1
|
Alrashdi MM, Strashnov I, Richards LA, Tun YM, Al Bualy A, Polya DA. Total arsenic and inorganic arsenic in Myanmar rice. Heliyon 2024; 10:e40987. [PMID: 39735619 PMCID: PMC11681864 DOI: 10.1016/j.heliyon.2024.e40987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/31/2024] Open
Abstract
Myanmar is a major rice exporter. Rice is an important source of nourishment for its population. However, rice can be contaminated with toxic elements, including arsenic, long-term exposure to which has been linked to several illnesses, including cancer. There is a paucity of published data on arsenic in Myanmar rice. This study analysed rice (n = 50) from southern, middle and northern Myanmar for both total arsenic (T-As) (by ICP-MS) and inorganic arsenic (i-As) (by species-specific hydride generation ICP-MS or HPLC-ICP-MS). The mean concentration of T-As was 110 μg kg-1(IQR 75-142 μg kg-1), of which 86 μg kg-1 (IQR 58-113 μg kg-1) was high toxicity i-As. The calculated mean i-As intake arising from typical consumption of this rice normalised to typical body weights in Myanmar was approximately 1 μg.kg-bw-1.day-1, close to the recently withdrawn WHO, PTWI of 2.1 μg.kg-bw-1.day-1and higher than the EFSA reported BMDL05 for skin cancers of 0.06 μg.kg-bw-1.day-1.
Collapse
Affiliation(s)
- May M. Alrashdi
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
- Chemistry Department, College of Science, Jouf University, P.O. Box: 2014, Sakaka, Kingdom of Saudi Arabia
| | - Ilya Strashnov
- Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Laura A. Richards
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Yin Min Tun
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Ahmed Al Bualy
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
- OQ Alternative Energy, PO Box 261, PC 118, Muscat, Oman
| | - David A. Polya
- Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Sciences, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
2
|
González-Pérez de Medina L, Muñoz-Fariña O, Fernández-Guerrero Y, Roman-Benn A, Bastias-Montes JM, Quevedo-León R, Ravanal MC. Arsenic, lead and cadmium concentration in food and estimated daily intake in the Cuban population and the health risks using a Total Diet Study. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2024; 59:112-122. [PMID: 38291737 DOI: 10.1080/03601234.2024.2306108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This study estimates the intake of arsenic, lead and cadmium by the adult population (aged 18-91) of Cuba. The food consumption indices were obtained through 24-h dietary recall surveys applied to 450 people between October 2020 and March 2021. The Estimated Dietary Intake (EDI) of t-As (54.6 μg/day), Pb (118.5 μg/day) and Cd (35.1 μg/day) complied with Cuban legislation but was higher than the EDI for Cd established by the CONTAM Panel. The Target Hazard Quotients for the three contaminants were: iAs (0.220), Pb (0.409) and Cd (0.424), making the value of the Total Target Hazard Quotient 1.05, which indicates potential health risks for the population. Additionally, associated carcinogenic risks were: iAs (1.0·10-4), Pb (7.2·10-4) and Cd (25.9·10-4). Therefore, 10, 72 and 259 persons per 100,000 inhabitants are likely prone to developing cancer due to the ingestion of iAs, Pb and Cd, respectively.
Collapse
Affiliation(s)
| | - Ociel Muñoz-Fariña
- Faculty of Agricultural and Food Sciences, Food Science and Technology Institute (ICYTAL), Universidad Austral de Chile, Valdivia, Chile
| | | | - Analese Roman-Benn
- Faculty of Agricultural and Food Sciences, Graduate School, Universidad Austral de Chile, Valdivia, Chile
- Food Policy Division, Ministry of Health, Georgetown, Guyana
| | | | - Roberto Quevedo-León
- Department of Aquaculture and Agrifood Resources, Universidad de Los Lagos, Osorno, Chile
| | - María Cristina Ravanal
- Faculty of Agricultural and Food Sciences, Food Science and Technology Institute (ICYTAL), Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
3
|
Munna N, Abdur R, Islam R, Bashar MS, Farhad SFU, Kamruzzaman M, Aziz S, Shaikh MAA, Hossain M, Jamal MS. Influence of Sn doping on the optoelectronic properties of ZnO nanoparticles. NANOSCALE ADVANCES 2023; 5:4996-5004. [PMID: 37705782 PMCID: PMC10496896 DOI: 10.1039/d3na00409k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 09/15/2023]
Abstract
Zinc Oxide (ZnO) nanoparticles (NPs) obtained a lot of attention from researchers and industries because of their superior properties as an optoelectronic material. Doping, especially tin (Sn), can further fine-tune their optoelectronic properties. In this manuscript, we have reported the optoelectronic properties of Sn-doped ZnO NPs, which were synthesized by a simple chemical solution method. A wide range of dopant (Sn) concentrations were used in the ratios of 0, 1, 3, 5, 7, and 10 weight percent. The effects of dopant (Sn) concentration on the structural, morphological, elemental composition, and optical properties of ZnO NPs were investigated by using an X-ray diffractometer (XRD), Field Emission Scanning Electron Microscope (FESEM), X-ray photoelectron spectrometer (XPS) and UV-Vis-NIR respectively. XRD analysis revealed the shifting of diffraction patterns towards a higher angle along with decreasing intensity. The calculated crystallite size using the XRD varied from 40.12 nm to 28.15 nm with an increasing doping percentage. Sn doping notably influences the size of ZnO NPs, along with crystal quality, strain, and dislocation density. The X-ray photoelectron spectroscopy (XPS) study showed the presence of zinc (Zn), oxygen (O), and tin (Sn) with their preferred oxidation states in the synthesized NPs. UV-Visible spectroscopy (UV-Vis) showed that the bandgap changed from 3.55 to 3.85 eV with the increasing concentration of Sn. FE-SEM revealed that the structures and surfaces were irregular and not homogeneous. The above findings for ZnO nanostructures show their potential application in optoelectronic devices.
Collapse
Affiliation(s)
- Nadim Munna
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka Dhaka-1000 Bangladesh
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Rahim Abdur
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Robiul Islam
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
- Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University Noakhali-3814 Bangladesh
| | - Muhammad Shahriar Bashar
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Syed Farid Uddin Farhad
- BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Kamruzzaman
- Department of Applied Chemistry and Chemical Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Shahin Aziz
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Md Aftab Ali Shaikh
- Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
- Department of Chemistry, University of Dhaka Dhaka-1000 Bangladesh
| | - Mosharof Hossain
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| | - Mohammad Shah Jamal
- Institute of Fuel Research and Development (IFRD), Bangladesh Council of Scientific and Industrial Research (BCSIR) Dr. Qudrat-E-Khuda Road, Dhanmondi Dhaka-1205 Bangladesh
| |
Collapse
|
4
|
Gautam N, Tiwari M, Kidwai M, Dutta P, Chakrabarty D. Functional characterization of rice metallothionein OsMT-I-Id: Insights into metal binding and heavy metal tolerance mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131815. [DOI: https:/doi.org/10.1016/j.jhazmat.2023.131815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
5
|
Gautam N, Tiwari M, Kidwai M, Dutta P, Chakrabarty D. Functional characterization of rice metallothionein OsMT-I-Id: Insights into metal binding and heavy metal tolerance mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131815. [PMID: 37336105 DOI: 10.1016/j.jhazmat.2023.131815] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/07/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023]
Abstract
Metallothioneins (MTs) are cysteine-rich proteins known for their strong metal-binding capabilities, making them effective in detoxifying heavy metals (HMs). This study focuses on characterizing the functional properties of OsMT-I-Id, a type-I Metallothionein found in rice. Using a HM-responsive yeast cup1Δ (DTY4), ycf1∆ (for cadmium), and acr3∆ mutants (for trivalent arsenic), we assessed the impact of OsMT-I-Id on metal accumulation and cellular resilience. Our results demonstrated that yeast cells expressing OsMT-I-Id showed increased tolerance and accumulated higher levels of copper (Cu), arsenic (As), and cadmium (Cd), compared to control cells. This can be attributed to the protein's ability to chelate and bind HMs. Site-directed mutagenesis was employed to investigate the specific contributions of cysteine residues. The study revealed that yeast cells with a mutated C-domain displayed heightened HM sensitivity, while cells with a mutated N-domain exhibited reduced sensitivity. This underscores the critical role of C-cysteine-rich domains in metal binding and tolerance of type-I rice MTs. Furthermore, the study identified the significance of the 12th cysteine position at the N-domain and the 68th and 72nd cysteine positions at the C-domain in influencing OsMT-I-Id metal-binding capacity. This research provides novel insights into the structure-function relationship and metal binding properties of type-I plant MTs.
Collapse
Affiliation(s)
- Neelam Gautam
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Madhu Tiwari
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria Kidwai
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Prasanna Dutta
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debasis Chakrabarty
- Biotechnology and Molecular Biology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
6
|
Patel KS, Pandey PK, Martín-Ramos P, Corns WT, Varol S, Bhattacharya P, Zhu Y. A review on arsenic in the environment: bio-accumulation, remediation, and disposal. RSC Adv 2023; 13:14914-14929. [PMID: 37200696 PMCID: PMC10186335 DOI: 10.1039/d3ra02018e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
Arsenic is a widespread serious environmental pollutant as a food chain contaminant and non-threshold carcinogen. Arsenic transfer through the crops-soil-water system and animals is one of the most important pathways of human exposure and a measure of phytoremediation. Exposure occurs primarily from the consumption of contaminated water and foods. Various chemical technologies are utilized for As removal from contaminated water and soil, but they are very costly and difficult for large-scale cleaning of water and soil. In contrast, phytoremediation utilizes green plants to remove As from a contaminated environment. A large number of terrestrial and aquatic weed flora have been identified so far for their hyper metal removal capacity. In the panorama presented herein, the latest state of the art on methods of bioaccumulation, transfer mechanism of As through plants and animals, and remediation that encompass the use of physicochemical and biological processes, i.e., microbes, mosses, lichens, ferns, algae, and macrophytes have been assessed. Since these bioremediation approaches for the clean-up of this contaminant are still at the initial experimental stages, some have not been recognized at full scale. Nonetheless, extensive research on these primitive plants as bio-accumulators can be instrumental in controlling arsenic exposure and rehabilitation and may result in major progress to solve the problem on a worldwide scale.
Collapse
Affiliation(s)
- Khageshwar Singh Patel
- Department of Applied Sciences, Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Piyush Kant Pandey
- Amity University Manth (Kharora), State Highway 9 Raipur-493225 CG India
| | - Pablo Martín-Ramos
- Department of Agricultural and Environmental Sciences, EPS, Instituto de Investigación en Ciencias Ambientales de Aragón (IUCA), University of Zaragoza Carretera de Cuarte, s/n 22071 Huesca Spain
| | - Warren T Corns
- PS Analytical Ltd Arthur House, Unit 11 Crayfields Industrial Estate, Orpington Kent BR5 3HP UK
| | - Simge Varol
- Suleyman Demirel University, Faculty, Geological Engineering Department Çünür Isparta- 32260 Turkey
| | - Prosun Bhattacharya
- KTH-International Groundwater Arsenic Research Group, Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology Teknikringen 10B SE-100 44 Stockholm Sweden
| | - Yanbei Zhu
- Environmental Standards Research Group, Research Institute for Material and Chemical Measurement, National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST) 1-1-1 Umezono, Tsukuba Ibaraki 305-8563 Japan
| |
Collapse
|
7
|
Saeed M, Masood Quraishi U, Malik RN. Identification of arsenic-tolerant varieties and candidate genes of tolerance in spring wheat (Triticum aestivum L.). CHEMOSPHERE 2022; 308:136380. [PMID: 36088976 DOI: 10.1016/j.chemosphere.2022.136380] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Despite the growing concerns about arsenic toxicity, information on tolerance and responsible genetic factors in wheat remains elusive. To address that, the present study aimed to screen the wheat varieties against arsenic based on growth parameters, yield, grain accumulation, and associated genes. A total of 110 wheat varieties were grown in arsenic-contaminated regions to record physio-morphological traits. The wheat 90K Infinium iSelect SNP array was used for the genome-wide association model to identify genomic regions. Wheat varieties such as Punjab-81, AARI-11, and Daman showed arsenic concentrations >45 μg/kg in similar conditions as well as the impact on grain yield, chlorophyll, Thousand Kernel Weight, and plant height. Contrastingly, varieties like Kohistan-97, As-2002, Barani-70, and Pari-73 showed grain concentrations <5 μg/kg grown under highly contaminated conditions. Three significant loci associated with arsenic accumulation in grain were identified on chromosomes 6A (qASG1-6A) and 6B (qASG3-6B and qASG4-6B). Annotation at these loci identified 39 wheat genes among which several were important for growth and tolerance against stress. The candidate gene (TraesCS6B02G429400) responsible for Glutathione-S-transferase was identified in the present study and must be investigated further using a transcriptomic approach. The present study provided background information for breeding prospects to improve wheat yield and tolerance against arsenic.
Collapse
Affiliation(s)
- Muhammad Saeed
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Umar Masood Quraishi
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| |
Collapse
|
8
|
Kulathunga MRDL, Wijayawardena MAA, Naidu R. Dietary heavy metal(loid)s exposure and prevalence of chronic kidney disease of unknown aetiology (CKDu) in Sri Lanka. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:3863-3874. [PMID: 34716520 DOI: 10.1007/s10653-021-01144-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Intake of heavy metals and metalloids through the diet is posing a big research challenge in Sri Lanka due to the increasing occurrence of chronic kidney disease of unknown aetiology (CKDu) among the farming communities pursuing their livelihoods in the North Central Province (NCP). Duplicated diet studies were conducted on a sample of 62 individuals comprising adult males, adult females, boys, and girls who were selected following a demographic survey in an area of the NCP where there was a high incidence of CKDu. A health risk assessment was made by analysing the heavy metal(loid)s content in the diet samples, by means of inductively coupled plasma mass spectrometry. Rice and vegetables constituted the main diet in the CKDu prevalent areas, with all gender and age categories adhering to similar daily diet patterns. Results of the heavy metal(loid) analysis of duplicated food intake samples indicated that the amounts of Pb in rice, As and Pb in vegetables, and Cd in fish exceeded the recommended daily limits. Because consumption of rice was much higher than the other food items, the estimated daily intake of Pb exceeded the permissible daily intake of 3.5 µg/kgBW/day. There were no significant differences between the age and gender categories in respect of estimated daily intake of Pb, which suggested that the entire population of the study area faced the risk of a high level of Pb exposure. Further, the hazard quotient of Pb was greater than 1. Influence of heavy metal(loid)s on the prevalence of CKDu cannot be understated, and as such interventions are required as a matter of urgency to reduce the local population's dietary exposure to heavy metal(loid)s.
Collapse
Affiliation(s)
- M R D L Kulathunga
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, 2308, Australia
- Fruit Research and Development Institute, Horana, Kananwila, Sri Lanka
| | - M A A Wijayawardena
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, 2308, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, Callaghan, 2308, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
9
|
Mao Q, Xie Z, Irshad S, Zhong Z, Liu T, Pei F, Gao B, Li L. Effect of arsenic accumulation on growth and antioxidant defense system of Chlorella thermophila SM01 and Leptolyngbya sp. XZMQ. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Impact of Ferrous Sulfate on Thylakoidal Multiprotein Complexes, Metabolism and Defence of Brassica juncea L. under Arsenic Stress. PLANTS 2022; 11:plants11121559. [PMID: 35736711 PMCID: PMC9228442 DOI: 10.3390/plants11121559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/17/2022]
Abstract
Forty-day-old Brassica juncea (var. Pusa Jai Kisan) plants were exposed to arsenic (As, 250 µM Na2HAsO4·7H2O) stress. The ameliorative role of ferrous sulfate (2 mM, FeSO4·7H2O, herein FeSO4) was evaluated at 7 days after treatment (7 DAT) and 14 DAT. Whereas, As induced high magnitude oxidative stress, FeSO4 limited it. In general, As decreased the growth and photosynthetic parameters less when in the presence of FeSO4. Furthermore, components of the antioxidant system operated in better coordination with FeSO4. Contents of non-protein thiols and phytochelatins were higher with the supply of FeSO4. Blue-Native polyacrylamide gel electrophoresis revealed an As-induced decrease in almost every multi-protein-pigment complex (MPC), and an increase in PSII subcomplex, LHCII monomers and free proteins. FeSO4 supplication helped in the retention of a better stoichiometry of light-harvesting complexes and stabilized every MPC, including supra-molecular complexes, PSI/PSII core dimer/ATP Synthase, Cytochrome b6/f dimer and LHCII dimer. FeSO4 strengthened the plant defence, perhaps by channelizing iron (Fe) and sulfur (S) to biosynthetic and anabolic pathways. Such metabolism could improve levels of antioxidant enzymes, and the contents of glutathione, and phytochelatins. Important key support might be extended to the chloroplast through better supply of Fe-S clusters. Therefore, our results suggest the importance of both iron and sulfur to combat As-induced stress in the Indian mustard plant at biochemical and molecular levels through enhanced antioxidant potential and proteomic adjustments in the photosynthetic apparatus.
Collapse
|
11
|
Yang Y, Song S, Nie Y, Chen R, Chen P. Lentinan alleviates arsenic-induced hepatotoxicity in mice via downregulation of OX40/IL-17A and activation of Nrf2 signaling. BMC Pharmacol Toxicol 2022; 23:16. [PMID: 35313999 PMCID: PMC8939159 DOI: 10.1186/s40360-022-00557-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 03/10/2022] [Indexed: 02/05/2023] Open
Abstract
Background Arsenic, existing ubiquitously in soil, drinking water, or food, is well known to be an environmental pollutants concerned by European Food Safety Authority. Lentinan, a beta-1,6;1,3-glucan extracts from Lentinus edodes, which has the properties of antioxidant and immunomodulation, present study explored the pharmacological effects of Lentinan on arsenic induced hepatotoxicity in mice. Methods Mice experiments were performed by sodium arsenite (SA) treatment or Lentinan intervention, then histopathology, ELISA, Flow Cytometry, or Western-Blotting were applied to evaluate hepatic injury, oxidative stress, CD4+ type 17 helper T (Th17) cells, CD4+CD25+Foxp3+ regulatory T cells (Tregs), T cells receptor OX40/CD134, IL-17A, NLRP3, Nrf2, and NQO1. Results SA treatment showed hepatic pathological injury and the elevations of alanine aminotransferase (ALT) or aspartate aminotransferase (AST) in serum, and induced the increases of malondialdehyde (MDA), Th17 cells, OX40 or IL-17A in liver tissues, which were consistently ameliorated by Lentinan intervention. Further, immunoblotting experiments showed that Lentinan intervention downregulated the levels of OX40, IL-17A, and NLRP3 signals, while elevated the levels of anti-oxidative Nrf2, NQO1 signals compared to arsenic treatment group. For Tregs, Lentinan intervention showed no significant difference from SA treatment group. Conclusion Lentinan antagonizes SA-induced hepatotoxicity in mice, may be involved in the downregulations of pro-inflammatory OX40 or IL-17A and the activation of anti-oxidative Nrf2, NQO1 signals. Supplementary Information The online version contains supplementary material available at 10.1186/s40360-022-00557-7.
Collapse
Affiliation(s)
- Yuan Yang
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China. .,Dong Medicine Key laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, 418000, China. .,Department of Toxicology, School of Public Health, Guilin Medical University, Guilin, 541004, China.
| | - Shuang Song
- School of Public Health, The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yuanyuan Nie
- Dong Medicine Key laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Rong Chen
- Dong Medicine Key laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, 418000, China
| | - Peng Chen
- Dong Medicine Key laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, 418000, China
| |
Collapse
|
12
|
Identification of Soil Arsenic Contamination in Rice Paddy Field Based on Hyperspectral Reflectance Approach. SOIL SYSTEMS 2022. [DOI: 10.3390/soilsystems6010030] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Toxic heavy metals in soil negatively impact soil’s physical, biological, and chemical characteristics, and also human wellbeing. The traditional approach of chemical analysis procedures for assessing soil toxicant element concentration is time-consuming and expensive. Due to accessibility, reliability, and rapidity at a high temporal and spatial resolution, hyperspectral remote sensing within the Vis-NIR region is an indispensable and widely used approach in today’s world for monitoring broad regions and controlling soil arsenic (As) pollution in agricultural land. This study investigates the effectiveness of hyperspectral reflectance approaches in different regions for assessing soil As pollutants, as well as a basic review of space-borne earth observation hyperspectral sensors. Multivariate and various regression models were developed to avoid collinearity and improve prediction capabilities using spectral bands with the perfect correlation coefficients to access the soil As contamination in previous studies. This review highlights some of the most significant factors to consider when developing a remote sensing approach for soil As contamination in the future, as well as the potential limits of employing spectroscopy data.
Collapse
|
13
|
Removal of Toxic and Essential Nutrient Elements from Commercial Rice Brands Using Different Washing and Cooking Practices: Human Health Risk Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052582. [PMID: 35270275 PMCID: PMC8909527 DOI: 10.3390/ijerph19052582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 02/05/2023]
Abstract
This study determined the influence of different cooking procedures on the removal of toxic elements (TEs) including arsenic (As), cadmium (Cd), and lead (Pb) along with other nutrient elements from different commercially available rice brands sold in Bangladeshi markets. We observed 33%, 35%, and 27% average removal of As, Cd, and Pb accordingly from rice when cooked with a rice to water ratio of 1:6 after washing 5 times. We also found a significant reduction in essential elements: Zn (17%), Cu (10%), Mn (22%), Se (49%), and Mo (22%), when rice cooking was performed as in traditional practice. Daily dietary intakes were found to be between 0.36 and 1.67 µg/kgbw for As, 0.06 and 1.15 µg/kgbw for Cd, and 0.04 and 0.17 µg/kgbw for Pb when rice was cooked by the rice cooker method (rice:water 1:2), while in the traditional method (rice:water 1:6) daily intake rates ranged from 0.23 to 1.3 µg/kgbw for As, 0.04 to 0.88 µg/kgbw for Cd, and 0.03 to 0.15 µg/kgbw for Pb for adults. The HQ and ILCR for As, Cd, and Pb revealed that there is a possibility of noncarcinogenic and carcinogenic risk for As but no appreciable risk for Cd and Pb from consumption of rice.
Collapse
|
14
|
Shahriar S, Haque MM, Naidu R, Rahman MM. Concentrations of toxic elements and health risk assessment in arum grown in arsenic-contaminated areas of Bangladesh. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Rathi BS, Kumar PS. A review on sources, identification and treatment strategies for the removal of toxic Arsenic from water system. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126299. [PMID: 34102361 DOI: 10.1016/j.jhazmat.2021.126299] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/26/2021] [Accepted: 05/31/2021] [Indexed: 05/10/2023]
Abstract
Arsenic liberation and accumulation in the groundwater environment are both affected by the presence of primary ions and soluble organic matter. The most important influencing role in the co-occurrence is caused by human activity, which includes logging, agricultural runoff stream, food, tobacco, and fertilizers. Furthermore, it covers a wide range of developed and emerging technologies for removing arsenic impurities from the ecosystem, including adsorption, ion exchangers, bio sorption, coagulation and flocculation, membrane technology and electrochemical methods. This review thoroughly explores various arsenic toxicity to the atmosphere and the removal methods involved with them. To begin, the analysis focuses on the general context of arsenic outbreaks in the area, health risks associated with arsenic, and measuring techniques. The utilization of innovative functional substances such as graphite oxides, metal organic structures, carbon nanotubes, and other emerging types of composite materials, as well as the ease, reduced price, and simple operating method of the adsorbent material, are better potential alternatives for arsenic removal. The aim of this article is to examine the origins of arsenic, as well as identification and treatment methods. It also addressed recent advancements in Arsenic removal using graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other novel types of usable materials. Under ideal conditions for the above methods, the arsenic removal will achieve nearly 99% in lab scale.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| |
Collapse
|
16
|
Bhattacharyya K, Sengupta S, Pari A, Halder S, Bhattacharya P, Pandian BJ, Chinchmalatpure AR. Characterization and risk assessment of arsenic contamination in soil-plant (vegetable) system and its mitigation through water harvesting and organic amendment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:2819-2834. [PMID: 33411124 DOI: 10.1007/s10653-020-00796-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Field experiments with vegetables [cauliflower (Brassica oleracea var. botrytis), tomato (Solanum lycopersicum) and spinach (Spinacia oleracea)] were conducted at geogenically arsenic-contaminated Ghentugachi village in West Bengal, India, for two consecutive years to study arsenic accumulation by the selected vegetables and to explore the efficiencies of use of harvested/harnessed water and organic amendments (Mustard Cake, Vermicompost and Farm Yard Manure) in reducing arsenic load in soil-plant system. Results revealed that arsenic accumulations in the cauliflower head, spinach leaf and tomato fruit were in the range of 0.15-0.17, 2.73-3.00 and 0.08 mg kg-1. Organic amendment and pond water irrigation when applied either separately or together were found to be effective in reducing arsenic contamination in soil-plant system compared to irrigation with shallow tube well-drafted underground water. Vermicompost remained most successful among the organic amendments. Conjunctive use of surface (pond) and ground water also significantly reduced the level of arsenic in the system. The risk of dietary intake of arsenic through the selected vegetables was computed through % Provisional Tolerable Weekly Intake, Hazard Quotient and Target Cancer Risk. Cauliflower and tomato were found safe in the individual contribution to food chain, while consumption of spinach leaf (possessing 10.4-22.6% more arsenic than maximum tolerable limits) remained unsafe in all dietary risk measures.
Collapse
Affiliation(s)
- Kallol Bhattacharyya
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sudip Sengupta
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India.
| | - Arnab Pari
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Sanjay Halder
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - Parijat Bhattacharya
- Department of Agricultural Chemistry and Soil Science, Faculty of Agriculture, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia, West Bengal, 741252, India
| | - B J Pandian
- Water Technology Centre, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
| | - Anil R Chinchmalatpure
- ICAR-Central Soil Salinity Research Institute, Regional Research Station, Bharuch, Gujarat, 392012, India
| |
Collapse
|
17
|
Joardar M, Das A, Chowdhury NR, Mridha D, De A, Majumdar KK, Roychowdhury T. Health effect and risk assessment of the populations exposed to different arsenic levels in drinking water and foodstuffs from four villages in arsenic endemic Gaighata block, West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3027-3053. [PMID: 33492569 DOI: 10.1007/s10653-021-00823-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Health exposure and perception of risk assessment have been evaluated on the populations exposed to different arsenic levels in drinking water (615, 301, 48, 20 µg/l), rice grain (792, 487, 588, 569 µg/kg) and vegetables (283, 187, 238, 300 µg/kg) from four villages in arsenic endemic Gaighata block, West Bengal. Dietary arsenic intake rates for the studied populations from extremely highly, highly, moderately, and mild arsenic-exposed areas were 56.03, 28.73, 11.30, and 9.13 μg/kg bw/day, respectively. Acute and chronic effects of arsenic toxicity were observed in ascending order from mild to extremely highly exposed populations. Statistical interpretation using 'ANOVA' proves a significant relationship between drinking water and biomarkers, whereas "two-tailed paired t test" justifies that the consumption of arsenic-contaminated dietary intakes is the considerable pathway of health risk exposure. According to the risk thermometer (SAMOE), drinking water belongs to risk class 5 (extremely highly and highly exposed area) and 4 (moderately and mild exposed area) category, whereas rice grain and vegetables belong to risk class 5 and 4, respectively, for all the differently exposed populations. The carcinogenic (ILCR) and non-carcinogenic risks (HQ) through dietary intakes for adults were much higher than the recommended threshold level, compared to the children. Supplementation of arsenic-safe drinking water and nutritional food is strictly recommended to overcome the severe arsenic crisis.
Collapse
Affiliation(s)
- Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | | | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Kunal Kanti Majumdar
- Department of Community Medicine, KPC Medical College & Hospital, Jadavpur, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
18
|
Diyabalanage S, Kalpage MD, Mohotti DG, Dissanayake CKK, Fernando R, Frew RD, Chandrajith R. Comprehensive Assessment of Essential and Potentially Toxic Trace Elements in Bovine Milk and Their Feeds in Different Agro-climatic Zones of Sri Lanka. Biol Trace Elem Res 2021; 199:1377-1388. [PMID: 32728936 DOI: 10.1007/s12011-020-02242-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/08/2020] [Indexed: 10/23/2022]
Abstract
Fresh milk is an important source of essential mineral supplement for humans. However, the levels of trace elements in milk are an important component of its safety and quality. Trace elements also act as a bio-indicator of agricultural pollution. Samples of raw cow milk (n = 68), animal feed [forage (n = 36) and concentrates (n = 14)], and water (n = 35) were collected from different agro-climatic regions of Sri Lanka. The concentrations of 15 trace elements including toxic heavy metals such as Cd, Pb, and As were quantified using inductively coupled plasma mass spectrometry after microwave-assisted digestion. Among the studied trace elements, the mean elemental concentrations of Se, Cd, As, and Cu in cow milk were 18.1, 1.45, 7.35, and 71.7 μg L-1, respectively. The mean concentrations of these elements in forage were 0.216, 0.066, 0.046, and 9.21 mg kg-1, and in concentrate feed were 0.329, 0.202, 0.229, and 2.28 mg kg-1, respectively. The As content of the studied milk was well below the maximum permissible level while 15% of the samples had Pb exceeding the permissible limit of 20 μg L-1. However, As, Cd, and Pb levels in drinking water provided to animals were well below the WHO permissible limits. The results of this study revealed that the trace elements in cow milk depend mainly on the feed, and hence, levels of these contaminants in feed materials should be monitored. Although due to the consumption of milk, the populations have a minor exposure to trace elements and also minimum health risks, a detailed study with a large number of samples is highly recommended.
Collapse
Affiliation(s)
- Saranga Diyabalanage
- Instrument Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | | | | | | | - Ruchika Fernando
- Department of Veterinary Public Health and Pharmacology, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Rohana Chandrajith
- Department of Geology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka.
| |
Collapse
|
19
|
Arsenic uptake and toxicity in wheat (Triticum aestivum L.): A review of multi-omics approaches to identify tolerance mechanisms. Food Chem 2021; 355:129607. [PMID: 33799259 DOI: 10.1016/j.foodchem.2021.129607] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 11/23/2022]
Abstract
Arsenic (As) due to its widespread has become a primary concern for sustainable food production, especially in Southeast Asian countries. In that context, the present review presented a comprehensive detail of the available literature marking an assortment of As-induced impacts on wheat. The conclusive findings of past research suggest that As tends to grossly affect the germination, elongation, biomass, grain yield, and induce oxidative stress. Several human studies are suggestive of higher cancer risks (>1 × 10-6) due to the ingestion of wheat grains. However, the body of proof is limited and the scarcity of information limited understanding about tolerance mechanism in wheat against As. Therefore, the paper provided a reference from tolerance mechanism based studies in other crops like rice and maize. The generated knowledge of arsenomics would pave the way for plant breeders to develop resistant varieties for As to ensure sustainable food production.
Collapse
|
20
|
Chowdhury NR, Das A, Mukherjee M, Swain S, Joardar M, De A, Mridha D, Roychowdhury T. Monsoonal paddy cultivation with phase-wise arsenic distribution in exposed and control sites of West Bengal, alongside its assimilation in rice grain. JOURNAL OF HAZARDOUS MATERIALS 2020; 400:123206. [PMID: 32593938 DOI: 10.1016/j.jhazmat.2020.123206] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 05/29/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The present study mainly deals with monsoonal paddy farming with respect to its phase-wise arsenic (As) accumulation and distribution throughout cultivation in As exposed sites and control areas of West Bengal for two consecutive years, 2017 and 2018. Arsenic uptake in paddy depends on the watering pattern with the help of groundwater (Madhusudhankati: 171 μg/l, Teghoria: 493 μg/l in Gaighata and Pingla: 10 μg/l in Medinipur), soil As phase-wise movement with its enrichment pattern and the variation of rainfall. Arsenic mobility is the highest in root and decreases with height of a plant. However, the synergistic effect of groundwater and rainwater makes a diffused approach to the nature of As flow in plants, because rainwater has a pivotal role in diluting the As content available for translocation. Reproductive phase accumulates maximum As compared to vegetative and ripening phases. Sequential extraction and SEM studies re-confirm no possibility of iron (Fe) plaque formation in root soils which sequestered As. Finally, we conclude that monsoonal cultivation provides least As enriched grain (exposed area: 350 μg/kg, control area: 224 μg/kg) irrespective of the variety of cultivar and area of cultivation, which amounts to one-third of pre-monsoonal grain (1120 μg/kg) and so, it is much safer for consumption with respect to As and micro-nutrient status.
Collapse
Affiliation(s)
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Meenakshi Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Shresthashree Swain
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Ayan De
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Deepanjan Mridha
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
21
|
Gong Y, Qu Y, Yang S, Tao S, Shi T, Liu Q, Chen Y, Wu Y, Ma J. Status of arsenic accumulation in agricultural soils across China (1985-2016). ENVIRONMENTAL RESEARCH 2020; 186:109525. [PMID: 32330770 DOI: 10.1016/j.envres.2020.109525] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
Based on 1677 published studies, 1648 sites across China collected from 1985 to 2016 were used to research the concentrations of arsenic in agricultural soils. In order to understand the status of arsenic pollution in agricultural soils in China over the past three decades, and to learn about the arsenic stocks in agricultural soils in various regions, and compared the relationship with annual arsenic emissions in China, and finally evaluated the potential ecological risks and human health risks. The median arsenic concentration in the surface agricultural soils of China was 10.40 mg Kg-1, and it ranged from 0.4 mg Kg-1 to 175.8 mg Kg-1. The inventory of arsenic in Chinese agricultural surface soils was estimated to be 3.71 × 106 t. In this study, the arsenic concentrations were found to be higher in Central, South, and Southwest China than those in other regions. The trend of arsenic pollution in agricultural soils has gradually increased over the past three decades. However, the growth rate of arsenic concentrations pollution in farmlands agricultural in China slowed during 2012-2016. The ecological risk index and geoaccumulation index revealed that arsenic in Chinese agricultural soil poses a low risk to the ecosystem. For human health assessment, the dietary pathway was the main pathway of exposure to arsenic in farmland soil of China. However, children's soil intake also contributed 34.48% to the exposure to arsenic, owing to their behavior. This study can provide a reference for the management of arsenic agricultural pollution in farmland soils in China.
Collapse
Affiliation(s)
- Yiwei Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yajing Qu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shuhui Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shiyang Tao
- South China Institute of Environmental Sciences, MEE, Guangzhou, 510655, China
| | - Taoran Shi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Qiyuan Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yixiang Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yihang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Jin Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
22
|
Suman S, Sharma PK, Siddique AB, Rahman MA, Kumar R, Rahman MM, Bose N, Singh SK, Ghosh AK, Matthews H, Mondal D. Wheat is an emerging exposure route for arsenic in Bihar, India. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134774. [PMID: 31734495 DOI: 10.1016/j.scitotenv.2019.134774] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/24/2019] [Accepted: 09/30/2019] [Indexed: 06/10/2023]
Abstract
In arsenic (As) endemic areas of south-east Asia, where a subsistence rice-based diet is prevalent, As exposure from food is mainly focused on rice intake. However, consumption of wheat is substantial and increasing. We present a probabilistic assessment of increased cancer risk from wheat-based food intake in a study population of rural Bihar, India where As exposure is endemic. Total As in wheat grains (43.64 ± 48.19 µg/kg, n = 72) collected from 77 households across 19 villages was found to be lower than reported As in wheat grains from other south-east Asian countries but higher than a previous study from Bihar. This is the first study where As concentration in wheat flour was used for risk estimation, bearing in mind that it was the flour obtained after indigenous household processing of the grains that was used for making the home-made bread (chapati) which contributed 95% of wheat intake for the studied population. Interestingly, while 78% of the surveyed participants (n = 154) consumed rice every day, chapati was consumed every day by 99.5% of the participants. In contrast to previous studies, where As concentration in wheat grains was found to be lower than the flour due to the removal of the bran on grinding, we did not find any appreciable lowering of arsenic in the wheat flour (49.80 ± 74.08 µg/kg, n = 58), most likely due to external contamination during processing and grinding. Estimated gender adjusted excess lifetime cancer risk of 1.23 × 10-4 for the studied rural population of Bihar indicated risk higher than the 10-4-10-6 range, typically used by the USEPA as a threshold to guide regulatory values. Hence, our findings suggest As exposure from wheat-based food intake to be of concern not only in As endemic areas of rural Bihar but also in non-endemic areas with similar wheat-based diet due to public distribution of the wheat across India.
Collapse
Affiliation(s)
- Sidharth Suman
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK; Mahavir Cancer Sansthan and Research Center, Patna, India; Department of Environment and Water Management, A.N. College, Patna, India
| | - Pushpa Kumari Sharma
- Mahavir Cancer Sansthan and Research Center, Patna, India; Department of Environment and Water Management, A.N. College, Patna, India; Aryabhatta Centre for Nanoscience and Nanotechnology, Aryabhatta Knowledge University, Patna, India
| | - Abu Bakkar Siddique
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Md Aminur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Ranjit Kumar
- Mahavir Cancer Sansthan and Research Center, Patna, India
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW 2308, Australia
| | - Nupur Bose
- Department of Geography, A.N. College, Patna, India
| | | | | | - Helen Matthews
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK
| | - Debapriya Mondal
- School of Science, Engineering & Environment, University of Salford, Salford M5 4WT, UK.
| |
Collapse
|
23
|
Mondal D, Periche R, Tineo B, Bermejo LA, Rahman MM, Siddique AB, Rahman MA, Solis JL, Cruz GJF. Arsenic in Peruvian rice cultivated in the major rice growing region of Tumbes river basin. CHEMOSPHERE 2020; 241:125070. [PMID: 31629236 DOI: 10.1016/j.chemosphere.2019.125070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 10/03/2019] [Accepted: 10/06/2019] [Indexed: 05/12/2023]
Abstract
Arsenic (As) exposure from surface and groundwater in Peru is being recognised as a potential threat but there are limited studies on As in the food-chain and none on As in Peruvian rice. In this study, we have determined the As content in rice cultivated in the Tumbes river basin located in the northern province of Peru, an area known for extensive rice cultivation. We collected rice and soil samples from agricultural fields, soil was collected using grid sampling technique while rice was collected from the heaps of harvested crop placed across the fields. The average total As concentration in rice was 167.94 ± 71 μg kg-1 (n = 29; range 68.39-345.31 μg kg-1). While the rice As levels were not highly elevated, the As content of few samples (n = 7) greater than 200 μg kg-1 could contribute negatively to human health upon chronic exposure. Average concentration of As in soil was 8.63 ± 7.8 mg kg-1 (n = 30) and soil to grain transfer factor was 0.025 ± 0.018 for 12 matched samples. Compared to our previous pilot study in 2006 (samples collected from the same agricultural fields but not from exact locations) there was a 41% decrease in As soil concentration in this study. Rice samples collected in 2006 (n = 5) had a mean concentration of 420 ± 109 μg kg-1. Our data provides a baseline of rice grain As concentrations in Peruvian province of Tumbes and warrants further studies on factors affecting uptake of As by the rice varieties cultivated in Peru and any potential human health risks.
Collapse
Affiliation(s)
- Debapriya Mondal
- School of Science, Engineering and Environment, University of Salford, UK.
| | - Romy Periche
- Department of Forestry Engineering and Environmental Management, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
| | - Bristin Tineo
- Department of Forestry Engineering and Environmental Management, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
| | - Luis A Bermejo
- Department of Forestry Engineering and Environmental Management, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Abu Bakkar Siddique
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Md Aminur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Newcastle, NSW, 2308, Australia
| | - José L Solis
- Faculty of Science, Universidad Nacional de Ingeniería, Av. Túpac Amaru 210, Lima 25, Peru
| | - Gerardo J F Cruz
- Department of Forestry Engineering and Environmental Management, Universidad Nacional de Tumbes, Av. Universitaria s/n, Pampa Grande, Tumbes, Peru
| |
Collapse
|
24
|
Gupta K, Srivastava A, Srivastava S, Kumar A. Phyto-genotoxicity of arsenic contaminated soil from Lakhimpur Kheri, India on Vicia faba L. CHEMOSPHERE 2020; 241:125063. [PMID: 31610463 DOI: 10.1016/j.chemosphere.2019.125063] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/03/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
The present experiment was designed to evaluate physico-chemical characteristics and phyto-genotoxicity of arsenic (As) contaminated soil collected from different sites of Lakhimpur, Uttar Pradesh (UP), India by employing Vicia faba L. The analyses included various biochemical as well as cyto-genotoxicity assays. The results showed that soil pH was slightly acidic to neutral in nature. The bulk density (1.18-1.23 gcm-3), particle density (2.51-2.59 gcm-3) and porosity (44-53%) varied in different places. The level of available nutrients, nitrogen, phosphorus and potassium was found to vary as 124-165 mgkg-1, 173-186 mgkg-1 and 48-98 mgkg-1, respectively. The maximum As levels were found in soil of Fulvareya (27.13 mgkg-1) and Atareya (24.12 mgkg-1), the level of As in water samples of these sites were 0.19 mgl-1and 0.21 mgl-1, respectively. Phytotoxicity of the As present in soils was evident through significant increases in stress metabolites, hydrogen peroxide (H2O2), malondialdehyde (MDA) and carbonyl groups in root and shoot of V. faba. Cyto-genotoxic effects were also seen through reduced mitotic index (MI) and increased mitotic depression (MD), relative abnormality rate (RAR) as well as other chromosomal abnormalities along with micronuclei in root meristematic cells of V. faba. The phytotoxicity and cyto-genotoxicity assessment suggests the harmful soil properties that might affect biota.
Collapse
Affiliation(s)
- Kiran Gupta
- Department of Botany, Lucknow University, Lucknow, 226007, India
| | - Alka Srivastava
- Department of Botany, Lucknow University, Lucknow, 226007, India.
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Amit Kumar
- Department of Botany, Lucknow University, Lucknow, 226007, India.
| |
Collapse
|
25
|
Upadhyay MK, Majumdar A, Barla A, Bose S, Srivastava S. An assessment of arsenic hazard in groundwater-soil-rice system in two villages of Nadia district, West Bengal, India. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:2381-2395. [PMID: 30963366 DOI: 10.1007/s10653-019-00289-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
The present study measured arsenic (As) concentrations in soil, groundwater and rice grain samples in two villages, Sarapur and Chinili, under Chakdaha block, Nadia district, West Bengal, India. This study also included a survey of the two villages to understand the knowledge among villagers about the As problem. Soil and groundwater samples were collected from fields in two villages while rice grain samples were collected from villagers' houses. The results revealed the presence of As in higher concentrations than the maximum permissible limit of As in drinking water (10 µg L-1 and 50 µg L-1 by WHO and Indian standard, respectively) in groundwater [124.50 ± 1.11 µg L-1 (Sarapur) and 138.20 ± 1.34 µg L-1 (Chinili)]. The level of As in soil was found to range from 47.7 ± 0.14 to 49.3 ± 0.19 mg Kg-1 in Sarapur and from 57.5 ± 0.25 to 62.5 ± 0.44 mg Kg-1 in Chinili which are also higher than European Union maximum acceptable limit in agricultural soil (i.e. 20 mg Kg-1). The analysis of As in rice grains of five varieties, collected from residents of two villages, showed the presence of higher than recommended safe level of As in rice by FAO/WHO (0.2 mg Kg-1). The As concentration order was Gosai (0.95 ± 0.044 mg kg-1), Satabdi (0.79 ± 0.038 mg kg-1), Banskathi (0.60 ± 0.026 mg kg-1), Kunti (0.47 ± 0.018 mg kg-1) and Ranjit (0.29 ± 0.021 mg kg-1). Importantly, Gosai and Satabdi were the most popular varieties being consumed by local people. The data of consumption of rice per day in the survey was used for the measurement of average daily dose and hazard quotient. It was seen that the As hazard was negatively correlated to the age of residents. Therefore, children and toddlers were at higher risk of As exposure than elderly people. In addition, people with skin related As toxicity symptoms were also cited in the two villages. The study emphasized the severity of As problem in remote areas of West Bengal, India where people consume As tainted rice due to lack of awareness about the As problem and associated health issues.
Collapse
Affiliation(s)
- Munish Kumar Upadhyay
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development (IESD), Banaras Hindu University (BHU), Varanasi, 221005, India
| | - Arnab Majumdar
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Anil Barla
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sutapa Bose
- Earth and Environmental Science Research Laboratory, Department of Earth Sciences, Indian Institute of Science Education and Research (IISER)-Kolkata, Mohanpur, West Bengal, 741246, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development (IESD), Banaras Hindu University (BHU), Varanasi, 221005, India.
| |
Collapse
|
26
|
Investigating the Impact of Anthropogenic and Natural Sources of Pollution on Quality of Water in Upper Indus Basin (UIB) by Using Multivariate Statistical Analysis. J CHEM-NY 2019. [DOI: 10.1155/2019/4307251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Water quality of the Indus River around the upper basin and the main river was evaluated with the help of statistical analysis. In order to analyze the similarities and dissimilarities for identifying the spatial variations in water quality of the Indus River and sources of contamination, multivariate statistical analysis, i.e., principle component analysis (PCA), cluster analysis, and descriptive analysis, was done. Data of 8 physicochemical quality parameters from 64 sampling stations belonging to 6 regions (labeled as M1, M2, M3, M4, M5, and M6) were used for analysis. The parameters used for assessing the water quality were pH, dissolved oxygen (DO), oxygen reducing potential (ORP), electrical conductivity (EC), total dissolved solids (TDS), salinity (%), and concentration of arsenic (As) and lead (Pb), respectively. PCA assisted in extracting and recognizing the responsible variation factors of water quality over the region, and the results showed three underlying factors including anthropogenic source pollution along with runoff due to rain and soil erosion were responsible for explaining the 93.87% of total variance. The parameters which were significantly influenced by anthropogenic impact are DO, EC, TDS (negative), and concentration of Pb (positive), while the concentration of As, % salinity, and ORP are affected by erosion and runoff due to rain. The worst pollution situation for regions M1 and M6 was due to the concentration of As which was approximately 400 μg/l (i.e., 40 times higher than minimum WHO recommendation). Furthermore, the results also indicated that, in the Indus River, three monitoring stations and five quality parameters are sufficient to have a reasonable confidence about the quality of water in this most important reserve of Pakistan.
Collapse
|
27
|
Bessada SM, Barreira JC, Oliveira MBP. Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.022] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Biswas A, Swain S, Chowdhury NR, Joardar M, Das A, Mukherjee M, Roychowdhury T. Arsenic contamination in Kolkata metropolitan city: perspective of transportation of agricultural products from arsenic-endemic areas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22929-22944. [PMID: 31177413 DOI: 10.1007/s11356-019-05595-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 05/27/2019] [Indexed: 06/09/2023]
Abstract
Arsenic exposure route for humans is through the drinking of contaminated water and intake of arsenic-contaminated foods, particularly in arsenic-exposed areas of Bengal delta. Transport of the arsenic-contaminated crops and vegetables grown using arsenic-contaminated groundwater and soil in arsenic-exposed areas to the uncontaminated sites and consequent dietary intakes leads to great threats for the population residing in non-endemic areas with respect to consumption of arsenic through drinking water. We have studied the food materials collected from 30 families and their dietary habits, apparently who consume arsenic-free drinking water as well as 9 well-known markets of Kolkata city. The total and inorganic arsenic intake has been estimated from the collected foodstuffs from the market basket survey (n = 93) and household survey (n = 139), respectively for human risk analysis. About 100% of the collected samples contained detectable amount of arsenic (range 24-324 μg/kg), since the origin of the food materials was somewhere from arsenic-endemic areas. The daily consumption of inorganic arsenic (iAs) from rice grain and vegetables for adult and children is 76 μg and 41.4 μg, respectively. Inorganic arsenic (mainly arsenite and arsenate) contributes approximately 88% of the total content of arsenic in vegetable. In most of the cases, insufficient nutrient intake by the studied population may lead to arsenic toxicity in the long run. An independent cancer risk assessment study on the same population indicates that the main risk of cancer might appear through the intake of arsenic-contaminated rice grain and cereals.
Collapse
Affiliation(s)
- Anirban Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Shresthashree Swain
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | | | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Antara Das
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Meenakshi Mukherjee
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, 700032, India.
| |
Collapse
|
29
|
Biswas A. A Systematic Review on Arsenic Bio-Availability in Human and Animals: Special Focus on the Rice-Human System. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019. [PMID: 31032526 DOI: 10.1007/398_2019_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The present systematic review synthesizes the diverse documentation of research on the occurrence of arsenic in soil-water systems and the human and animal bio-availability scenarios related to food chain contamination by arsenic. Humans and animals may drink arsenic-contaminated groundwater in addition to consuming foods that have been grown in arsenic-contaminated groundwater and soils. Rice grain is a potential arsenic carrier and the staple food in many parts of the world, particularly in Southeast Asian countries. Data have been summarized from 183 articles describing different aspects of arsenic flow in the food chain, that is, the soil-water-rice-human system and the water-crops-animals system and the bio-availability of arsenic to humans and animals. The phyto-availability of arsenic depends on the physicochemical and biological conditions of soil and water. In humans, the bio-accessibility of inorganic arsenic is 63-99%. Arsenic is more bio-available from rice than from other foods: different food materials differ in bio-accessible potential. Additionally, the review identifies trends in research on arsenic contamination and food chain flow considering arsenic species, toxicity assessment, and bio-accessibility studies. This systematic review provides a comprehensive assessment of the documented evidence to be used to guide future research on arsenic availability for the rice plant and subsequent availability to humans from cooked rice that can determine arsenic toxicity. The review also highlights how the focus of research on arsenic as a pollutant has changed in the past decades.
Collapse
Affiliation(s)
- Anirban Biswas
- School of Environmental Studies, Jadavpur University, Kolkata, West Bengal, India.
| |
Collapse
|
30
|
Majumder S, Banik P. Geographical variation of arsenic distribution in paddy soil, rice and rice-based products: A meta-analytic approach and implications to human health. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:184-199. [PMID: 30580115 DOI: 10.1016/j.jenvman.2018.12.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 11/29/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Arsenic is considered as ubiquitous toxic element belonging to the highest health hazard category. Wide ranges of natural as well as anthropogenic activities are subject to create global arsenic distribution in the broad sense. Rice is the major staple food consumed by world's population on the maximum scale. Growing environment of rice typically attributed by geographical origin may influence on arsenic bioavailability in rice grain. Over exploitation of arsenic contaminated, groundwater resources have recognised as major concern in agricultural perspective for rice production. On the other hand, biogeochemical weathering of arsenic bearing rocks as the geogenic origin, mining activities and application arsenical pesticides are recognised to be well known factors responsible to increase the soil arsenic level. Transfer of arsenic into rice is rightly acquainted from these possible sources of contamination in different regions around the world. Consequently, such substantial geographical variation reflects bioavailability as well as speciation of arsenic in rice. In this manuscript, we discuss the contribution of different arsenic entering pathways in soil-rice systems from regional variability. Furthermore, we attempted to apply the meta-analysis in order to predict the comparative risk assessment on distribution pattern of total and inorganic arsenic in rice commercialised from various rice producing regions of Asia, Europe and US by considering a selected number of data set an extensive range of market basket and field survey. In addition, we finally focus on health risk assessment associated by the consumption of rice and rice-based infant products as the dietary intake from the different of origin. Furthermore, we must detect and categorize the possible source of contamination, which may critically enhance the bioavailability of arsenic in rice in order to minimize the risk. These are the major aspects reviewed here.
Collapse
Affiliation(s)
- Supriya Majumder
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India
| | - Pabitra Banik
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203, B.T. Road, Kolkata, 700108, India.
| |
Collapse
|
31
|
Upadhyay MK, Shukla A, Yadav P, Srivastava S. A review of arsenic in crops, vegetables, animals and food products. Food Chem 2019; 276:608-618. [DOI: 10.1016/j.foodchem.2018.10.069] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/11/2018] [Accepted: 10/12/2018] [Indexed: 02/02/2023]
|
32
|
Jung HI, Kong MS, Lee BR, Kim TH, Chae MJ, Lee EJ, Jung GB, Lee CH, Sung JK, Kim YH. Exogenous Glutathione Increases Arsenic Translocation Into Shoots and Alleviates Arsenic-Induced Oxidative Stress by Sustaining Ascorbate-Glutathione Homeostasis in Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2019; 10:1089. [PMID: 31572411 PMCID: PMC6754068 DOI: 10.3389/fpls.2019.01089] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 08/09/2019] [Indexed: 05/18/2023]
Abstract
Glutathione (GSH) plays diverse roles in the physiological processes, stress defense, growth, and development of plants. This study investigated the effects of exogenous GSH on the biochemical responses of reactive oxygen species and antioxidant levels in rice (Oryza sativa L. cv. Dasan) seedlings under arsenic (As) stress. As treatment inhibited growth; increased the level of superoxide, hydrogen peroxide, and malondialdehyde; and enhanced the uptake of As by the roots and shoots in hydroponically grown 14-day-old seedlings. Furthermore, it reduced GSH content and GSH redox ratios, which have been correlated with the decrease in ascorbate (AsA) redox state. Whereas the exogenous application of GSH in As-treated seedlings reduced As-induced oxidative stress, improved antioxidant defense systems by maintaining antioxidant and/or redox enzyme homeostasis, and increased the AsA and GSH contents, the GSH application also increased the As translocation from the roots to the shoots. These results indicated that the increase in GSH redox state can be linked to an increase in the AsA redox ratio via the induction of the AsA-GSH cycle. Therefore, the results suggest that exogenous GSH application should be a promising approach to enhance As stress resistance in rice plants.
Collapse
Affiliation(s)
- Ha-il Jung
- Division of Soil and Fertilizer, National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
- *Correspondence: Ha-il Jung, ; Yoo-Hak Kim,
| | - Myung-Suk Kong
- Division of Soil and Fertilizer, National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Bok-Rye Lee
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Tae-Hwan Kim
- Department of Animal Science, Institute of Agricultural Science and Technology, College of Agriculture and Life Science, Chonnam National University, Gwangju, South Korea
| | - Mi-Jin Chae
- Division of Soil and Fertilizer, National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Eun-Jin Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Goo-Bok Jung
- Division of Soil and Fertilizer, National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Chang-Hoon Lee
- Department of Fruit Science, Korean National College of Agriculture and Fisheries, Jeonju, South Korea
| | - Jwa-Kyung Sung
- Division of Soil and Fertilizer, National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
| | - Yoo-Hak Kim
- Division of Soil and Fertilizer, National Institute of Agricultural Science, Rural Development Administration, Wanju, South Korea
- *Correspondence: Ha-il Jung, ; Yoo-Hak Kim,
| |
Collapse
|
33
|
Chowdhury NR, Das R, Joardar M, Ghosh S, Bhowmick S, Roychowdhury T. Arsenic accumulation in paddy plants at different phases of pre-monsoon cultivation. CHEMOSPHERE 2018; 210:987-997. [PMID: 30208559 DOI: 10.1016/j.chemosphere.2018.07.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Geogenic arsenic (As) contamination in Bengal Delta Plain is a growing environmental and research concern. Cultivation of staple crops like paddy on these contaminated fields is one of the major routes for human dietary exposure. The present study investigates changes of arsenic concentrations in paddy plant parts, root soil and surface soil throughout the various phases of pre-monsoon (boro) cultivation. Arsenic uptake property of paddy plants collected from 10 fields was found to be dependent on the variety of paddy plant (like Minikit, Jaya) rather than arsenic levels in groundwater (0.074-0.301 mg/l) or soil (25.3-60 mg/kg). Arsenic is translocated from root to aerial parts in descending order. Leaf, stem, root, root soil and surface soil showed a similar trend in their change of arsenic concentration throughout the cultivation period. Arsenic concentration was highest in vegetative phase; sharply declined in reproductive phase; followed by moderate increase in ripening phase. The young root tissues in vegetative (primary) phase could uptake arsenic at a much faster rate than the older tissues in later phases. With the growth of the plant, higher concentrations of iron in root soil in the reproductive phase confirmed the formation of iron plaques on the surface of the root, which sequester arsenic and prevented its uptake by plants. Finally, co-precipitation of arsenic with iron released from crystallized iron plaques results in loosening of the iron plaques from root surface. Thus, soil arsenic concentration increases in the final phase of cultivation which in turn contributes to increased concentration in plant parts.
Collapse
Affiliation(s)
| | - Reshmi Das
- Earth Observatory of Singapore, Nanyang Technological University, 639798, Singapore
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India
| | - Soma Ghosh
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India
| | - Subhojit Bhowmick
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India.
| |
Collapse
|
34
|
Roy Chowdhury N, Ghosh S, Joardar M, Kar D, Roychowdhury T. Impact of arsenic contaminated groundwater used during domestic scale post harvesting of paddy crop in West Bengal: Arsenic partitioning in raw and parboiled whole grain. CHEMOSPHERE 2018; 211:173-184. [PMID: 30071430 DOI: 10.1016/j.chemosphere.2018.07.128] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 07/14/2018] [Accepted: 07/22/2018] [Indexed: 06/08/2023]
Abstract
The role of post harvesting procedures for producing parboiled rice grain using arsenic (As) contaminated groundwater in rural Bengal was investigated. Considerable high concentrations of As (mean: 186 μg/kg) were found in about 82% of parboiled rice grain samples compared to raw or non-parboiled rice grain samples (66 μg/kg in 75% samples) obtained from Deganga, a highly As affected zone located in West Bengal, India. This observation instigated to study the additional entry of As at various stages of parboiling. A maximum increase of 205% of As content in parboiled rice grain was observed. Significant increase in parboiled whole grain As concentration was dependent upon the large difference between As concentrations of the water and the raw whole grain used for parboiling. Arsenic concentrations of water samples collected at raw, half boiled and full boiled stages of parboiling increased, irrespective of their initial concentration due to reduction in final volume during parboiling process. Principle component analysis shows a positive correlation of As concentration of rice grain to that in the groundwater being used in post harvesting procedure. Moreover, partitioning studies of As in whole grain indicated higher accumulation of As content in individual rice grain than that in their respective husks implying higher risk of exposure on ingestion of these contaminated rice grains. It is therefore, suggested to employ novel methods such as rain water harvesting or surface water channelling to make As free water available for parboiling process to curtail the entry of additional As in parboiled rice.
Collapse
Affiliation(s)
| | - Soma Ghosh
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India.
| | - Madhurima Joardar
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India.
| | - Duhita Kar
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India.
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kokata, 700032, India.
| |
Collapse
|
35
|
|
36
|
Rasheed H, Kay P, Slack R, Gong YY. Arsenic species in wheat, raw and cooked rice: Exposure and associated health implications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 634:366-373. [PMID: 29627560 DOI: 10.1016/j.scitotenv.2018.03.339] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 03/22/2018] [Accepted: 03/27/2018] [Indexed: 05/13/2023]
Abstract
Arsenic concentrations above 10μgL-1 were previously found in 89% of ground water sources in six villages of Pakistan. The present study has ascertained the health risks associated with exposure to total arsenic (tAs) and its species in most frequently consumed foods. Inorganic arsenic (iAs) concentrations were found to be 92.5±41.88μgkg-1, 79.21±76.42μgkg-1, and 116.38±51.38μgkg-1 for raw rice, cooked rice and wheat respectively. The mean tAs concentrations were 47.47±30.72μgkg-1, 71.65±74.7μgkg-1, 105±61.47μgkg-1. Wheat is therefore demonstrated to be a significant source of arsenic exposure. Dimethylarsinic acid was the main organic species detected in rice, whilst monomethylarsonic acid was only found at trace levels. Total daily intake of iAs exceeded the provisional tolerable daily intake of 2.1μgkg-1day-1 body weight in 74% of study participants due to concurrent intake from water (94%), wheat (5%) and raw rice (1%). A significant association between tAs in cooked rice and cooking water resulted in tAs intake 43% higher in cooked rice compared to raw rice. The study suggests that arsenic intake from food, particularly from wheat consumption, holds particular significance where iAs is relatively low in water. Chronic health risks were found to be significantly higher from wheat intake than rice, whilst the risk in terms of acute effects was below the USEPA's limit of 1.0. Children were at significantly higher health risk than adults due to iAs exposure from rice and/or wheat. The dietary exposure of participants to tAs was attributable to staple food intake with ground water iAs <10μgL-1, however the preliminary advisory level (200μgkg-1) was achievable with rice consumption of ≤200gday-1 and compliance with ≤10μgL-1 iAs in drinking water. Although the daily iAs intake from food was lower than total water intake, the potential health risk from exposure to arsenic and its species still exists and requires exposure control measures.
Collapse
Affiliation(s)
- Hifza Rasheed
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Paul Kay
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rebecca Slack
- The Royal Horticultural Society, Harlow Carr, Crag Lane, Beckwithshaw, Harrogate, North Yorkshire HG3 1QB, UK
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
37
|
NARUKAWA T, IWAI T, CHIBA K. Determination of Inorganic Arsenic in Grape Products Using HPLC-ICP-MS. ANAL SCI 2018; 34:687-691. [DOI: 10.2116/analsci.18sbp02] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tomohiro NARUKAWA
- National Metrology Institute of Japan (NMIJ), National Institute of Advanced Industrial Science and Technology (AIST)
| | - Takahiro IWAI
- Department of Environmental and Applied Chemistry, School of Science and Technology, Kwansei Gakuin University
| | - Koichi CHIBA
- Department of Environmental and Applied Chemistry, School of Science and Technology, Kwansei Gakuin University
| |
Collapse
|
38
|
Dahlawi S, Naeem A, Iqbal M, Farooq MA, Bibi S, Rengel Z. Opportunities and challenges in the use of mineral nutrition for minimizing arsenic toxicity and accumulation in rice: A critical review. CHEMOSPHERE 2018; 194:171-188. [PMID: 29202269 DOI: 10.1016/j.chemosphere.2017.11.149] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 11/21/2017] [Accepted: 11/25/2017] [Indexed: 06/07/2023]
Abstract
Growing rice on arsenic (As)-contaminated soil or irrigating with As-contaminated water leads to significant accumulation of As in grains. Moreover, rice accumulates more As into grains than other cereal crops. Thus, rice consumption has been identified as a major route of human exposure to As in many countries. Inorganic As species are carcinogenic and could pose a considerable health risk to humans even at low dietary concentration. Genotypic variation and concentration of nutrients such as iron, manganese, phosphate, sulfur and silicon are the two main factors that affect As accumulation in rice grains. Therefore, in addition to better growth and yield of plants, application of specific nutrients in optimum quantities offers an added benefit of decreasing As content in rice grains. These nutrient elements influence speciation of As in rhizosphere, compete with As for root uptake and interfere with As translocations to the shoot and ultimately accumulation in grains. This papers critically appraises the methods, forms and rate of application, mechanisms and extent of efficiency of different mineral nutrients in decreasing As accumulation in rice grains.
Collapse
Affiliation(s)
- Saad Dahlawi
- Department of Environmental Health, College of Public Health, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia; Institute for Research and Medical Consultation (IRMC), Imam Abdulrehman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| | - Asif Naeem
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan; Nuclear Institute of Agriculture and Biology, Jhang Road, Faisalabad, Pakistan
| | - Muhammad Iqbal
- Department of Botany, Jamia Hamdard (Hamdard University), New Delhi, India
| | - Muhammad Ansar Farooq
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sadia Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zed Rengel
- School of Agriculture and Environment, University of Western Australia, 35 Stirling Highway, Perth, WA, 6009, Australia
| |
Collapse
|
39
|
Chakraborty A, Islam E. Temporal dynamics of total and free-living nitrogen-fixing bacterial community abundance and structure in soil with and without history of arsenic contamination during a rice growing season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:4951-4962. [PMID: 29204941 DOI: 10.1007/s11356-017-0858-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Despite the fact that the nitrogen (N) fixers act as the key regulator of ecosystem process, a detailed study of their abundance, diversity, and dynamics in arsenic (As)-contaminated rice fields is missing so far. DNA extracted from soil followed by 16S rRNA and nifH gene-based real-time qPCR, clone library analysis, and DNA sequencing were used to examine the status of the total and diazotrophic communities in two agricultural fields with and without arsenic contamination history during one rice cultivation season. In general, higher nifH and 16S rRNA gene copy numbers were observed in rice growing soils with lesser As than that with higher As. Elevated levels of 16S rRNA and nifH genes in soil is directly associated with total and nitrogen fixers abundance in the agricultural land without As contamination history through the cultivation period, but the copy number of 16S rRNA gene was decreased, and the nifH gene remained unchanged in the As-contaminated land. Additionally, Canonical Correspondence Analysis (CCA) indicated the possible suppression of nifH gene abundance by soil pH, phosphate, and As content. Increased abundance of total and Acidobacterial lineages in low As-containing soil and the detection of several uncultured groups among nifH gene sequence in higher frequency indicated the presence of novel nifH bearing bacterial groups. Conversely, the abundance of copiotrophic Proteobacterial lineages gradually increased in soil with higher As. Herein, our study demonstrated that the dynamics of free-living nitrogen-fixing bacterial communities were perturbed due to As contamination in agricultural land.
Collapse
Affiliation(s)
- Arindam Chakraborty
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Kalyani, West Bengal, 741235, India.
| |
Collapse
|
40
|
Total and Bioaccessible Soil Arsenic and Lead Levels and Plant Uptake in Three Urban Community Gardens in Puerto Rico. GEOSCIENCES 2018; 8:43. [PMID: 29682336 DOI: 10.3390/geosciences8020043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arsenic (As) and lead (Pb) are two contaminants of concern associated with urban gardening. In Puerto Rico, data currently is limited on As and Pb levels in urban garden soils, soil metal (loid) bioaccessibility, and uptake of As and Pb in soil by edible plants grown in the region. This study examined total and bioaccessible soil As and Pb concentrations and accumulation in 10 commonly grown garden plants collected from three urban community gardens in Puerto Rico. Bioavailability values were predicted using bioaccessibility data to compare site-specific bioavailability estimates to commonly used default exposure assumptions. Total and bioaccessible As levels in study soils ranged from 2 to 55 mg/kg and 1 to 18 mg/kg, respectively. Total and bioaccessible Pb levels ranged from 19 to 172 mg/kg and 17 to 97 mg/kg, respectively. Measured bioaccessibility values corresponded to 19 to 42% bioaccessible As and 61 to 100% bioaccessible Pb when expressed as a percent of total As and Pb respectively. Predicted relative percent bioavailability of soil As and Pb based on measured bioaccessibility values ranged from 18 to 36% and 51 to 85% for As and Pb respectively. Transfer factors (TFs) measuring uptake of As in plants from soil ranged from 0 to 0.073 in the edible flesh (fruit or vegetable) of plant tissues analyzed and 0.073 to 0.444 in edible leaves. Pb TFs ranged from 0.002 to 0.012 in flesh and 0.023 to 0.204 in leaves. Consistent with TF values, leaves accumulated higher concentrations of As and Pb than the flesh, with the highest tissue concentrations observed in the culantro leaf (3.2 mg/kg dw of As and 8.9 mg/kg dw of Pb). Leaves showed a general but not statistically-significant (α = 0.05) trend of increased As and Pb concentration with increased soil levels, while no trend was observed for flesh tissues. These findings provide critical data that can improve accuracy and reduce uncertainty when conducting site-specific risk determination of potential As and Pb exposure while gardening or consuming garden produce in the understudied region of Puerto Rico.
Collapse
|
41
|
Bhowmick S, Pramanik S, Singh P, Mondal P, Chatterjee D, Nriagu J. Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:148-169. [PMID: 28850835 DOI: 10.1016/j.scitotenv.2017.08.216] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 08/15/2017] [Accepted: 08/20/2017] [Indexed: 05/03/2023]
Abstract
This paper reviews how active research in West Bengal has unmasked the endemic arsenism that has detrimental effects on the health of millions of people and their offspring. It documents how the pathways of exposure to this toxin/poison have been greatly expanded through intensive application of groundwater in agriculture in the region within the Green Revolution framework. A goal of this paper is to compare and contrast the similarities and differences in arsenic occurrence in West Bengal with those of other parts of the world and assess the unique socio-cultural factors that determine the risks of exposure to arsenic in local groundwater. Successful intervention options are also critically reviewed with emphasis on integrative strategies that ensure safe water to the population, proper nutrition, and effective ways to reduce the transfer of arsenic from soil to crops. While no universal model may be suited for the vast areas of the world affected with by natural contamination of groundwater with arsenic, we have emphasized community-specific sustainable options that can be adapted. Disseminating scientifically correct information among the population coupled with increased community level participation and education are recognized as necessary adjuncts for an engineering intervention to be successful and sustainable.
Collapse
Affiliation(s)
- Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India.
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Payel Singh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Priyanka Mondal
- Ceramic Membrane Division, CSIR-Central Glass and Ceramic Research Institute (CGCRI), Raja S.C. Mullick Road, Kolkata 700032, India
| | - Debashis Chatterjee
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal 741235, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| |
Collapse
|
42
|
Ghosh D, Bhadury P. Microbial Cycling of Arsenic in the Aquifers of Bengal Delta Plains (BDP). ADVANCES IN SOIL MICROBIOLOGY: RECENT TRENDS AND FUTURE PROSPECTS 2018. [DOI: 10.1007/978-981-10-6178-3_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
43
|
Jung HI, Lee J, Chae MJ, Kong MS, Lee CH, Kang SS, Kim YH. Growth-inhibition patterns and transfer-factor profiles in arsenic-stressed rice (Oryza sativa L.). ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:638. [PMID: 29147882 PMCID: PMC5691118 DOI: 10.1007/s10661-017-6350-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/02/2017] [Indexed: 05/29/2023]
Abstract
Arsenic (As) accumulation in rice owing to uptake from the soil is a critical human health issue. Here, we studied the chemical properties of As-treated soils, growth inhibition patterns of As-stressed rice plants, changes in the As content of soil and soil solutions, and the relationship between As accumulation and As transfer factor from the soil to the rice organs. Rice plants were cultivated in a greenhouse under four concentrations of As: 0 (control), 25, 50, and 75 mg kg-1. A significant positive correlation was found between available P2O5 and exchangeable K and between As concentration and available P2O5 or exchangeable K. The As concentration for 50% shoot growth inhibition was 50 mg kg-1. As levels in roots and shoots were positively correlated with the growth stages of rice. The transfer factor (TF)root/soil increased with As concentration at the tillering stage but decreased at the heading stage. TFroot/soil and TFshoot/soil were higher at the heading stage than at the tillering stage. As accumulation in the 25 mg kg-1 treatment was higher during the heading stage, whereas no difference was found at the tillering stage. As accumulation was related to plant biomass and soil As concentration. We found that As accumulation was greater at As concentrations that allowed for plant growth and development. Thus, species-specific threshold concentrations must be determined based on As phytotoxicity for the phytoremediation of As-contaminated soils. Hence, developing practical approaches for managing safe crop production in farmlands with an As contamination of 25 mg kg-1 or less is necessary.
Collapse
Affiliation(s)
- Ha-Il Jung
- Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Jinwook Lee
- Department of Integrative Plant Science, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Mi-Jin Chae
- Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Myung-Suk Kong
- Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Chang-Hoon Lee
- Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea
| | - Seong-Soo Kang
- R&D Coordination Division, RDA, Jeonju, 54875, Republic of Korea
| | - Yoo-Hak Kim
- Division of Soil and Fertilizer, National Institute of Agricultural Science, RDA, Wanju, 55365, Republic of Korea.
| |
Collapse
|
44
|
Zubair M, Martyniuk CJ, Shaheen A. Rising level of arsenic in water and fodder: a growing threat to livestock and human populations in Pakistan. TOXIN REV 2017. [DOI: 10.1080/15569543.2017.1348360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Muhammad Zubair
- Faculty of Veterinary Sciences, University of Poonch Rawalakot Azad Kashmir, Rawalakot, Pakistan
| | - Christopher Joseph Martyniuk
- Department of Physiological Sciences, Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL, USA
| | - Aqeela Shaheen
- Department of Soil and Environmental Sciences Faculty of Agriculture, University of Poonch Rawalakot Azad Kashmir, Rawalakot, Pakistan
| |
Collapse
|
45
|
Clemente MJ, Devesa V, Vélez D. In Vitro Reduction of Arsenic Bioavailability Using Dietary Strategies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3956-3964. [PMID: 28316232 DOI: 10.1021/acs.jafc.6b05234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The main route of human exposure to inorganic arsenic (As) is through the consumption of food and water. Continued exposure to inorganic As [As(III) and As(V)] may cause a variety of diseases, including various types of cancer. The removal of As from these sources is complex, especially for food. One way to decrease As exposure could be by reducing intestinal absorption of it. The aim of this study is to seek dietary strategies (pure compounds, extracts, or supplements) that are capable of reducing the amount of As that is absorbed and reaches systemic circulation. Standard solutions of As(III) and As(V) and bioaccessible fractions of food samples with or without the dietary strategies to be tested were added to colon-derived human cells (NCM460 and HT-29MTX) to determine the apparent permeability (Papp) of As. Results show that transport across the intestinal monolayers is substantial, and the passage of As(III) (Papp = 4.2 × 10-5 cm/s) is greater than that of As(V) (Papp = 2.4 × 10-5 cm/s). Some of the treatments used (iron species, cysteine, grape extract) significantly reduce the transport of both inorganic As standards across the intestinal monolayer, thus decreasing absorption of them. In food samples, the effect of the dietary compounds on inorganic As bioavailability was also observed, especially in the cases of curcumin and cysteine. Compounds that proved effective in these in vitro assays could be the basis for intervention strategies aimed at reducing As toxicity in chronically exposed populations or regular consumers of food products with high As contents.
Collapse
Affiliation(s)
- M J Clemente
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Av. Agustín Escardino 7, 46980 Paterna (Valencia), Spain
| | - V Devesa
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Av. Agustín Escardino 7, 46980 Paterna (Valencia), Spain
| | - D Vélez
- Instituto de Agroquímica y Tecnología de Alimentos (IATA-CSIC) , Av. Agustín Escardino 7, 46980 Paterna (Valencia), Spain
| |
Collapse
|
46
|
Centrifugation assisted digestion for simultaneous voltammetric determination of ultra trace metal ions in water and milk samples. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.enmm.2017.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Bakhat HF, Zia Z, Fahad S, Abbas S, Hammad HM, Shahzad AN, Abbas F, Alharby H, Shahid M. Arsenic uptake, accumulation and toxicity in rice plants: Possible remedies for its detoxification: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:9142-9158. [PMID: 28160172 DOI: 10.1007/s11356-017-8462-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/16/2017] [Indexed: 05/13/2023]
Abstract
Arsenic (As) is a toxic metalloid. Serious concerns have been raised in literature owing to its potential toxicity towards living beings. The metalloid causes various water- and food-borne diseases. Among food crops, rice contains the highest concentrations of As. Consuming As-contaminated rice results in serious health issues. Arsenic concentration in rice is governed by various factors in the rhizosphere such as availability and concentration of various mineral nutrients (iron, phosphate, sulfur and silicon) in soil solution, soil oxidation/reduction status, inter-conversion between organic and inorganic As compounds. Agronomic and civil engineering methods can be adopted to decrease As accumulation in rice. Agronomic methods such as improving soil porosity/aeration by irrigation management or creating the conditions favorable for As-precipitate formation, and decreasing As uptake and translocation by adding a inorganic nutrients that compete with As are easy and cost effective techniques at field scale. This review focuses on the factors regulating and competing As in soil-plant system and As accumulation in rice grains. Therefore, it is suggested that judicious use of water, management of soil, antagonistic effects of various inorganic plant-nutrients to As should be considered in rice cultivated areas to mitigate the building up of As in human food chain and with minimum negative impact to the environment.
Collapse
Affiliation(s)
- Hafiz Faiq Bakhat
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan.
| | - Zahida Zia
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Shah Fahad
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Sunaina Abbas
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | - Hafiz Mohkum Hammad
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| | | | - Farhat Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, 38000, Pakistan
| | - Hesham Alharby
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS Institute of Information Technology, Vehari, 61100, Pakistan
| |
Collapse
|
48
|
Rasheed H, Slack R, Kay P, Gong YY. Refinement of arsenic attributable health risks in rural Pakistan using population specific dietary intake values. ENVIRONMENT INTERNATIONAL 2017; 99:331-342. [PMID: 28040261 DOI: 10.1016/j.envint.2016.12.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 12/16/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Previous risk assessment studies have often utilised generic consumption or intake values when evaluating ingestion exposure pathways. If these values do not accurately reflect the country or scenario in question, the resulting risk assessment will not provide a meaningful representation of cancer risks in that particular country/scenario. OBJECTIVES This study sought to determine water and food intake parameters for one region in South Asia, rural Pakistan, and assess the role population specific intake parameters play in cancer risk assessment. METHODS A questionnaire was developed to collect data on sociodemographic features and 24-h water and food consumption patterns from a rural community. The impact of dietary differences on cancer susceptibility linked to arsenic exposure was evaluated by calculating cancer risks using the data collected in the current study against standard water and food intake levels for the USA, Europe and Asia. A probabilistic cancer risk was performed for each set of intake values of this study. RESULTS Average daily total water intake based on drinking direct plain water and indirect water from food and beverages was found to be 3.5Lday-1 (95% CI: 3.38, 3.57) exceeding the US Environmental Protection Agency's default (2.5Lday-1) and World Health Organization's recommended intake value (2Lday-1). Average daily rice intake (469gday-1) was found to be lower than in India and Bangladesh whereas wheat intake (402gday-1) was higher than intake reported for USA, Europe and Asian sub-regions. Consequently, arsenic-associated cumulative cancer risks determined for daily water intake was found to be 17 chances in children of 3-6years (95% CI: 0.0014, 0.0017), 14 in children of age 6-16years (95% CI: 0.001, 0.0011) and 6 in adults of 16-67years (95% CI: 0.0006, 0.0006) in a population size of 10,000. This is higher than the risks estimated using the US Environmental Protection Agency and World Health Organization's default recommended water intake levels. Rice intake data showed early life cumulative cancer risks of 15 chances in 10,000 for children of 3-6years (95% CI: 0.0012, 0.0015), 14 in children of 6-16years (95% CI: 0.0011, 0.0014) and later life risk of 8 adults (95% CI: 0.0008, 0.0008) in a population of 10,000. This is lower than the cancer risks in countries with higher rice intake and elevated arsenic levels (Bangladesh and India). Cumulative cancer risk from arsenic exposure showed the relative risk contribution from total water to be 51%, from rice to be 44% and 5% from wheat intake. CONCLUSIONS The study demonstrates the need to use population specific dietary information for risk assessment and risk management studies. Probabilistic risk assessment concluded the importance of dietary intake in estimating cancer risk, along with arsenic concentrations in water or food and age of exposed rural population.
Collapse
Affiliation(s)
- Hifza Rasheed
- Water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Rebecca Slack
- Water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Paul Kay
- Water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
49
|
Verma S, Verma PK, Pande V, Tripathi RD, Chakrabarty D. Transgenic Arabidopsis thaliana expressing fungal arsenic methyltransferase gene (WaarsM) showed enhanced arsenic tolerance via volatilization. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2016; 132:113-120. [DOI: 10.1016/j.envexpbot.2016.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
|
50
|
Islam S, Rahman MM, Islam MR, Naidu R. Arsenic accumulation in rice: Consequences of rice genotypes and management practices to reduce human health risk. ENVIRONMENT INTERNATIONAL 2016; 96:139-155. [PMID: 27649473 DOI: 10.1016/j.envint.2016.09.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/16/2016] [Accepted: 09/07/2016] [Indexed: 05/11/2023]
Abstract
Rice is an essential staple food and feeds over half of the world's population. Consumption of rice has increased from limited intake in Western countries some 50years ago to major dietary intake now. Rice consumption represents a major route for inorganic arsenic (As) exposure in many countries, especially for people with a large proportion of rice in their daily diet as much as 60%. Rice plants are more efficient in assimilating As into its grains than other cereal crops and the accumulation may also adversely affect the quality of rice and their nutrition. Rice is generally grown as a lowland crop in flooded soils under reducing conditions. Under these conditions the bioavailability of As is greatly enhanced leading to excessive As bioaccumulation compared to that under oxidizing upland conditions. Inorganic As species are carcinogenic to humans and even at low levels in the diet pose a considerable risk to humans. There is a substantial genetic variation among the rice genotypes in grain-As accumulation as well as speciation. Identifying the extent of genetic variation in grain-As concentration and speciation of As compounds are crucial to determining the rice varieties which accumulate low inorganic As. Varietal selection, irrigation water management, use of fertilizer and soil amendments, cooking practices etc. play a vital role in reducing As exposure from rice grains. In the meantime assessing the bioavailability of As from rice is crucial to understanding human health exposure and reducing the risk.
Collapse
Affiliation(s)
- Shofiqul Islam
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia; Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia
| | - M R Islam
- Department of Soil Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science and Information Technology, The University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|