1
|
Quignot N, Więcek W, Lautz L, Dorne JL, Amzal B. Inter-phenotypic differences in CYP2C9 and CYP2C19 metabolism: Bayesian meta-regression of human population variability in kinetics and application in chemical risk assessment. Toxicol Lett 2020; 337:111-120. [PMID: 33232775 DOI: 10.1016/j.toxlet.2020.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Quantifying variability in pharmacokinetics (PK) and toxicokinetics (TK) provides a science-based approach to refine uncertainty factors (UFs) for chemical risk assessment. In this context, genetic polymorphisms in cytochromes P450 (CYPs) drive inter-phenotypic differences and may result in reduction or increase in metabolism of drugs or other xenobiotics. Here, an extensive literature search was performed to identify PK data for probe substrates of the human polymorphic isoforms CYP2C9 and CYP2C19. Relevant data from 158 publications were extracted for markers of chronic exposure (clearance and area under the plasma concentration-time curve) and analysed using a Bayesian meta-regression model. Enzyme function (EF), driven by inter-phenotypic differences across a range of allozymes present in extensive and poor metabolisers (EMs and PMs), and fraction metabolised (Fm), were identified as exhibiting the highest impact on the metabolism. The Bayesian meta-regression model provided good predictions for such inter-phenotypic differences. Integration of population distributions for inter-phenotypic differences and estimates for EF and Fm allowed the derivation of CYP2C9- and CYP2C19-related UFs which ranged from 2.7 to 12.7, and were above the default factor for human variability in TK (3.16) for PMs and major substrates (Fm >60%). These results provide population distributions and pathway-related UFs as conservative in silico options to integrate variability in CYP2C9 and CYP2C19 metabolism using in vitro kinetic evidence and in the absence of human data. The future development of quantitative extrapolation models is discussed with particular attention to integrating human in vitro and in vivo PK or TK data with pathway-related variability for chemical risk assessment.
Collapse
Affiliation(s)
| | | | - Leonie Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Jean-Lou Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | | |
Collapse
|
2
|
Human variability in influx and efflux transporters in relation to uncertainty factors for chemical risk assessment. Food Chem Toxicol 2020; 140:111305. [DOI: 10.1016/j.fct.2020.111305] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/11/2022]
|
3
|
Darney K, Testai E, Buratti FM, Di Consiglio E, Kasteel EE, Kramer N, Turco L, Vichi S, Roudot AC, Dorne JL, Béchaux C. Inter-ethnic differences in CYP3A4 metabolism: A Bayesian meta-analysis for the refinement of uncertainty factors in chemical risk assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100092] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Wiecek W, Dorne JL, Quignot N, Bechaux C, Amzal B. A generic Bayesian hierarchical model for the meta-analysis of human population variability in kinetics and its applications in chemical risk assessment. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.100106] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
5
|
Quignot N, Wiecek W, Amzal B, Dorne JL. The Yin–Yang of CYP3A4: a Bayesian meta-analysis to quantify inhibition and induction of CYP3A4 metabolism in humans and refine uncertainty factors for mixture risk assessment. Arch Toxicol 2018; 93:107-119. [DOI: 10.1007/s00204-018-2325-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/02/2018] [Indexed: 12/19/2022]
|
6
|
Felter SP, Daston GP, Euling SY, Piersma AH, Tassinari MS. Assessment of health risks resulting from early-life exposures: Are current chemical toxicity testing protocols and risk assessment methods adequate? Crit Rev Toxicol 2015; 45:219-44. [PMID: 25687245 DOI: 10.3109/10408444.2014.993919] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract Over the last couple of decades, the awareness of the potential health impacts associated with early-life exposures has increased. Global regulatory approaches to chemical risk assessment are intended to be protective for the diverse human population including all life stages. However, questions persist as to whether the current testing approaches and risk assessment methodologies are adequately protective for infants and children. Here, we review physiological and developmental differences that may result in differential sensitivity associated with early-life exposures. It is clear that sensitivity to chemical exposures during early-life can be similar, higher, or lower than that of adults, and can change quickly within a short developmental timeframe. Moreover, age-related exposure differences provide an important consideration for overall susceptibility. Differential sensitivity associated with a life stage can reflect the toxicokinetic handling of a xenobiotic exposure, the toxicodynamic response, or both. Each of these is illustrated with chemical-specific examples. The adequacy of current testing protocols, proposed new tools, and risk assessment methods for systemic noncancer endpoints are reviewed in light of the potential for differential risk to infants and young children.
Collapse
|
7
|
NAT2 genetic variations among South Indian populations. Hum Genome Var 2014; 1:14014. [PMID: 27081506 PMCID: PMC4785517 DOI: 10.1038/hgv.2014.14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 08/19/2014] [Accepted: 08/19/2014] [Indexed: 11/09/2022] Open
Abstract
The N-acetyltransferases (NATs) are xenobiotic-metabolizing enzymes involved in the metabolism of drugs, environmental toxins and the aromatic amine carcinogens present in cigarette smoke. Genetic variations in NAT2 have long been recognized as the cause of variable enzymatic activity or stability, leading to slow or rapid acetylation. In the present study, we genotyped three single-nucleotide polymorphisms (SNPs) from the NAT2 gene (rs1799929, rs1799930 and rs1799931), using TaqMan allelic discrimination, among 212 individuals from six major South Indian populations and compared the results with other available Indian and worldwide data. All three of the markers followed Hardy-Weinberg equilibrium and were highly polymorphic in the studied populations. The constructed haplotypes showed a high level of heterozygosity. All of the populations in the present study commonly shared only four haplotypes out of the eight possible three-site haplotypes. The haplotypes exhibited fairly high frequencies across multiple populations, where three haplotypes were shared by all six populations with a cumulative frequency ranging from 88.2% (Madiga) to 97.0% (Balija). We also observed a tribal-specific haplotype. A strong linkage disequilibrium (LD) between rs1799929 and rs1799930 was consistent in all of the studied populations, with the exception of the Madiga. A comparison of the genomic regions 20-kb up- and downstream of rs1799930 in a large number of worldwide samples showed a strong LD of this SNP with another NAT2 SNP, rs1112005, among the majority of the populations. Moreover, our lifestyle test (hunter-gatherer versus agriculturist) in comparison with the NAT2 variant suggested that two of the studied populations (Balija and Madiga) have likely shifted their diet more recently.
Collapse
|
8
|
Abduljalil K, Cain T, Humphries H, Rostami-Hodjegan A. Deciding on success criteria for predictability of pharmacokinetic parameters from in vitro studies: an analysis based on in vivo observations. Drug Metab Dispos 2014; 42:1478-84. [PMID: 24989891 DOI: 10.1124/dmd.114.058099] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Prediction accuracy of pharmacokinetic parameters is often assessed using prediction fold error, i.e., being within 2-, 3-, or n-fold of observed values. However, published studies disagree on which fold error represents an accurate prediction. In addition, "observed data" from only one clinical study are often used as the gold standard for in vitro to in vivo extrapolation (IVIVE) studies, despite data being subject to significant interstudy variability and subjective selection from various available reports. The current study involved analysis of published systemic clearance (CL) and volume of distribution at steady state (Vss) values taken from over 200 clinical studies. These parameters were obtained for 17 different drugs after intravenous administration. Data were analyzed with emphasis on the appropriateness to use a parameter value from one particular clinical study to judge the performance of IVIVE and the ability of CL and Vss values obtained from one clinical study to "predict" the same values obtained in a different clinical study using the n-fold criteria for prediction accuracy. The twofold criteria method was of interest because it is widely used in IVIVE predictions. The analysis shows that in some cases the twofold criteria method is an unreasonable expectation when the observed data are obtained from studies with small sample size. A more reasonable approach would allow prediction criteria to include clinical study information such as sample size and the variance of the parameter of interest. A method is proposed that allows the "success" criteria to be linked to the measure of variation in the observed value.
Collapse
Affiliation(s)
- Khaled Abduljalil
- Simcyp Limited (a Certara company), Sheffield, United Kingdom (K.A., T.C., H.H., A.R-H); and Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (A.R-H)
| | - Theresa Cain
- Simcyp Limited (a Certara company), Sheffield, United Kingdom (K.A., T.C., H.H., A.R-H); and Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (A.R-H)
| | - Helen Humphries
- Simcyp Limited (a Certara company), Sheffield, United Kingdom (K.A., T.C., H.H., A.R-H); and Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (A.R-H)
| | - Amin Rostami-Hodjegan
- Simcyp Limited (a Certara company), Sheffield, United Kingdom (K.A., T.C., H.H., A.R-H); and Manchester Pharmacy School, University of Manchester, Manchester, United Kingdom (A.R-H)
| |
Collapse
|
9
|
Valcke M, Krishnan K. Characterization of the human kinetic adjustment factor for the health risk assessment of environmental contaminants. J Appl Toxicol 2013; 34:227-40. [PMID: 24038072 DOI: 10.1002/jat.2919] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 12/26/2022]
Abstract
A default uncertainty factor of 3.16 (√10) is applied to account for interindividual variability in toxicokinetics when performing non-cancer risk assessments. Using relevant human data for specific chemicals, as WHO/IPCS suggests, it is possible to evaluate, and replace when appropriate, this default factor by quantifying chemical-specific adjustment factors for interindividual variability in toxicokinetics (also referred to as the human kinetic adjustment factor, HKAF). The HKAF has been determined based on the distributions of pharmacokinetic parameters (e.g., half-life, area under the curve, maximum blood concentration) in relevant populations. This article focuses on the current state of knowledge of the use of physiologically based algorithms and models in characterizing the HKAF for environmental contaminants. The recent modeling efforts on the computation of HKAF as a function of the characteristics of the population, chemical and its mode of action (dose metrics), as well as exposure scenario of relevance to the assessment are reviewed here. The results of these studies, taken together, suggest the HKAF varies as a function of the sensitive subpopulation and dose metrics of interest, exposure conditions considered (route, duration, and intensity), metabolic pathways involved and theoretical model underlying its computation. The HKAF seldom exceeded the default value of 3.16, except in very young children (i.e., <≈ 3 months) and when the parent compound is the toxic moiety. Overall, from a public health perspective, the current state of knowledge generally suggest that the default uncertainty factor is sufficient to account for human variability in non-cancer risk assessments of environmental contaminants.
Collapse
Affiliation(s)
- Mathieu Valcke
- Département de santé environnementale et santé au travail, Université de Montréal, CP 6128, Succursale Centre-Ville, Montréal, Québec, Canada, H3C 3 J7; Institut national de santé publique du Québec, 190 Boul. Crémazie Est, Montréal, QC, Canada, H2P 1E2
| | | |
Collapse
|
10
|
Correlations between the selected parameters of the chemical structure of drugs and between-subject variability in area under the curve. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0187-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Abstract
Chemical risk assessment for human health requires a multidisciplinary approach through four steps: hazard identification and characterization, exposure assessment, and risk characterization. Hazard identification and characterization aim to identify the metabolism and elimination of the chemical (toxicokinetics) and the toxicological dose-response (toxicodynamics) and to derive a health-based guidance value for safe levels of exposure. Exposure assessment estimates human exposure as the product of the amount of the chemical in the matrix consumed and the consumption itself. Finally, risk characterization evaluates the risk of the exposure to human health by comparing the latter to with the health-based guidance value. Recently, many research efforts in computational toxicology have been put together to characterize population variability and uncertainty in each of the steps of risk assessment to move towards more quantitative and transparent risk assessment. This chapter focuses specifically on modeling population variability and effects for each step of risk assessment in order to provide an overview of the statistical and computational tools available to toxicologists and risk assessors. Three examples are given to illustrate the applicability of those tools: derivation of pathway-related uncertainty factors based on population variability, exposure to dioxins, dose-response modeling of cadmium.
Collapse
Affiliation(s)
- Jean Lou Dorne
- Emerging Risks Unit, European Food Safety Authority, Parma, Italy.
| | | | | | | | | | | |
Collapse
|
12
|
Balaji L, Krishna BS, Bhaskar LVKS. An unlikely role for the NAT2 genotypes and haplotypes in the oral cancer of south Indians. Arch Oral Biol 2011; 57:513-8. [PMID: 22137356 DOI: 10.1016/j.archoralbio.2011.10.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 08/20/2011] [Accepted: 10/30/2011] [Indexed: 11/18/2022]
Abstract
UNLABELLED The arylamine N-acetyltransferase 2 (NAT2) enzyme detoxifies a wide spectrum of naturally occurring xenobiotics including carcinogens and drugs. Acetylation catalysed by the NAT2 is an important process in metabolic activation of arylamines to electrophilic intermediates that initiate carcinogenesis. Polymorphism in N-acetyltransferase 2 gene was reported to be associated with the susceptibility of various cancers. OBJECTIVE The aim of our study was to determine whether there is any association between the susceptibility to oral cancer amongst the variations of NAT2 genotypes. DESIGN This study was carried out in 157 patients with oral cancer. The control group consisted of 132 healthy volunteers. The most common polymorphisms rs1799929, rs1799930 and rs1799931 on the NAT2 gene were screened for the genotypes using TaqMan allelic discrimination. RESULTS All the three SNPs were polymorphic with minor allele frequency of 0.339, 0.372 and 0.061 for rs1799929, rs1799930 and rs1799931, respectively. None of the polymorphic site deviated from HWE in controls. There were no significant differences in genotype or allele frequencies of three SNPs between controls and cases with oral cancer. Risk of oral cancer development for the carriers of the individual deduced phenotypes was also not statistically significant. Of the 3 studied polymorphisms, 2 were in strong LD and form one haplotype block. None of the haplotype had shown significant association with the oral cancer. CONCLUSIONS Our study concludes that the NAT2 genotypes, phenotypes and haplotypes are not involved in the susceptibility to oral cancer in South Indian subjects.
Collapse
Affiliation(s)
- Lakshmi Balaji
- Department of Endodontics, Sri Ramachandra Dental College and Hospital, Sri Ramachandra University, Chennai, India
| | | | | |
Collapse
|
13
|
Valcke M, Krishnan K. An assessment of the impact of physico-chemical and biochemical characteristics on the human kinetic adjustment factor for systemic toxicants. Toxicology 2011; 286:36-47. [DOI: 10.1016/j.tox.2011.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 04/28/2011] [Accepted: 05/06/2011] [Indexed: 11/26/2022]
|
14
|
Schroeder K, Bremm K, Alépée N, Bessems J, Blaauboer B, Boehn S, Burek C, Coecke S, Gombau L, Hewitt N, Heylings J, Huwyler J, Jaeger M, Jagelavicius M, Jarrett N, Ketelslegers H, Kocina I, Koester J, Kreysa J, Note R, Poth A, Radtke M, Rogiers V, Scheel J, Schulz T, Steinkellner H, Toeroek M, Whelan M, Winkler P, Diembeck W. Report from the EPAA workshop: In vitro ADME in safety testing used by EPAA industry sectors. Toxicol In Vitro 2011; 25:589-604. [DOI: 10.1016/j.tiv.2010.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 11/05/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
|
15
|
Gajski G, Dinter D, Garaj-Vrhovac V. In vitro effect of the antimalarial drug proguanil hydrochloride on viability and DNA damage in human peripheral blood lymphocytes. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 30:257-263. [PMID: 21787658 DOI: 10.1016/j.etap.2010.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/02/2010] [Accepted: 07/09/2010] [Indexed: 05/31/2023]
Abstract
This study aimed to evaluate the effect of proguanil, a chemical substance used for treatment and prevention of malaria on viability and DNA integrity in human lymphocytes in vitro. Two different concentrations of proguanil obtained from the plasma concentrations were used: 130ng/ml used for prophylactic treatment and 520ng/ml used in treatment of malaria. Testing was done with and without metabolic activation. Viability of lymphocytes decreased in time and dose dependent manner. Comet assay parameters showed similar effects, indicating that some damage to DNA molecule can occur. Frequency of sister chromatid exchanges did not show significant deviation from the control samples. As for the proliferation kinetics no significant changes were noticed. Since majority of DNA damaging effect is induced after metabolic activation it is to be concluded that activity of proguanil is dependent upon the active metabolite cycloguanil and that monitoring should be conducted especially among frequent travellers.
Collapse
Affiliation(s)
- Goran Gajski
- Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb, Croatia
| | | | | |
Collapse
|
16
|
Dorne JLCM. Metabolism, variability and risk assessment. Toxicology 2009; 268:156-64. [PMID: 19932147 DOI: 10.1016/j.tox.2009.11.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/26/2009] [Accepted: 11/03/2009] [Indexed: 12/25/2022]
Abstract
For non-genotoxic carcinogens, "thresholded toxicants", Acceptable/Tolerable Daily Intakes (ADI/TDI) represent a level of exposure "without appreciable health risk" when consumed everyday or weekly for a lifetime and are derived by applying an uncertainty factor of a 100-fold to a no-observed-adverse-effect-levels (NOAEL) or to a benchmark dose. This UF allows for interspecies differences and human variability and has been subdivided to take into account toxicokinetics and toxicodynamics with even values of 10(0.5) (3.16) for the human aspect. Ultimately, such refinements allow for chemical-specific adjustment factors and physiologically based models to replace such uncertainty factors. Intermediate to chemical-specific adjustment factors are pathway-related uncertainty factors which have been derived for phase I, phase II metabolism and renal excretion. Pathway-related uncertainty factors are presented here as derived from the result of meta-analyses of toxicokinetic variability data in humans using therapeutic drugs metabolised by a single pathway in subgroups of the population. Pathway-related lognormal variability was derived for each metabolic route. The resulting pathway-related uncertainty factors showed that the current uncertainty factor for toxicokinetics (3.16) would not cover human variability for genetic polymorphism and age differences (neonates, children, the elderly). Latin hypercube (Monte Carlo) models have also been developed using quantitative metabolism data and pathway-related lognormal variability to predict toxicokinetics variability and uncertainty factors for compounds handled by several metabolic routes. For each compound, model results gave accurate predictions compared to published data and observed differences arose from data limitations, inconsistencies between published studies and assumptions during model design and sampling. Finally, under the 6(th) framework EU project NOMIRACLE (http://viso.jrc.it/nomiracle/), novel methods to improve the risk assessment of chemical mixtures were explored (1) harmonization of the use of uncertainty factors for human and ecological risk assessment using mechanistic descriptors (2) use of toxicokinetics interaction data to derive UFs for chemical mixtures. The use of toxicokinetics data in risk assessment are discussed together with future approaches including sound statistical approaches to optimise predictability of models and recombinant technology/toxicokinetics assays to identify metabolic routes for chemicals and screen mixtures of environmental health importance.
Collapse
Affiliation(s)
- J L C M Dorne
- University of Southampton, Clinical Pharmacology Group, Institute of Human Nutrition, School of Medicine, Southampton, UK.
| |
Collapse
|
17
|
Dorne J, Dorne J, Bordajandi L, Amzal B, Ferrari P, Verger P. Combining analytical techniques, exposure assessment and biological effects for risk assessment of chemicals in food. Trends Analyt Chem 2009. [DOI: 10.1016/j.trac.2009.03.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Falk-Filipsson A, Hanberg A, Victorin K, Warholm M, Wallén M. Assessment factors--applications in health risk assessment of chemicals. ENVIRONMENTAL RESEARCH 2007; 104:108-27. [PMID: 17166493 DOI: 10.1016/j.envres.2006.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 10/03/2006] [Accepted: 10/17/2006] [Indexed: 05/13/2023]
Abstract
We review the scientific basis for default assessment factors used in risk assessment of nongenotoxic chemicals including the use of chemical- and pathways specific assessment factors, and extrapolation approaches relevant to species differences, age and gender. One main conclusion is that the conventionally used default factor of 100 does not cover all inter-species and inter-individual differences. We suggest that a species-specific default factor based on allometric scaling should be used for inter-species extrapolation (basal metabolic rate). Regarding toxicodynamic and remaining toxicokinetic differences we suggest that a percentile from a probabilistic distribution is chosen to derive the assessment factor. Based on the scarce information concerning the human-to-human variability it is more difficult to suggest a specific assessment factor. However, extra emphasis should be put on sensitive populations such as neonates and genetically sensitive subgroups, and also fetuses and children which may be particularly vulnerable during development and maturation. Factors that also need to be allowed for are possible gender differences in sensitivity, deficiencies in the databases, nature of the effect, duration of exposure, and route-to-route extrapolation. Since assessment factors are used to compensate for lack of knowledge we feel that it is prudent to adopt a "conservative" approach, erring on the side of protectiveness.
Collapse
|
19
|
Dorne JLCM. Human variability in hepatic and renal elimination: implications for risk assessment. J Appl Toxicol 2007; 27:411-20. [PMID: 17497760 DOI: 10.1002/jat.1255] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hepatic metabolism and renal excretion constitute the main routes of xenobiotic elimination in humans. Improving human risk assessment for threshold contaminants requires the incorporation of quantitative data related to their elimination (toxicokinetics) and potential toxic effects (toxicodynamics). This type of data provides a scientific basis to replace the standard uncertainty factor (UF = 10) allowing for the consideration of human variability in toxicokinetics and toxicodynamics. This review focuses on recent research efforts aiming to incorporate human variability in hepatic and renal elimination (toxicokinetics) into the risk assessment process. A therapeutic drug database was developed to quantify pathway-related variability in human phase I and phase II hepatic metabolism as well as renal excretion in subgroups of the population (healthy adults, neonates and the elderly), using data on compounds cleared primarily through each route (> 60% dose). For each subgroup of the population and elimination route, pathway-related UFs were then derived to cover 95-99% of each subgroup. Overall, the default toxicokinetic UFs would not cover neonates, the elderly for most elimination routes and any subgroup of the population for compounds metabolized via polymorphic isozymes (such as CYP2C19 and CYP2D6). These pathway-related UFs allow the incorporation of in vivo metabolism and toxicokinetic data in the risk assessment process and provide a flexible intermediate option between the default UF and chemical-specific adjustment factors (CSAFs) derived from physiologically based pharmacokinetic models. Implications of human variability in hepatic metabolism and renal excretion for chemical risk assessment are discussed.
Collapse
Affiliation(s)
- J L C M Dorne
- Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, Clinical Pharmacology Group, School of Medicine, University of Southampton, Southampton, UK.
| |
Collapse
|
20
|
Dorne JLCM, Skinner L, Frampton GK, Spurgeon DJ, Ragas AMJ. Human and environmental risk assessment of pharmaceuticals: differences, similarities, lessons from toxicology. Anal Bioanal Chem 2006; 387:1259-68. [PMID: 17186225 DOI: 10.1007/s00216-006-0963-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/13/2006] [Accepted: 10/24/2006] [Indexed: 12/22/2022]
Abstract
The presence of human and veterinary pharmaceuticals in the environment has caused increasing concern due their effects on ecological receptors. Improving the risk assessment of these compounds necessitates a quantitative understanding of their metabolism and elimination in the target organism (toxicokinetics), particularly via the ubiquitous cytochrome P-450 (CYP) system and their mechanisms of toxicity (toxicodynamics). This review focuses on a number of pharmaceuticals and veterinary medicines of environmental concern, and the differences and similarities between ecological and human risk assessment. CYP metabolism is discussed with particular reference to its ubiquity in species of ecological relevance. The important issue of pharmaceutical mixtures is discussed to assess how emerging technologies such as ecotoxicogenomics may assist in moving towards a more mechanism-based environmental risk assessment of pharmaceuticals.
Collapse
Affiliation(s)
- J L C M Dorne
- Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, Clinical Pharmacology Group, School of Medicine, University of Southampton, Bassett Crescent East, Southampton, UK.
| | | | | | | | | |
Collapse
|
21
|
Alonso-Navarro H, Martínez C, García-Martín E, Benito-León J, García-Ferrer I, Vázquez-Torres P, Puertas I, López-Alburquerque T, Agúndez JAG, Jiménez-Jiménez FJ. CYP2C19 polymorphism and risk for essential tremor. Eur Neurol 2006; 56:119-23. [PMID: 16960452 DOI: 10.1159/000095702] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Accepted: 07/12/2006] [Indexed: 11/19/2022]
Abstract
Many patients with essential tremor (ET) develop acute adverse effects to primidone. We investigated the association between CYP2C19 polymorphism (possibly related to primidone metabolism) and the risk for developing essential ET and acute adverse effects to primidone. Leukocytary DNA from 200 ET patients and 300 healthy controls was studied for the genotype CYP2C19 and the occurrence of CYP2C19 allelic variants by using allele-specific PCR amplification and Sma I and BamH I RFLP analyses. The frequencies of the genotype CYP2C19*1/CYP2C19*2 and of the allelic variant CYP2C19*2 were significantly higher in ET patients than in controls. The mean age at onset of ET did not differ significantly between patients with genotypes CYP2C19*1/CYP2C19*2andCYP2C19*1/CYP2C19*1. The frequencies of the genotype CYP2C19*1/CYP2C19*2 and the allelic variant CYP2C19*2 were similar in ET patients who developed acute adverse effects to primidone, in those who tolerated primidone and in controls; the frequencies were also similar in patients with head, voice, tongue and chin tremor compared with controls. These results suggest that heterozygosis CYP2C19*1/CYP2C19*2 is associated with the risk for ET, but not with the age at onset of ET, the presentation of acute side effects of primidone, or the existence of head, voice, tongue or chin tremor.
Collapse
Affiliation(s)
- Hortensia Alonso-Navarro
- Department of Medicine-Neurology, Hospital Príncipe de Asturias, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Alonso-Navarro H, Jiménez-Jiménez FJ, García-Agúndez JA. Papel del polimorfismo genético CYP2C19 en los efectos adversos a fármacos y en el riesgo para diversas enfermedades. Med Clin (Barc) 2006; 126:697-706. [PMID: 16759580 DOI: 10.1157/13088772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
There are a great number of polymorphic genes in the human genome. Many of them codify enzymes that metabolizes drugs and xenobiotic agents, including carcinogens. Among the better known of them, there are a number of isozymes of the microsomal oxidative system (CYP3A4, CYP2C9, CYP2C19 y CYP2D6). This article reviews the following issues: a) frequency of presentation of the "poor metabolizer" genotype and/or phenotype for substrates of CYP2C19; b) role of CYP2C19 polymorphism on the metabolism of some drugs (mephenytoine and other antiepileptic drugs, proton pump inhibitors, several antidepressants and anxyolitics, the antimalaria aggent proguanyl, and propranolol, among others, use this metabolic pathway), and c) possible role of CYP2C19 polymorphism in the risk for development of neoplasia and other diseases (systemic lupus erythematosus, psoriasis, hip osteonecrosis, Alzheimer's disease, amyotrophic lateral sclerosis, essential tremor).
Collapse
|
23
|
Abstract
The establishment of safe upper intake levels for micronutrients must consider the intake-response relations for both deficiency and toxicity. Limited data are available on the toxicities of most micronutrients, and few studies that meet the criteria considered essential for the risk assessment of other chemicals in food, such as pesticides and food additives, have been performed. In some cases, the application of large uncertainty factors, which are used to establish the amount of a chemical that would be safe for daily intake throughout life, could result in nutritionally inadequate intakes of micronutrients. As a consequence, lower than normal uncertainty factors have been applied to determine safe or tolerable intakes of many micronutrients. There is no clear scientific rationale, on the basis of the metabolism and elimination of micronutrients or the nature of the adverse effects reported for high intakes, for the use of reduced uncertainty factors for micronutrient toxicity. A review of recent evaluations of selected vitamins and minerals shows little consistency in the application of uncertainty factors by different advisory groups, such as the Institute of Medicine in the United States and the Scientific Committee on Foods in the European Union. It is apparent that, in some cases, the uncertainty factor applied was selected largely to give a result that is compatible with nutritional requirements; therefore, the uncertainty factor represented part of risk management rather than hazard characterization. The usual risk assessment procedures for chemicals in food should be revised for micronutrients, so that the risks associated with intakes that are too low and too high are considered equally as part of a risk-benefit analysis.
Collapse
Affiliation(s)
- A G Renwick
- School of Medicine, University of Southampton, Southampton SO16 7PX, United Kingdom.
| |
Collapse
|
24
|
Jaquenoud Sirot E, van der Velden JW, Rentsch K, Eap CB, Baumann P. Therapeutic Drug Monitoring and Pharmacogenetic Tests as Tools in Pharmacovigilance. Drug Saf 2006; 29:735-68. [PMID: 16944962 DOI: 10.2165/00002018-200629090-00001] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Therapeutic drug monitoring (TDM) and pharmacogenetic tests play a major role in minimising adverse drug reactions and enhancing optimal therapeutic response. The response to medication varies greatly between individuals, according to genetic constitution, age, sex, co-morbidities, environmental factors including diet and lifestyle (e.g. smoking and alcohol intake), and drug-related factors such as pharmacokinetic or pharmacodynamic drug-drug interactions. Most adverse drug reactions are type A reactions, i.e. plasma-level dependent, and represent one of the major causes of hospitalisation, in some cases leading to death. However, they may be avoidable to some extent if pharmacokinetic and pharmacogenetic factors are taken into consideration. This article provides a review of the literature and describes how to apply and interpret TDM and certain pharmacogenetic tests and is illustrated by case reports. An algorithm on the use of TDM and pharmacogenetic tests to help characterise adverse drug reactions is also presented. Although, in the scientific community, differences in drug response are increasingly recognised, there is an urgent need to translate this knowledge into clinical recommendations. Databases on drug-drug interactions and the impact of pharmacogenetic polymorphisms and adverse drug reaction information systems will be helpful to guide clinicians in individualised treatment choices.
Collapse
|
25
|
Solecki R, Davies L, Dellarco V, Dewhurst I, Raaij MV, Tritscher A. Guidance on setting of acute reference dose (ARfD) for pesticides. Food Chem Toxicol 2005; 43:1569-93. [PMID: 16040182 DOI: 10.1016/j.fct.2005.04.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2005] [Revised: 04/22/2005] [Accepted: 04/22/2005] [Indexed: 11/23/2022]
Abstract
This paper summarises and extends the work developed over the last decade by the Joint FAO/WHO Meeting on Pesticide Residues (JMPR) for acute health risk assessment of agricultural pesticides. The general considerations in setting of acute reference doses (ARfDs) in a step-wise process, as well as specific considerations and guidance regarding selected toxicological endpoints are described in detail. The endpoints selected are based on the practical experience with agricultural pesticides by the JMPR and are not a comprehensive listing of all possible relevant endpoints. Haematotoxicity, immunotoxicity, neurotoxicity, liver and kidney toxicity, endocrine effects as well as developmental effects are taken into account as acute toxic alerts, relevant for the consideration of ARfDs for pesticides. The general biological background and the data available through standard toxicological testing for regulatory purposes, interpretation of the data, conclusions and recommendations for future improvements are described for each relevant endpoint. The paper also considers a single dose study protocol. This type of study is not intended to be included in routine toxicological testing for regulatory purposes, but rather to guide further testing when the current database indicates the necessity for an ARfD but does not allow a reliable derivation of the value.
Collapse
Affiliation(s)
- Roland Solecki
- Pesticides and Biocides Division, Federal Institute for Risk Assessment, Thielallee 88-92, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Huijbregts MAJ, Rombouts LJA, Ragas AMJ, van de Meent D. Human-toxicological effect and damage factors of carcinogenic and noncarcinogenic chemicals for life cycle impact assessment. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2005; 1:181-244. [PMID: 16639884 DOI: 10.1897/2004-007r.1] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chemical fate, effect, and damage should be accounted for in the analysis of human health impacts by toxic chemicals in life-cycle assessment (LCA). The goal of this article is to present a new method to derive human damage and effect factors of toxic pollutants, starting from a lognormal dose-response function. Human damage factors are expressed as disability-adjusted life years (DALYs). Human effect factors contain a disease-specific and a substance-specific component. The disease-specific component depends on the probability of disease occurrence and the distribution of sensitivities in the human population. The substance-specific component, equal to the inverse of the ED50, represents the toxic potency of a substance. The new method has been applied to calculate combined human damage and effect factors for 1,192 substances. The total range of 7 to 9 orders of magnitude between the substances is dominated by the range in toxic potencies. For the combined factors, the typical uncertainty, represented by the square root of the ratio of the 97.5th and 2.5th percentile, is a factor of 25 for carcinogenic effects and a factor of 125 for noncarcinogenic effects. The interspecies conversion factor, the (non)cancer effect conversion factor, and the average noncancer damage factor dominate the overall uncertainty.
Collapse
Affiliation(s)
- Mark A J Huijbregts
- Department of Environmental Science, Institute for Wetland and Water Research, Faculty of Science, Radboud University Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
27
|
Dorne JLCM, Renwick AG. The refinement of uncertainty/safety factors in risk assessment by the incorporation of data on toxicokinetic variability in humans. Toxicol Sci 2005; 86:20-6. [PMID: 15800035 DOI: 10.1093/toxsci/kfi160] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The derivation of safe levels of exposure in humans for compounds that are assumed to cause threshold toxicity has relied on the application of a 100-fold uncertainty factor to a measure for the threshold, such as the no observed adverse effect level (NOAEL) or the benchmark dose (BMD). This 100-fold safety factor consists of the product of two 10-fold factors allowing for human variability and interspecies differences. The International Programme on Chemical Safety has suggested the subdivision of these 10-fold factors to allow for variability in toxicokinetics and toxicodynamics. This subdivision allows the replacement of the default uncertainty factors with a chemical-specific adjustment factor (CSAF) when suitable data are available. This short review describes potential options to refine safety factors used in risk assessment, with particular emphasis on pathway-related uncertainty factors associated with variability in kinetics. These pathway-related factors were derived from a database that quantified interspecies differences and human variability in phase I metabolism, phase II metabolism, and renal excretion. This approach allows metabolism and pharmacokinetic data in healthy adults and subgroups of the population to be incorporated in the risk-assessment process and constitutes an intermediate approach between simple default factors and chemical-specific adjustment factors.
Collapse
Affiliation(s)
- J L C M Dorne
- Division of Developmental Origins of Health and Disease, Institute of Human Nutrition, Clinical Pharmacology Group, School of Medicine, University of Southampton, Bassett Crescent East, Southampton, UK.
| | | |
Collapse
|
28
|
Dorne JLCM, Walton K, Renwick AG. Human variability in xenobiotic metabolism and pathway-related uncertainty factors for chemical risk assessment: a review. Food Chem Toxicol 2005; 43:203-16. [PMID: 15621332 DOI: 10.1016/j.fct.2004.05.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 05/21/2004] [Indexed: 11/24/2022]
Abstract
This review provides an account of recent developments arising from a database that defined human variability in phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferases, glucuronidation, glycine conjugation, sulphation) and renal excretion. This database was used to derive pathway-related uncertainty factors for chemical risk assessment that allow for human variability in toxicokinetics. Probe substrates for each pathway of elimination were selected on the basis that oral absorption was >95% and that the metabolic route was the primary route of elimination of the compound (60-100% of a dose). Intravenous data were used for compounds for which absorption was variable. Human variability in kinetics was quantified for each compound from published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and other subgroups of the population using parameters relating to chronic exposure (metabolic and total clearances, area under the plasma concentration-time curve (AUC)) and acute exposure (Cmax) (data not presented here). The pathway-related uncertainty factors were calculated to cover 95%, 97.5% and 99% of the population of healthy adults and of each subgroup. Pathway-related uncertainty factors allow metabolism data to be incorporated into the derivation of health-based guidance values. They constitute an intermediate approach between the general kinetic default factors (3.16) and a chemical-specific adjustment factor. Applications of pathway-related uncertainty factors for chemical risk assessment and future refinements of the approach are discussed. A knowledge-based framework to predict human variability in kinetics for xenobiotics showing a threshold dose below which toxic effects are not observed, is proposed to move away from default assumptions.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, School of Medicine, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK.
| | | | | |
Collapse
|
29
|
Renwick AG, Flynn A, Fletcher RJ, Müller DJG, Tuijtelaars S, Verhagen H. Risk-benefit analysis of micronutrients. Food Chem Toxicol 2004; 42:1903-22. [PMID: 15500928 DOI: 10.1016/j.fct.2004.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Traditionally, different approaches have been used to determine the recommended dietary allowances for micronutrients, above which there is a low risk of deficiency, and safe upper levels, below which there is a negligible risk of toxicity. The advice given to risk managers has been in the form of point estimates, such as the recommended dietary allowance (RDA) and the tolerable upper level (UL). In future, the gap between the two intake-response curves may become narrower, as more sensitive indicators of deficiency and toxicity are used, and as health benefits above the recommended daily allowance are taken into account. This paper reviews the traditional approaches and proposes a novel approach to compare beneficial and adverse effects across intake levels. This model can provide advice for risk managers in a form that will allow the risk of deficiency or the risk of not experiencing the benefit to be weighed against the risk of toxicity. The model extends the approach used to estimate recommended dietary allowances to make it applicable to both beneficial and adverse effects and to extend the intake-incidence data to provide a range of estimates that can be considered by the risk manager. The data-requirements of the model are the incidence of a response at one or more levels of intake, and a suitable coefficient of variation to represent the person-to-person variations within the human population. A coefficient of variation of 10% or 15% has been used for established recommended dietary allowances and a value of 15% is proposed as default for considerations of benefit. A coefficient of variation of 45% is proposed as default for considerations of toxicity, based on analyses of human variability in the fate and effects of therapeutic drugs. Using this approach risk managers, working closely with risk assessors, will be able to define ranges of intake based on a balance between the risks of deficiency (or lack of benefit) and toxicity.
Collapse
Affiliation(s)
- A G Renwick
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | | | | | | | |
Collapse
|
30
|
Dorne JLCM. Impact of inter-individual differences in drug metabolism and pharmacokinetics on safety evaluation. Fundam Clin Pharmacol 2004; 18:609-20. [PMID: 15548231 DOI: 10.1111/j.1472-8206.2004.00292.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Safety evaluation aims to assess the dose-response relationship to determine a dose/level of exposure for food contaminants below which no deleterious effect is measurable that is 'without appreciable health risk' when consumed daily over a lifetime. These safe levels, such as the acceptable daily intake (ADI) have been derived from animal studies using surrogates for the threshold such as the no-observed-adverse-effect-level (NOAEL). The extrapolation from the NOAEL to the human safe intake uses a 100-fold uncertainty factor, defined as the product of two 10-fold factors allowing for human variability and interspecies differences. The 10-fold factor for human variability has been further subdivided into two factors of 10(0.5) (3.16) to cover toxicokinetics and toxicodynamics and this subdivsion allows for the replacement of an uncertainty factor with a chemical-specific adjustment factor (CSAF) when compound-specific data are available. Recently, an analysis of human variability in pharmacokinetics for phase I metabolism (CYP1A2, CYP2A6, CYP2C9, CYP2C19, CYP2D6, CYP2E1, CYP3A4, hydrolysis, alcohol dehydrogenase), phase II metabolism (N-acetyltransferase, glucuronidation, glycine conjugation, sulphation) and renal excretion was used to derive pathway-related uncertainty factors in subgroups of the human population (healthy adults, effects of ethnicity and age). Overall, the pathway-related uncertainty factors (99th centile) were above the toxicokinetic uncertainty factor for healthy adults exposed to xenobiotics handled by polymorphic metabolic pathways (and assuming the parent compound was the proximate toxicant) such as CYP2D6 poor metabolizers (26), CYP2C19 poor metabolizers (52) and NAT-2 slow acetylators (5.2). Neonates were the most susceptible subgroup of the population for pathways with available data [CYP1A2 and glucuronidation (12), CYP3A4 (14), glycine conjugation (28)]. Data for polymorphic pathways were not available in neonates but uncertainty factors of up to 45 and 9 would allow for the variability observed in children for CYP2D6 and CYP2C19 metabolism, respectively. This review presents an overview on the history of uncertainty factors, the main conclusions drawn from the analysis of inter-individual differences in metabolism and pharmacokinetics, the development of pathway-related uncertainty factors and their use in chemical risk assessment.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton, SO16 7PX, UK.
| |
Collapse
|
31
|
Renwick AG. Establishing the upper end of the range of adequate and safe intakes for amino acids: a toxicologist's viewpoint. J Nutr 2004; 134:1617S-1624S; discussion 1630S-1632S, 1667S-1672S. [PMID: 15173440 DOI: 10.1093/jn/134.6.1617s] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The safety assessment of high intake levels of individual amino acids cannot be based on data from nutritional studies with proteins. Routine toxicity tests designed to investigate a wide range of possible effects should be undertaken for hazard identification and characterization using studies selected to mirror the predicted pattern and duration of human exposure. The approach used to establish an acceptable daily intake level for additives and pesticides, based on defining a "no observed adverse effect" level in the experimental study and dividing by uncertainty factors that allow for species differences and human variability, has a long history of use for foreign compounds and would provide a suitable basis for determining health-based guidance values for single amino acids. The usual default uncertainty factors for toxicokinetics and toxicodynamics should be replaced by compound-specific values if suitable data are available. In addition, the usual uncertainty factors should be modified to more relevant default values based on species differences and human variability in the biodisposition of amino acids in general or of groups of metabolically interrelated amino acids. There would be no significant health concerns if the human intake levels were below a health-based guidance value developed using this approach. A population-distribution approach could be used to define the magnitude of any risk at intake levels above the guidance value.
Collapse
Affiliation(s)
- Andrew G Renwick
- Clinical Pharmacology Group, Allergy and Inflammatory Sciences Research Division, School of Medicine, University of Southampton, Southampton, UK SO16 7PX.
| |
Collapse
|
32
|
Dorne JLCM, Walton K, Renwick AG. Human variability for metabolic pathways with limited data (CYP2A6, CYP2C9, CYP2E1, ADH, esterases, glycine and sulphate conjugation). Food Chem Toxicol 2004; 42:397-421. [PMID: 14871582 DOI: 10.1016/j.fct.2003.10.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2003] [Accepted: 10/13/2003] [Indexed: 01/24/2023]
Abstract
Human variability in the kinetics of a number of phase I (CYP2A6, CYP2C9, CYP2E1, alcohol dehydrogenase and hydrolysis) and phase II enzymes (glycine and sulphate conjugation) was analysed using probe substrates metabolised extensively (>60%) by these routes. Published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and available data on subgroups of the population (effects of ethnicity, age and disease) were abstracted using parameters relating primarily to chronic exposure [metabolic and total clearances, area under the plasma concentration time-curve (AUC)] and acute exposure (C(max)). Interindividual differences in kinetics for all these pathways were low in healthy adults ranging from 21 to 34%. Pathway-related uncertainty factors to cover the 95th, 97.5th and 99th centiles of healthy adults were derived for each metabolic route and were all below the 3.16 kinetic default uncertainty factor in healthy adults, with the possible exception of CYP2C9*3/*3 poor metabolisers (based on a very limited number of subjects). Previous analyses of other pathways have shown that neonates represent the most susceptible subgroup and this was true also for glycine conjugation for which an uncertainty factor of 29 would be required to cover 99% of this subgroup. Neonatal data were not available for any other pathway analysed.
Collapse
Affiliation(s)
- J L C M Dorne
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, Southampton SO16 7PX, UK
| | | | | |
Collapse
|
33
|
Walton K, Dorne JLCM, Renwick AG. Species-specific uncertainty factors for compounds eliminated principally by renal excretion in humans. Food Chem Toxicol 2004; 42:261-74. [PMID: 14667472 DOI: 10.1016/j.fct.2003.09.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
An uncertainty factor of 100 is used to derive health-based guidance values for human intakes of chemicals based on data from studies in animals. The 100-fold factor comprises 10-fold factors for species differences and for interindividual differences in response. Each 10-fold factor can be subdivided into toxicokinetic and toxicodynamic aspects with a 4.0-fold factor to allow for kinetic differences between test species and humans. The current work determined the extent of interspecies differences in the internal dose (toxicokinetics) of compounds which are eliminated primarily by renal excretion in humans. An analysis of the published data showed that renal excretion was also the main route of elimination in the test species for most of the identified probe substrates. Interspecies differences were apparent for both the mechanism of renal excretion (glomerular filtration, tubular secretion and/or reabsorption) and the extent of plasma protein binding, both of which may affect renal clearance and therefore the magnitude of species differences in the internal dose. For compounds which are eliminated unchanged by both humans and the test species, the average differences in the internal doses between humans and animals were 1.6 for dogs, 3.3 for rabbits, 5.2 for rats and 13 for mice. This suggests that for renal excretion, the differences between humans and the rat and especially the mouse may exceed the 4.0-fold default factor for toxicokinetics.
Collapse
Affiliation(s)
- K Walton
- Clinical Pharmacology Group, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, SO16 7PX Southampton, UK
| | | | | |
Collapse
|
34
|
Dorne JLCM, Walton K, Renwick AG. Human variability in the renal elimination of foreign compounds and renal excretion-related uncertainty factors for risk assessment. Food Chem Toxicol 2004; 42:275-98. [PMID: 14667473 DOI: 10.1016/j.fct.2003.09.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Renal excretion is an important route of elimination for xenobiotics and three processes determine the renal clearance of a compound [glomerular filtration (about 120 ml/min), active renal tubular secretion (>120 ml/min) and passive reabsorption (<120 ml/min)]. Human variability in kinetics has been quantified using a database of 15 compounds excreted extensively by the kidney (>60% of a dose) to develop renal-excretion related uncertainty factors for the risk assessment of environmental contaminants handled via this route. Data were analysed from published pharmacokinetic studies (after oral and intravenous dosing) in healthy adults and other subgroups using parameters relating primarily to chronic exposure [renal and total clearances, area under the plasma concentration time-curve (AUC)] and acute exposure (Cmax). Interindividual variability in kinetics was low for both routes of exposure, with coefficients of variation of 21% (oral) and 24% (intravenous) that were largely independent of the renal processes involved. Renal-excretion related uncertainty factors were below the default kinetic uncertainty factor of 3.16 for most subgroups analysed with the exception of the elderly (oral data) and neonates (intravenous data) for whom renal excretion-related factors of 4.2 and 3.2 would be required to cover up to 99% of these subgroups respectively.
Collapse
Affiliation(s)
- J L C M Dorne
- School of Medicine, University of Southampton, Biomedical Sciences Building, Bassett Crescent East, SO16 7PX Southampton, UK
| | | | | |
Collapse
|
35
|
Renwick AG, Barlow SM, Hertz-Picciotto I, Boobis AR, Dybing E, Edler L, Eisenbrand G, Greig JB, Kleiner J, Lambe J, Müller DJG, Smith MR, Tritscher A, Tuijtelaars S, van den Brandt PA, Walker R, Kroes R. Risk characterisation of chemicals in food and diet. Food Chem Toxicol 2003; 41:1211-71. [PMID: 12890421 DOI: 10.1016/s0278-6915(03)00064-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- A G Renwick
- University of Southampton, Clinical Pharmacology Group, School of Medicine, Biomedical Sciences Building, Bassett Crescent East, SO16 7PX, Southampton, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|