1
|
Al-Tayar BA, Ahmad A, Yusoff ME, Abdullah SF, Mohamad NK, Md Hashim SN, Kishida S, Kishida M, Nakamura N, Kibe T, Harun MH. Cytotoxic Effects of Betel Quid and Areca Nut Aqueous Extracts on Mouse Fibroblast, Human Mouth-Ordinary-Epithelium 1 and Human Oral Squamous Cell Carcinoma Cell Lines. Asian Pac J Cancer Prev 2020; 21:1005-1009. [PMID: 32334462 PMCID: PMC7445995 DOI: 10.31557/apjcp.2020.21.4.1005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Betel quid chewing is more common among the older generation in rural areas of Malaysia. Oral cancer in Asia has been associated with the habit of chewing betel quid and areca nut. Objective: This study aims to investigate the cytotoxic effects of betel quid and areca nut extracts on the fibroblast (L929), mouth-ordinary-epithelium 1 (MOE1) and oral squamous cell carcinoma (HSC-2) cell lines. Methods: L929, MOE1 and HSC-2 cells were treated with 0.1, 0.2 and 0.4 g/ml of betel quid and areca nut extracts for 24, 48 and 72 h. MTT assay was performed to assess the cell viability. Results: Both extracts, regardless of concentration, significantly reduced the cell viability of L929 compared with the control (P<0.05). Cell viability of MOE1 was significantly enhanced by all betel quid concentrations compared with the control (P<0.05). By contrast, 0.4 g/ml of areca nut extract significantly reduced the cell viability of MOE1 at 48 and 72 h of incubation. Cell viability of HSC-2 was significantly lowered by all areca nut extracts, but 0.4 g/ml of betel quid significantly increased the cell viability of HSC-2 (P<0.05). Conclusion: Areca nut extract is cytotoxic to L929 and HSC-2, whereas the lower concentrations of areca nut extract significantly increased the cell viability of MOE1 compared to the higher concentration and control group. Although betel quid extract is cytotoxic to L929, the same effect is not observed in MOE1 and HSC-2 cell lines. Further investigations are needed to clarify the mechanism of action.
Collapse
Affiliation(s)
- Badr Abdullah Al-Tayar
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Azlina Ahmad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohamad Ezany Yusoff
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Fadilah Abdullah
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Noor Khairiena Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Nurnasihah Md Hashim
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Shosei Kishida
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - Michiko Kishida
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - Norifumi Nakamura
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - Toshiro Kibe
- Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, Japan
| | - Masitah Hayati Harun
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
2
|
Birkett N, Al-Zoughool M, Bird M, Baan RA, Zielinski J, Krewski D. Overview of biological mechanisms of human carcinogens. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2019; 22:288-359. [PMID: 31631808 DOI: 10.1080/10937404.2019.1643539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This review summarizes the carcinogenic mechanisms for 109 Group 1 human carcinogens identified as causes of human cancer through Volume 106 of the IARC Monographs. The International Agency for Research on Cancer (IARC) evaluates human, experimental and mechanistic evidence on agents suspected of inducing cancer in humans, using a well-established weight of evidence approach. The monographs provide detailed mechanistic information about all carcinogens. Carcinogens with closely similar mechanisms of action (e.g. agents emitting alpha particles) were combined into groups for the review. A narrative synopsis of the mechanistic profiles for the 86 carcinogens or carcinogen groups is presented, based primarily on information in the IARC monographs, supplemented with a non-systematic review. Most carcinogens included a genotoxic mechanism.
Collapse
Affiliation(s)
- Nicholas Birkett
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Mustafa Al-Zoughool
- Department of Community and Environmental Health, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Michael Bird
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Robert A Baan
- International Agency for Research on Cancer, Lyon, France
| | - Jan Zielinski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Daniel Krewski
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
- McLaughlin Centre for Population Health Risk Assessment, Faculty of Medicine, University of Ottawa, Ottawa, Canada
- Risk Sciences International, Ottawa, Canada
| |
Collapse
|
3
|
Chan YH, Liu TC, Liao CK, Cheng YF, Tsai CH, Lu YC, Hu CJ, Lin HJ, Lee YL, Wu CC, Hsu CJ. Consumption of betel quid contributes to sensorineural hearing impairment through arecoline-induced oxidative stress. Sci Rep 2019; 9:14554. [PMID: 31601870 PMCID: PMC6787045 DOI: 10.1038/s41598-019-49815-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/22/2019] [Indexed: 11/09/2022] Open
Abstract
Betel quid is one of the most widely used psychoactive substances, and is consumed by approximately 10% of the world’s population. In addition to its carcinogenicity, betel quid has also been reported to affect many organs, including the brain, heart, lungs, gastrointestinal tract, and reproductive organs. As betel quid contains several neurotoxic ingredients, we hypothesize that it also possesses ototoxicity and may lead to sensorineural hearing impairment (SNHI). In this study, we investigated the contribution of betel quid consumption to SNHI in a large clinical cohort, and validated the pathogenetic mechanisms in ex vivo tissue explants. We enrolled a total of 2364 volunteers, and determined their audiologic results based on Z-scores converted from their original frequency-specific hearing thresholds. Using generalized linear regression, we identified a positive correlation between betel quid consumption and the Z-scores across different frequencies. Subsequently, we explored the toxicity of arecoline, the main neuroactive component of betel quid, on tissue explants from murine cochleae. Arecoline reduced cell activity in the explant cultures and induced apoptosis in the hair cells, probably through the effects of oxidative stress. These findings have expanded the potential hazards of betel quid to common neurological disorders, and provide insights into preventive strategies against SNHI caused by neurotoxic substances.
Collapse
Affiliation(s)
- Yen-Hui Chan
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| | - Tien-Chen Liu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Kang Liao
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yen-Fu Cheng
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Otolaryngology-Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan.,School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ching-Hui Tsai
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Ying-Chang Lu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chin-Ju Hu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Ju Lin
- Health Management Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yungling Leo Lee
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan.,Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chen-Chi Wu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan. .,Department of Medical Genetics, National Taiwan University Hospital, Taipei, Taiwan.
| | - Chuan-Jen Hsu
- Department of Otolaryngology, National Taiwan University Hospital, Taipei, Taiwan.,Department of Otolaryngology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung, Taiwan
| |
Collapse
|
4
|
Cytotoxicity and transformation of C3H10T1/2 cells induced by areca nut components. J Formos Med Assoc 2016; 115:108-12. [DOI: 10.1016/j.jfma.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 11/02/2014] [Accepted: 01/06/2015] [Indexed: 01/18/2023] Open
|
5
|
Hamsar M, Ismail S, Mordi M, Ramanathan S, Mansor S. Antioxidant activity and the effect of different parts of areca catechu extracts on Glutathione-S-Transferase activity in vitro. ACTA ACUST UNITED AC 2011. [DOI: 10.5530/ax.2011.1.6] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Involvement of the mitochondrion-dependent pathway and oxidative stress in the apoptosis of murine splenocytes induced by areca nut extract. Toxicol In Vitro 2009; 23:840-7. [DOI: 10.1016/j.tiv.2009.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 01/16/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
|
7
|
Wang CC, Liu TY, Wey SP, Wang FI, Jan TR. Areca nut extract suppresses T-cell activation and interferon-gamma production via the induction of oxidative stress. Food Chem Toxicol 2007; 45:1410-8. [PMID: 17383064 DOI: 10.1016/j.fct.2007.02.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 01/17/2007] [Accepted: 02/03/2007] [Indexed: 11/30/2022]
Abstract
Areca quid chewing is a major risk factor associated with oral submucous fibrosis (OSF) and oral cancer. Experimental evidence indicates that immune deterioration is associated with the pathophysiology of OSF and oral cancer. In addition, reactive oxygen species (ROS) is shown to play a role in the cytotoxic and genotoxic effect induced by areca nut extracts (ANE) in oral cells. The present studies investigated the effects of ANE on T-cell reactivity and the role of ROS in ANE effects. Treatment of splenocytes with ANE induced a marked cytotoxic effect, and suppressed the production of IL-2 and IFN-gamma, whereas the production of IL-4 was unaffected. The ANE-mediated cytotoxicity, and suppression of IFN-gamma and IL-2 production were attenuated by the presence of antioxidant N-acetyl-l-cysteine (NAC). Moreover, flow cytometric analysis demonstrated an increase in cellular ROS levels in splenic T-cells treated with ANE, which was also attenuated by the presence of NAC. Concordantly, the cellular level of glutathione was diminished by ANE in splenic T-cells pretreated with NAC. Collectively, these results demonstrated that ANE markedly suppressed T-cell activation and Th1 cytokine production, which was mediated, at least in part, by the induction of oxidative stress.
Collapse
Affiliation(s)
- C C Wang
- Department of Veterinary Medicine, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan, ROC
| | | | | | | | | |
Collapse
|
8
|
Lai YL, Lin JC, Yang SF, Liu TY, Hung SL. Areca nut extracts reduce the intracellular reactive oxygen species and release of myeloperoxidase by human polymorphonuclear leukocytes. J Periodontal Res 2007; 42:69-76. [PMID: 17214642 DOI: 10.1111/j.1600-0765.2006.00917.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE Polymorphonuclear leukocytes (PMN) represent the first line of host defense. Areca nut extract inhibits the bactericidal activity of, and the release of superoxide anion (O2- ) by, PMN. This study investigated the effects of areca nut extract on the intracellular production of reactive oxygen species (ROS) and on the extracellular release of lysosomal enzyme, myeloperoxidase (MPO), by PMN. The effects of arecoline, a principal component of areca nut, were also examined. MATERIAL AND METHODS Human PMN were treated with various concentrations of areca nut extract or arecoline followed by treatment with Hanks' balanced salt solution, with or without cytochalasin B and fMet-Leu-Phe (CB/fMLP). The viability of PMN was determined using propidium iodide staining and flow cytometry. The presence of intracellular ROS was determined using 2',7'-dichlorofluorescin diacetate and fluorometry. MPO release was determined using a substrate assay. RESULTS Areca nut extract (25 and 50 microg/ml) significantly decreased the viability of PMN. The intracellular levels of ROS and the extracellular release of MPO were induced in PMN by CB/fMLP. Exposure of PMN to areca nut extract (up to 25 microg/ml) or to arecoline (up to 2 mg/ml) did not directly affect the levels of ROS and MPO activity. However, under conditions that did not affect the viability of PMN, the ability of CB/fMLP to trigger production of intracellular ROS and release of MPO in human PMN was significantly suppressed by areca nut extract and arecoline. CONCLUSION Areca nut impaired the activation of PMN by CB/fMLP that might decrease the effectiveness of PMN in the host defense. Alternatively, exposure of PMN to areca nut extract could decrease the capacity of PMN to damage tissues.
Collapse
Affiliation(s)
- Y-L Lai
- Faculty of Dentistry, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
9
|
Lee PH, Chang MC, Chang WH, Wang TM, Wang YJ, Hahn LJ, Ho YS, Lin CY, Jeng JH. Prolonged exposure to arecoline arrested human KB epithelial cell growth: Regulatory mechanisms of cell cycle and apoptosis. Toxicology 2006; 220:81-9. [PMID: 16413651 DOI: 10.1016/j.tox.2005.07.026] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2005] [Revised: 07/19/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Arecoline, the main areca alkaloid in betel quid (BQ), is reported to have cytotoxic, genotoxic, and mutagenic effects in various cells. It shows strong correlation to the incidence of oral submucous fibrosis, leukoplakia, and oral cancer. To clarify the role of arecoline in BQ-induced carcinogenesis, primary human gingival keratinocyes (GK) and human KB epithelial cells were used for studying the molecular mechanisms of arecoline-mediated cell cycle deregulation for comparison. After 24 h of exposure, arecoline (0.2-0.8 mM) inhibited KB cell growth in a dose- and time-dependent manner with a reduction in cell number by 27-37 and 37-58%, respectively, as determined by 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) and sulforhodamine B (SRB) assays. Incubation of KB cells with arecoline (0.1-0.4 mM) caused late-S and G2/M phases' cell cycle arrest. Western blot analysis revealed that arecoline induced cyclin Bl, Wee 1, and phosphorylated cdc2 protein levels whereas it declined p21 protein expression in KB cancer cells. Nevertheless, arecoline induced p21, but decreased cdc2 and cyclin B1 protein levels in GK. We demonstrated that higher concentrations of arecoline (0.2-1.2 mM) induced both cell necrosis and apoptosis as detected by DNA fragmentation and Annexin V-PI staining after long-term (48 h) treatment. Our results suggest that differential regulation of S and/or G2/M cell cycle-related proteins in the GK and KB cells play a crucial role in different stages of BQ-mediated carcinogenesis.
Collapse
Affiliation(s)
- Po-Hsuen Lee
- Laboratory of Dental Pharmacology & Toxicology, Department of Dentistry, National Taiwan University Hospital, National Taiwan University Medical College, No. 1, Chang-Te Street, Taipei 100, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
|