.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 01/23/2011] [Indexed: 05/31/2023]
Abstract
This essay examines the relationship between the precautionary principle and uncertainty factors used by toxicologists to estimate acceptable exposure levels for toxic chemicals from animal experiments. It shows that the adoption of uncertainty factors in the United States in the 1950s can be understood by reference to the precautionary principle, but not by cost-benefit analysis because of a lack of relevant quantitative data at that time. In addition, it argues that uncertainty factors continue to be relevant to efforts to implement the precautionary principle and that the precautionary principle should not be restricted to cases involving unquantifiable hazards.
Collapse
Affiliation(s)
- Daniel Steel
- Department of Philosophy, 503 S Kedzie Hall, Michigan State University, East Lansing, MI 48824-1032, USA.
| |
Collapse
|
25
|
Jedziniak P, Szprengier-Juszkiewicz T, Olejnik M, Żmudzki J. Determination of non-steroidal anti-inflammatory drugs residues in animal muscles by liquid chromatography–tandem mass spectrometry. Anal Chim Acta 2010; 672:85-92. [DOI: 10.1016/j.aca.2010.04.031] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Revised: 04/11/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
|
26
|
Dorne JLCM. Metabolism, variability and risk assessment. Toxicology 2009; 268:156-64. [PMID: 19932147 DOI: 10.1016/j.tox.2009.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 12/25/2022]
Abstract
For non-genotoxic carcinogens, "thresholded toxicants", Acceptable/Tolerable Daily Intakes (ADI/TDI) represent a level of exposure "without appreciable health risk" when consumed everyday or weekly for a lifetime and are derived by applying an uncertainty factor of a 100-fold to a no-observed-adverse-effect-levels (NOAEL) or to a benchmark dose. This UF allows for interspecies differences and human variability and has been subdivided to take into account toxicokinetics and toxicodynamics with even values of 10(0.5) (3.16) for the human aspect. Ultimately, such refinements allow for chemical-specific adjustment factors and physiologically based models to replace such uncertainty factors. Intermediate to chemical-specific adjustment factors are pathway-related uncertainty factors which have been derived for phase I, phase II metabolism and renal excretion. Pathway-related uncertainty factors are presented here as derived from the result of meta-analyses of toxicokinetic variability data in humans using therapeutic drugs metabolised by a single pathway in subgroups of the population. Pathway-related lognormal variability was derived for each metabolic route. The resulting pathway-related uncertainty factors showed that the current uncertainty factor for toxicokinetics (3.16) would not cover human variability for genetic polymorphism and age differences (neonates, children, the elderly). Latin hypercube (Monte Carlo) models have also been developed using quantitative metabolism data and pathway-related lognormal variability to predict toxicokinetics variability and uncertainty factors for compounds handled by several metabolic routes. For each compound, model results gave accurate predictions compared to published data and observed differences arose from data limitations, inconsistencies between published studies and assumptions during model design and sampling. Finally, under the 6(th) framework EU project NOMIRACLE (http://viso.jrc.it/nomiracle/), novel methods to improve the risk assessment of chemical mixtures were explored (1) harmonization of the use of uncertainty factors for human and ecological risk assessment using mechanistic descriptors (2) use of toxicokinetics interaction data to derive UFs for chemical mixtures. The use of toxicokinetics data in risk assessment are discussed together with future approaches including sound statistical approaches to optimise predictability of models and recombinant technology/toxicokinetics assays to identify metabolic routes for chemicals and screen mixtures of environmental health importance.
Collapse
Affiliation(s)
- J L C M Dorne
- University of Southampton, Clinical Pharmacology Group, Institute of Human Nutrition, School of Medicine, Southampton, UK.
| |
Collapse
|
27
|
Metabolism of carbosulfan. I. Species differences in the in vitro biotransformation by mammalian hepatic microsomes including human. Chem Biol Interact 2009; 181:210-9. [PMID: 19523935 DOI: 10.1016/j.cbi.2009.06.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/29/2009] [Accepted: 06/03/2009] [Indexed: 11/19/2022]
|
28
|
Toxicokinetics of Bisphenol A - Scientific Opinion of the Panel on Food additives, Flavourings, Processing aids and Materials in Contact with Food (AFC). EFSA J 2008; 6:759. [PMID: 37213849 PMCID: PMC10193634 DOI: 10.2903/j.efsa.2008.759] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
29
|
Abass K, Reponen P, Turpeinen M, Jalonen J, Pelkonen O. Characterization of Diuron N-Demethylation by Mammalian Hepatic Microsomes and cDNA-Expressed Human Cytochrome P450 Enzymes. Drug Metab Dispos 2007; 35:1634-41. [PMID: 17576805 DOI: 10.1124/dmd.107.016295] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Diuron, a widely used herbicide and antifouling biocide, has been shown to persist in the environment and contaminate drinking water. It has been characterized as a "known/likely" human carcinogen. Whereas its environmental transformation and toxicity have been extensively examined, its metabolic characteristics in mammalian livers have not been reported. This study was designed to investigate diuron biotransformation and disposition because metabolic routes, metabolizing enzymes, interactions, interspecies differences, and interindividual variability are important for risk assessment purposes. The only metabolic pathway detected by liquid chromatography/mass spectometry in human liver homogenates and seven types of mammalian liver microsomes including human was demethylation at the terminal nitrogen atom. No other phase I or phase II metabolites were observed. The rank order of N-demethyldiuron formation in liver microsomes based on intrinsic clearance (V(max)/K(m)) was dog > monkey > rabbit > mouse > human > minipig > rat. All tested recombinant human cytochrome P450s (P450s) catalyzed diuron N-demethylation and the highest activities were possessed by CYP1A1, CYP1A2, CYP2C19, and CYP2D6. Relative contributions of human CYP1A2, CYP2C19, and CYP3A4 to hepatic diuron N-demethylation, based on average abundances of P450 enzymes in human liver microsomes, were approximately 60, 14, and 13%, respectively. Diuron inhibited relatively potently only CYP1A1/2 (IC(50) 4 microM). With human-derived and quantitative chemical-specific data, the uncertainty factors for animal to human differences and for human variability in toxicokinetics were within the range of the toxicokinetics default uncertainty/safety factors for chemical risk assessment.
Collapse
Affiliation(s)
- Khaled Abass
- Department of Pharmacology and Toxicology, P.O. Box 5000, FIN-90014 University of Oulu, Oulu, Finland.
| | | | | | | | | |
Collapse
|
30
|
Falk-Filipsson A, Hanberg A, Victorin K, Warholm M, Wallén M. Assessment factors--applications in health risk assessment of chemicals. ENVIRONMENTAL RESEARCH 2007; 104:108-27. [PMID: 17166493 DOI: 10.1016/j.envres.2006.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 10/03/2006] [Accepted: 10/17/2006] [Indexed: 05/13/2023]
Abstract
We review the scientific basis for default assessment factors used in risk assessment of nongenotoxic chemicals including the use of chemical- and pathways specific assessment factors, and extrapolation approaches relevant to species differences, age and gender. One main conclusion is that the conventionally used default factor of 100 does not cover all inter-species and inter-individual differences. We suggest that a species-specific default factor based on allometric scaling should be used for inter-species extrapolation (basal metabolic rate). Regarding toxicodynamic and remaining toxicokinetic differences we suggest that a percentile from a probabilistic distribution is chosen to derive the assessment factor. Based on the scarce information concerning the human-to-human variability it is more difficult to suggest a specific assessment factor. However, extra emphasis should be put on sensitive populations such as neonates and genetically sensitive subgroups, and also fetuses and children which may be particularly vulnerable during development and maturation. Factors that also need to be allowed for are possible gender differences in sensitivity, deficiencies in the databases, nature of the effect, duration of exposure, and route-to-route extrapolation. Since assessment factors are used to compensate for lack of knowledge we feel that it is prudent to adopt a "conservative" approach, erring on the side of protectiveness.
Collapse
|
31
|
Dorne JLCM, Skinner L, Frampton GK, Spurgeon DJ, Ragas AMJ. Human and environmental risk assessment of pharmaceuticals: differences, similarities, lessons from toxicology. Anal Bioanal Chem 2006; 387:1259-68. [PMID: 17186225 DOI: 10.1007/s00216-006-0963-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/13/2006] [Accepted: 10/24/2006] [Indexed: 12/22/2022]
Abstract
The presence of human and veterinary pharmaceuticals in the environment has caused increasing concern due their effects on ecological receptors. Improving the risk assessment of these compounds necessitates a quantitative understanding of their metabolism and elimination in the target organism (toxicokinetics), particularly via the ubiquitous cytochrome P-450 (CYP) system and their mechanisms of toxicity (toxicodynamics). This review focuses on a number of pharmaceuticals and veterinary medicines of environmental concern, and the differences and similarities between ecological and human risk assessment. CYP metabolism is discussed with particular reference to its ubiquity in species of ecological relevance. The important issue of pharmaceutical mixtures is discussed to assess how emerging technologies such as ecotoxicogenomics may assist in moving towards a more mechanism-based environmental risk assessment of pharmaceuticals.
Collapse
Affiliation(s)
- J L C M Dorne
- Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, Clinical Pharmacology Group, School of Medicine, University of Southampton, Bassett Crescent East, Southampton, UK.
| | | | | | | | | |
Collapse
|
32
|
Marsh KJ, Wallis IR, Andrew RL, Foley WJ. The detoxification limitation hypothesis: where did it come from and where is it going? J Chem Ecol 2006; 32:1247-66. [PMID: 16770716 DOI: 10.1007/s10886-006-9082-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2005] [Revised: 03/02/2006] [Accepted: 03/03/2006] [Indexed: 12/14/2022]
Abstract
The detoxification limitation hypothesis is firmly entrenched in the literature to explain various aspects of the interaction between herbivores and plant toxins. These include explanations for the existence of specialist and generalist herbivores and for the prevalence of each of these. The hypothesis suggests that the ability of mammalian herbivores to eliminate plant secondary metabolites (PSMs) largely determines which plants, and how much, they can eat. The value of the hypothesis is that it provides a clear framework for understanding how plant toxins might limit diet breadth. Thus, it is surprising, given its popularity, that there are few studies that provide experimental support either for or against the detoxification limitation hypothesis. There are two likely reasons for this. First, Freeland and Janzen did not formally propose the hypothesis, although it is implicit in their paper. Second, it is a difficult hypothesis to test, requiring an understanding of the metabolic pathways that lead to toxin elimination. Recent attempts to test the hypothesis appear promising. Results suggest that herbivores can recognize mounting saturation of a detoxification pathway and adjust their feeding accordingly to avoid intoxication. One strategy they use is to ingest a food containing a toxin that is metabolized by a different pathway. This demonstrates that careful selection of food plants is a key to existing in a chemically complex environment. As more studies characterize the detoxification products of PSMs, we will better understand how widespread this phenomenon is.
Collapse
Affiliation(s)
- Karen J Marsh
- School of Botany and Zoology, Australian National University, Canberra, ACT.
| | | | | | | |
Collapse
|
33
|
Dearing MD, Foley WJ, McLean S. The Influence of Plant Secondary Metabolites on the Nutritional Ecology of Herbivorous Terrestrial Vertebrates. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2005. [DOI: 10.1146/annurev.ecolsys.36.102003.152617] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- M. Denise Dearing
- Department of Biology, University of Utah, Salt Lake City, Utah 84112;
| | - William J. Foley
- School of Botany and Zoology, Australian National University, Canberra ACT 0200, Australia;
| | - Stuart McLean
- School of Pharmacy, University of Tasmania, Hobart, Tasmania 7005, Australia;
| |
Collapse
|
34
|
Dorne JLCM, Renwick AG. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans. Toxicol Sci 2005; 86:20-6. [PMID: 15800035 DOI: 10.1093/toxsci/kfi160] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The derivation of safe levels of exposure in humans for compounds that are assumed to cause threshold toxicity has relied on the application of a 100-fold uncertainty factor to a measure for the threshold, such as the no observed adverse effect level (NOAEL) or the benchmark dose (BMD). This 100-fold safety factor consists of the product of two 10-fold factors allowing for human variability and interspecies differences. The International Programme on Chemical Safety has suggested the subdivision of these 10-fold factors to allow for variability in toxicokinetics and toxicodynamics. This subdivision allows the replacement of the default uncertainty factors with a chemical-specific adjustment factor (CSAF) when suitable data are available. This short review describes potential options to refine safety factors used in risk assessment, with particular emphasis on pathway-related uncertainty factors associated with variability in kinetics. These pathway-related factors were derived from a database that quantified interspecies differences and human variability in phase I metabolism, phase II metabolism, and renal excretion. This approach allows metabolism and pharmacokinetic data in healthy adults and subgroups of the population to be incorporated in the risk-assessment process and constitutes an intermediate approach between simple default factors and chemical-specific adjustment factors.
Collapse
Affiliation(s)
- J L C M Dorne
- Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, Clinical Pharmacology Group, School of Medicine, University of Southampton, Bassett Crescent East, Southampton, UK.
| | | |
Collapse
|
35
|
Dorne JLCM, Walton K, Renwick AG. Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review. Food Chem Toxicol 2005; 43:203-16. [PMID: 15621332 DOI: 10.1016/j.fct.2004.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 05/21/2004] [Indexed: 11/24/2022]
Abstract
This review provides an account of recent developments arising from a database that defined human variability in phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferases, glucuronidation, glycine conjugation, sulphation) and renal excretion. This database was used to derive pathway-related uncertainty factors for chemical risk assessment that allow for human variability in toxicokinetics. Probe substrates for each pathway of elimination were selected on the basis that oral absorption was >95% and that the metabolic route was the primary route of elimination of the compound (60-100% of a dose). Intravenous data were used for compounds for which absorption was variable. Human variability in kinetics was quantified for each compound from published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and other subgroups of the population using parameters relating to chronic exposure (metabolic and total clearances, area under the plasma concentration-time curve (AUC)) and acute exposure (Cmax) (data not presented here). The pathway-related uncertainty factors were calculated to cover 95%, 97.5% and 99% of the population of healthy adults and of each subgroup. Pathway-related uncertainty factors allow metabolism data to be incorporated into the derivation of health-based guidance values. They constitute an intermediate approach between the general kinetic default factors (3.16) and a chemical-specific adjustment factor. Applications of pathway-related uncertainty factors for chemical risk assessment and future refinements of the approach are discussed. A knowledge-based framework to predict human variability in kinetics for xenobiotics showing a threshold dose below which toxic effects are not observed, is proposed to move away from default assumptions.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, School of Medicine, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | |
Collapse
|
36
|
Dorne JLCM. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation. Fundam Clin Pharmacol 2004; 18:609-20. [PMID: 15548231 DOI: 10.1111/j.1472-8206.2004.00292.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Safety evaluation aims to assess the dose-response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is 'without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 10(0.5) (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors of up to 45 and 9 would allow for the variability observed in children for CYP2D6 and CYP2C19 metabolism, respectively. This review presents an overview on the history of uncertainty factors, the main conclusions drawn from the analysis of inter-individual differences in metabolism and pharmacokinetics, the development of pathway-related uncertainty factors and their use in chemical risk assessment.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton, SO16 7PX, UK.
| |
Collapse
|
37
|
Schneider K, Oltmanns J, Hassauer M. Allometric principles for interspecies extrapolation in toxicological risk assessment--empirical investigations. Regul Toxicol Pharmacol 2004; 39:334-47. [PMID: 15135212 DOI: 10.1016/j.yrtph.2004.03.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2003] [Indexed: 11/16/2022]
Abstract
Four types of data (toxicokinetic data of pharmaceuticals from six species including humans, LD(50) values from eight animal species, long-term NOAEL values of pesticides from mice, rats, and dogs, and toxicity data on anti-neoplastic agents from six species including humans) were used for interspecies comparisons. Species differences with regard to kinetic parameters and toxicity were evaluated and the concordance with predictions by allometric scaling according to caloric demand (allometric exponent 0.75) or to body weight (allometric exponent 1) was checked. For LD(50) values, agreement was poor for both allometric concepts. Recently reported concordance of LD(50) species differences with body weight scaling could be traced back to biased data selection. The other three datasets are clearly in agreement with the allometric scaling according to caloric demand. Caloric demand scaling is thus proposed as a generic interspecies extrapolation method in the absence of substance-specific data. Moreover, the evaluated data make it possible to describe uncertainty associated with the process of interspecies extrapolation by allometric rules.
Collapse
Affiliation(s)
- K Schneider
- Forschungs- und Beratungsinstitut Gefahrstoffe (FoBiG) GmbH, Werderring 16, Freiburg D-79098, Germany.
| | | | | |
Collapse
|
38
|
Walton K, Dorne JLCM, Renwick AG. Species-specific uncertainty factors for compounds eliminated principally by renal excretion in humans. Food Chem Toxicol 2004; 42:261-74. [PMID: 14667472 DOI: 10.1016/j.fct.2003.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An uncertainty factor of 100 is used to derive health-based guidance values for human intakes of chemicals based on data from studies in animals. The 100-fold factor comprises 10-fold factors for species differences and for interindividual differences in response. Each 10-fold factor can be subdivided into toxicokinetic and toxicodynamic aspects with a 4.0-fold factor to allow for kinetic differences between test species and humans. The current work determined the extent of interspecies differences in the internal dose (toxicokinetics) of compounds which are eliminated primarily by renal excretion in humans. An analysis of the published data showed that renal excretion was also the main route of elimination in the test species for most of the identified probe substrates. Interspecies differences were apparent for both the mechanism of renal excretion (glomerular filtration, tubular secretion and/or reabsorption) and the extent of plasma protein binding, both of which may affect renal clearance and therefore the magnitude of species differences in the internal dose. For compounds which are eliminated unchanged by both humans and the test species, the average differences in the internal doses between humans and animals were 1.6 for dogs, 3.3 for rabbits, 5.2 for rats and 13 for mice. This suggests that for renal excretion, the differences between humans and the rat and especially the mouse may exceed the 4.0-fold default factor for toxicokinetics.
Collapse
Affiliation(s)
- K Walton
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, SO16 7PX Southampton, UK
| | | | | |
Collapse
|
39
|
Dorne JLCM, Walton K, Renwick AG. Human variability in CYP3A4 metabolism and CYP3A4-related uncertainty factors for risk assessment. Food Chem Toxicol 2003; 41:201-24. [PMID: 12480298 DOI: 10.1016/s0278-6915(02)00209-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CYP3A4 constitutes the major liver cytochrome P450 isoenzyme and is responsible for the oxidation of more than 50% of all known drugs. Human variability in kinetics for this pathway has been quantified using a database of 15 compounds metabolised extensively (>60%) by this CYP isoform in order to develop CYP3A4-related uncertainty factors for the risk assessment of environmental contaminants handled via this route. Data were analysed from published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and other subgroups using parameters relating primarily to chronic exposure [metabolic and total clearances, area under the plasma concentration-time curve (AUC)] and acute exposure (Cmax). Interindividual variability in kinetics was greater for the oral route (46%, 12 compounds) than for the intravenous route (32%, 14 compounds). The physiological and molecular basis for the difference between these two routes of exposure is discussed. In relation to the uncertainty factors used for risk assessment, the default kinetic factor of 3.16 would be adequate for adults, whereas a CYP3A4-related factor of 12 would be required to cover up to 99% of neonates, which have lower CYP3A4 activity.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
40
|
Dorne JLCM, Walton K, Slob W, Renwick AG. Human variability in polymorphic CYP2D6 metabolism: is the kinetic default uncertainty factor adequate? Food Chem Toxicol 2002; 40:1633-56. [PMID: 12176090 DOI: 10.1016/s0278-6915(02)00117-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Human variability in the kinetics of CYP2D6 substrates has been quantified using a database of compounds metabolised extensively (>60%) by this polymorphic enzyme. Published pharmacokinetic studies (after oral and intravenous dosing) in non-phenotyped healthy adults, and phenotyped extensive (EMs), intermediate or slow-extensive (SEMs) and poor metabolisers (PMs) have been analysed using data for parameters that relate primarily to chronic exposure (metabolic and total clearances, area under the plasma concentration time-curve) and primarily to acute exposure (peak concentration). Similar analyses were performed with the available data for subgroups of the population (age, ethnicity and disease). Interindividual differences in kinetics for markers of oral exposure were large for non-phenotyped individuals and for EMs (coefficients of variation were 67-71% for clearances and 54-63% for C(max)), whereas the intravenous data indicated a lower variability (34-38%). Comparisons between EMs, SEMs and PMs revealed an increase in oral internal dose for SEMs and PMs (ratio compared to EMs=3 and 9-12, respectively) associated with lower variability than that for non-phenotyped individuals (coefficients of variation were 32-38% and 30% for SEMs and PMs, respectively). In relation to the uncertainty factors used for risk assessment, most subgroups would not be covered by the kinetic default of 3.16. CYP2D6-related factors necessary to cover 95-99% of each subpopulation ranged from 2.7 to 4.1 in non-phenotyped healthy adults and EMs to 15-18 in PMs and 22-45 in children. An exponential relationship (R(2)=0.8) was found between the extent of CYP2D6 metabolism and the uncertainty factors. The extent of CYP2D6 involvement in the metabolism of a substrate is critical in the estimation of the CYP2D6-related factor. The 3.16 kinetic default factor would cover PMs for substrates for which CYP2D6 was responsible for up to 25% of the metabolism in EMs.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | |
Collapse
|
41
|
Dorne JL, Walton K, Renwick AG. Human variability in glucuronidation in relation to uncertainty factors for risk assessment. Food Chem Toxicol 2001; 39:1153-73. [PMID: 11696390 DOI: 10.1016/s0278-6915(01)00087-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The appropriateness of the default uncertainty factor for human variability in kinetics has been investigated for glucuronidation using an extensive database of substrates metabolised primarily by this pathway. Inter-individual variability was quantified for 15 compounds from published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and other subgroups using parameters relating to chronic exposure (metabolic and total clearances, area under the plasma concentration time-curve (AUC)) and acute exposure (C(max)). Low inter-individual variability (about 30-35%) was found for all parameters (clearance corrected or not corrected for body weight, metabolic clearance, oral AUC and C(max)) after either iv or oral administration to healthy adults. The overall variability of 31% for glucuronidation in healthy adults supported the validity of the default kinetic uncertainty factor of 3.16 for this group, because it would cover more than 99% of individuals. Comparisons between potentially sensitive subgroups and healthy adults using differences in means and variability indicated that neonates showed the greatest impairment of glucuronidation, and that the 3.16 kinetic default factor applied to the mean data for adults would be inadequate for this subpopulation. The in vivo data have been used to derive pathway-related default factors for compounds eliminated largely via glucuronidation.
Collapse
Affiliation(s)
- J L Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, SO16 7PX, Southampton, UK
| | | | | |
Collapse
|