1
|
Jansen KB, Inns PG, Housden NG, Hopper JTS, Kaminska R, Lee S, Robinson CV, Bayley H, Kleanthous C. Bifurcated binding of the OmpF receptor underpins import of the bacteriocin colicin N into Escherichia coli. J Biol Chem 2020; 295:9147-9156. [PMID: 32398259 PMCID: PMC7335789 DOI: 10.1074/jbc.ra120.013508] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/04/2020] [Indexed: 11/14/2022] Open
Abstract
Colicins are Escherichia coli-specific bacteriocins that translocate across the outer bacterial membrane by a poorly understood mechanism. Group A colicins typically parasitize the proton-motive force-linked Tol system in the inner membrane via porins after first binding an outer membrane protein receptor. Recent studies have suggested that the pore-forming group A colicin N (ColN) instead uses lipopolysaccharide as a receptor. Contrary to this prevailing view, using diffusion-precipitation assays, native state MS, isothermal titration calorimetry, single-channel conductance measurements in planar lipid bilayers, and in vivo fluorescence imaging, we demonstrate here that ColN uses OmpF both as its receptor and translocator. This dual function is achieved by ColN having multiple distinct OmpF-binding sites, one located within its central globular domain and another within its disordered N terminus. We observed that the ColN globular domain associates with the extracellular surface of OmpF and that lipopolysaccharide (LPS) enhances this binding. Approximately 90 amino acids of ColN then translocate through the porin, enabling the ColN N terminus to localize within the lumen of an OmpF subunit from the periplasmic side of the membrane, a binding mode reminiscent of that observed for the nuclease colicin E9. We conclude that bifurcated engagement of porins is intrinsic to the import mechanism of group A colicins.
Collapse
Affiliation(s)
| | | | | | | | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Sejeong Lee
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Carol V Robinson
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Hagan Bayley
- Chemistry Research laboratory, University of Oxford, Oxford, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
2
|
Johnson CL, Solovyova AS, Hecht O, Macdonald C, Waller H, Grossmann JG, Moore GR, Lakey JH. The Two-State Prehensile Tail of the Antibacterial Toxin Colicin N. Biophys J 2017; 113:1673-1684. [PMID: 29045862 PMCID: PMC5647543 DOI: 10.1016/j.bpj.2017.08.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 07/26/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Intrinsically disordered regions within proteins are critical elements in many biomolecular interactions and signaling pathways. Antibacterial toxins of the colicin family, which could provide new antibiotic functions against resistant bacteria, contain disordered N-terminal translocation domains (T-domains) that are essential for receptor binding and the penetration of the Escherichia coli outer membrane. Here we investigate the conformational behavior of the T-domain of colicin N (ColN-T) to understand why such domains are widespread in toxins that target Gram-negative bacteria. Like some other intrinsically disordered proteins in the solution state of the protein, ColN-T shows dual recognition, initially interacting with other domains of the same colicin N molecule and later, during cell killing, binding to two different receptors, OmpF and TolA, in the target bacterium. ColN-T is invisible in the high-resolution x-ray model and yet accounts for 90 of the toxin's 387 amino acid residues. To reveal its solution structure that underlies such a dynamic and complex system, we carried out mutagenic, biochemical, hydrodynamic and structural studies using analytical ultracentrifugation, NMR, and small-angle x-ray scattering on full-length ColN and its fragments. The structure was accurately modeled from small-angle x-ray scattering data by treating ColN as a flexible system, namely by the ensemble optimization method, which enables a distribution of conformations to be included in the final model. The results reveal, to our knowledge, for the first time the dynamic structure of a colicin T-domain. ColN-T is in dynamic equilibrium between a compact form, showing specific self-recognition and resistance to proteolysis, and an extended form, which most likely allows for effective receptor binding.
Collapse
Affiliation(s)
- Christopher L Johnson
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexandra S Solovyova
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Olli Hecht
- Centre for Structural and Molecular Biology, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Colin Macdonald
- Centre for Structural and Molecular Biology, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Helen Waller
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J Günter Grossmann
- Institute of Integrative Biology, Structural and Chemical Biology, Liverpool, United Kingdom
| | - Geoffrey R Moore
- Centre for Structural and Molecular Biology, School of Chemistry, University of East Anglia, Norwich, United Kingdom
| | - Jeremy H Lakey
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, The Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
3
|
A Natural Chimeric Pseudomonas Bacteriocin with Novel Pore-Forming Activity Parasitizes the Ferrichrome Transporter. mBio 2017; 8:mBio.01961-16. [PMID: 28223456 PMCID: PMC5358913 DOI: 10.1128/mbio.01961-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities.IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the cell envelope of a target cell, a translocation domain enabling subsequent cellular entry, and a toxin module that kills target cells via enzymatic or pore-forming activity. We here demonstrate the antagonistic function of a Pseudomonas bacteriocin with unique architecture that combines a putative enzymatic colicin M-like domain and a novel pore-forming toxin module. For target cell recognition and entry, this bacteriocin hybrid takes advantage of the ferrichrome transporter, also parasitized by enzymatic Pseudomonas bacteriocins devoid of the pore-forming module. Bacteriocins with an expanded toxin potential may represent an inventive bacterial strategy to alleviate immunity in target cells.
Collapse
|
4
|
The Colicin E1 TolC Box: Identification of a Domain Required for Colicin E1 Cytotoxicity and TolC Binding. J Bacteriol 2016; 199:JB.00412-16. [PMID: 27795317 DOI: 10.1128/jb.00412-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/17/2016] [Indexed: 11/20/2022] Open
Abstract
Colicins are protein toxins made by Escherichia coli to kill related bacteria that compete for scarce resources. All colicins must cross the target cell outer membrane in order to reach their intracellular targets. Normally, the first step in the intoxication process is the tight binding of the colicin to an outer membrane receptor protein via its central receptor-binding domain. It is shown here that for one colicin, E1, that step, although it greatly increases the efficiency of killing, is not absolutely necessary. For colicin E1, the second step, translocation, relies on the outer membrane/transperiplasmic protein TolC. The normal role of TolC in bacteria is as an essential component of a family of tripartite drug and toxin exporters, but for colicin E1, it is essential for its import. Colicin E1 and some N-terminal translocation domain peptides had been shown previously to bind in vitro to TolC and occlude channels made by TolC in planar lipid bilayer membranes. Here, a set of increasingly shorter colicin E1 translocation domain peptides was shown to bind to Escherichia coli in vivo and protect them from subsequent challenge by colicin E1. A segment of only 21 residues, the "TolC box," was thereby defined; that segment is essential for colicin E1 cytotoxicity and for binding of translocation domain peptides to TolC. IMPORTANCE The Escherichia coli outer membrane/transperiplasmic protein TolC is normally an essential component of the bacterium's tripartite drug and toxin export machinery. The protein toxin colicin E1 instead uses TolC for its import into the cells that it kills, thereby subverting its normal role. Increasingly shorter constructs of the colicin's N-terminal translocation domain were used to define an essential 21-residue segment that is required for both colicin cytotoxicity and for binding of the colicin's translocation domain to bacteria, in order to protect them from subsequent challenge by active colicin E1. Thus, an essential TolC binding sequence of colicin E1 was identified and may ultimately lead to the development of drugs to block the bacterial drug export pathway.
Collapse
|
5
|
Clifton LA, Ciesielski F, Skoda MWA, Paracini N, Holt SA, Lakey JH. The Effect of Lipopolysaccharide Core Oligosaccharide Size on the Electrostatic Binding of Antimicrobial Proteins to Models of the Gram Negative Bacterial Outer Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3485-94. [PMID: 27003358 PMCID: PMC4854487 DOI: 10.1021/acs.langmuir.6b00240] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 02/28/2016] [Indexed: 05/23/2023]
Abstract
Understanding the electrostatic interactions between bacterial membranes and exogenous proteins is crucial to designing effective antimicrobial agents against Gram-negative bacteria. Here we study, using neutron reflecometry under multiple isotopic contrast conditions, the role of the uncharged sugar groups in the outer core region of lipopolysaccharide (LPS) in protecting the phosphate-rich inner core region from electrostatic interactions with antimicrobial proteins. Models of the asymmetric Gram negative outer membrane on silicon were prepared with phopshatidylcholine (PC) in the inner leaflet (closest to the silicon), whereas rough LPS was used to form the outer leaflet (facing the bulk solution). We show how salt concentration can be used to reversibly alter the binding affinity of a protein antibiotic colicin N (ColN) to the anionic LPS confirming that the interaction is electrostatic in nature. By examining the interaction of ColN with two rough LPS types with different-sized core oligosaccharide regions we demonstrate the role of uncharged sugars in blocking short-range electrostatic interactions between the cationic antibiotics and the vulnerable anionic phosphate groups.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, United Kingdom
| | - Filip Ciesielski
- Department of Plant Sciences, University of Oxford , Oxford, OX1 3RB, United Kingdom
| | - Maximilian W A Skoda
- ISIS Pulsed Neutron and Muon Source, Science and Technology Facilities Council, Rutherford Appleton Laboratory , Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 OQX, United Kingdom
| | - Nicolò Paracini
- Institute for Cell and Molecular Biosciences, Newcastle University , Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Stephen A Holt
- Bragg Institute, Australian Nuclear Science and Technology Organisation , Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, Newcastle University , Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
6
|
Johnson CL, Ridley H, Marchetti R, Silipo A, Griffin DC, Crawford L, Bonev B, Molinaro A, Lakey JH. The antibacterial toxin colicin N binds to the inner core of lipopolysaccharide and close to its translocator protein. Mol Microbiol 2014; 92:440-52. [PMID: 24589252 PMCID: PMC4114557 DOI: 10.1111/mmi.12568] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2014] [Indexed: 12/03/2022]
Abstract
Colicins are a diverse family of large antibacterial protein toxins, secreted by and active against Escherichia coli and must cross their target cell's outer membrane barrier to kill. To achieve this, most colicins require an abundant porin (e.g. OmpF) plus a low‐copy‐number, high‐affinity, outer membrane protein receptor (e.g. BtuB). Recently, genetic screens have suggested that colicin N (ColN), which has no high‐affinity receptor, targets highly abundant lipopolysaccharide (LPS) instead. Here we reveal the details of this interaction and demonstrate that the ColN receptor‐binding domain (ColN‐R) binds to a specific region of LPS close to the membrane surface. Data from in vitro studies using calorimetry and both liquid‐ and solid‐state NMR reveal the interactions behind the in vivo requirement for a defined oligosaccharide region of LPS. Delipidated LPS (LPSΔLIPID) shows weaker binding; and thus full affinity requires the lipid component. The site of LPS binding means that ColN will preferably bind at the interface and thus position itself close to the surface of its translocon component, OmpF. ColN is, currently, unique among colicins in requiring LPS and, combined with previous data, this implies that the ColN translocon is distinct from those of other known colicins.
Collapse
Affiliation(s)
- Christopher L Johnson
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle-upon-Tyne, NE2 4HH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Johnson CL, Ridley H, Pengelly RJ, Salleh MZ, Lakey JH. The unstructured domain of colicin N kills Escherichia coli. Mol Microbiol 2013; 89:84-95. [PMID: 23672584 PMCID: PMC3739937 DOI: 10.1111/mmi.12260] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 11/28/2022]
Abstract
Bacteria often produce toxins which kill competing bacteria. Colicins, produced by and toxic to Escherichia coli bacteria are three-domain proteins so efficient that one molecule can kill a cell. The C-terminal domain carries the lethal activity and the central domain is required for surface receptor binding. The N-terminal domain, required for translocation across the outer membrane, is always intrinsically unstructured. It has always been assumed therefore that the C-terminal cytotoxic domain is required for the bactericidal activity. Here we report the unexpected finding that in isolation, the 90-residue unstructured N-terminal domain of colicin N is cytotoxic. Furthermore it causes ion leakage from cells but, unlike known antimicrobial peptides (AMPs) with this property, shows no membrane binding behaviour. Finally, its activity remains strictly dependent upon the same receptor proteins (OmpF and TolA) used by full-length colicin N. This mechanism of rapid membrane disruption, via receptor mediated binding of a soluble peptide, may reveal a new target for the development of highly specific antibacterials.
Collapse
Affiliation(s)
- Christopher L Johnson
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle- upon-Tyne, NE2 4HH, UK
| | | | | | | | | |
Collapse
|
8
|
Clifton LA, Johnson CL, Solovyova AS, Callow P, Weiss KL, Ridley H, Le Brun AP, Kinane CJ, Webster JRP, Holt SA, Lakey JH. Low resolution structure and dynamics of a colicin-receptor complex determined by neutron scattering. J Biol Chem 2011; 287:337-346. [PMID: 22081604 PMCID: PMC3249085 DOI: 10.1074/jbc.m111.302901] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Proteins that translocate across cell membranes need to overcome a significant hydrophobic barrier. This is usually accomplished via specialized protein complexes, which provide a polar transmembrane pore. Exceptions to this include bacterial toxins, which insert into and cross the lipid bilayer itself. We are studying the mechanism by which large antibacterial proteins enter Escherichia coli via specific outer membrane proteins. Here we describe the use of neutron scattering to investigate the interaction of colicin N with its outer membrane receptor protein OmpF. The positions of lipids, colicin N, and OmpF were separately resolved within complex structures by the use of selective deuteration. Neutron reflectivity showed, in real time, that OmpF mediates the insertion of colicin N into lipid monolayers. This data were complemented by Brewster Angle Microscopy images, which showed a lateral association of OmpF in the presence of colicin N. Small angle neutron scattering experiments then defined the three-dimensional structure of the colicin N-OmpF complex. This revealed that colicin N unfolds and binds to the OmpF-lipid interface. The implications of this unfolding step for colicin translocation across membranes are discussed.
Collapse
Affiliation(s)
- Luke A Clifton
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Christopher L Johnson
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Alexandra S Solovyova
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Phil Callow
- Partnership for Structural Biology, Institut Laue Langevin, 6 Rue Jules Horowitz, 38042 Grenoble, France
| | - Kevin L Weiss
- Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Helen Ridley
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Anton P Le Brun
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | - Christian J Kinane
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - John R P Webster
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Stephen A Holt
- ISIS Spallation Neutron Source, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX, United Kingdom
| | - Jeremy H Lakey
- Institute for Cell and Molecular Biosciences, The Medical School, University of Newcastle, Framlington Place, Newcastle-upon-Tyne NE2 4HH, United Kingdom.
| |
Collapse
|
9
|
Baboolal TG, Conroy MJ, Gill K, Ridley H, Visudtiphole V, Bullough PA, Lakey JH. Colicin N binds to the periphery of its receptor and translocator, outer membrane protein F. Structure 2008; 16:371-9. [PMID: 18334212 PMCID: PMC2581486 DOI: 10.1016/j.str.2007.12.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 12/20/2007] [Accepted: 12/21/2007] [Indexed: 11/24/2022]
Abstract
Colicins kill Escherichia coli after translocation across the outer membrane. Colicin N displays an unusually simple translocation pathway, using the outer membrane protein F (OmpF) as both receptor and translocator. Studies of this binary complex may therefore reveal a significant component of the translocation pathway. Here we show that, in 2D crystals, colicin is found outside the porin trimer, suggesting that translocation may occur at the protein-lipid interface. The major lipid of the outer leaflet interface is lipopolysaccharide (LPS). It is further shown that colicin N binding displaces OmpF-bound LPS. The N-terminal helix of the pore-forming domain, which is not required for pore formation, rearranges and binds to OmpF. Colicin N also binds artificial OmpF dimers, indicating that trimeric symmetry plays no part in the interaction. The data indicate that colicin is closely associated with the OmpF-lipid interface, providing evidence that this peripheral pathway may play a role in colicin transmembrane transport.
Collapse
Affiliation(s)
- Thomas G Baboolal
- The Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, NE2 4HH, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
10
|
Yang H, Wan L, Li X, Cai H, Chen L, Li S, Li Y, Cheng J, Lu X. High level expression of His-tagged colicin 5 in E. coli and characterization of its narrow-spectrum bactericidal activity and pore-forming action. Protein Expr Purif 2007; 54:309-17. [PMID: 17451967 DOI: 10.1016/j.pep.2007.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/09/2007] [Accepted: 03/12/2007] [Indexed: 02/05/2023]
Abstract
Since antibiotics with a broad spectrum of activity would select for resistance among the normal flora, colicins having a narrow spectrum of activity can potentially be developed as novel antibiotics. Colicin-based bactericidal proteins with modified spectra of activity might also be developed by further gene fusion or gene modification. To achieve these goals, it is necessary to first build an efficient system to produce large amounts of colicin. In the presence of an immunity gene, we successfully constructed an expression vector pQE30-cfa-cfi producing high levels of His-tagged colicin 5 (60-80 mg/L). We found that the purified His-tagged colicin 5 possesses narrow-spectrum bactericidal activity against nonimmune Escherichia coli cells. It is highly toxic to sensitive E. coli cells at a low concentration of 0.01 microg/ml, while it is nontoxic to other tested gram-negative bacteria, gram-positive bacteria and yeast at a high concentration of 1000 microg/ml. His-tagged colicin 5 kills sensitive cells by permeabilizing their cell membranes. It is not hemolytic to rabbit erythrocytes and has no obvious cytotoxicity to other nucleated mammalian cells at a high concentration of 500 microg/ml. The His-tagged colicin 5 is similar to wild-type colicin 5 in spectrum and bactericidal activity against E. coli. It is a potential novel antibiotic particularly for treating human and animal infections caused by pathogenic E. coli. Besides producing high level of colicin 5, the highly efficient expression vector constructed here might also be a useful tool to develop colicin-based artificial bactericidal proteins.
Collapse
Affiliation(s)
- Hao Yang
- Key Laboratory of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Musse AA, Wang J, Deleon GP, Prentice GA, London E, Merrill AR. Scanning the Membrane-bound Conformation of Helix 1 in the Colicin E1 Channel Domain by Site-directed Fluorescence Labeling. J Biol Chem 2006; 281:885-95. [PMID: 16299381 DOI: 10.1074/jbc.m511140200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Helix 1 of the membrane-associated closed state of the colicin E1 channel domain was studied by site-directed fluorescence labeling where bimane was covalently attached to a single cysteine residue in each mutant protein. A number of fluorescence properties of the tethered bimane fluorophore were measured in the membrane-bound state of the channel domain, including fluorescence emission maximum, fluorescence quantum yield, fluorescence anisotropy, membrane bilayer penetration depth, surface accessibility, and apparent polarity. The data show that helix 1 is an amphipathic alpha-helix that is situated parallel to the membrane surface. A least squares fit of the various data sets to a harmonic function indicated that the periodicity and angular frequency for helix 1 are typical for an amphipathic alpha-helix (3.7 +/- 0.1 residues per turn and 97 +/- 3.0 degrees, respectively) that is partially bathing into the membrane bilayer. Dual fluorescence quencher analysis also revealed that helix 1 is peripherally membrane-associated, with one face of the helix dipping into the lipid bilayer and the other face projecting toward the solvent. Finally, our data suggest that the helical boundaries of helix 1, at least at the C-terminal region, remain unaffected upon binding to the surface of the membrane in support of a toroidal pore model for this colicin.
Collapse
Affiliation(s)
- Abdiwahab A Musse
- Department of Molecular and Cellular Biology, University of Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
12
|
Keegan N, Wright NG, Lakey JH. Circular Dichroism Spectroscopy of Folding in a Protein Monolayer. Angew Chem Int Ed Engl 2005. [DOI: 10.1002/ange.200462977] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
13
|
Keegan N, Wright NG, Lakey JH. Circular Dichroism Spectroscopy of Folding in a Protein Monolayer. Angew Chem Int Ed Engl 2005; 44:4801-4. [PMID: 16028206 DOI: 10.1002/anie.200462977] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Neil Keegan
- Institute of Cell and Molecular Biosciences and Institute for Nanoscale Science and Technology, University of Newcastle upon Tyne, Newcastle, UK
| | | | | |
Collapse
|
14
|
Gray MC, Donato GM, Jones FR, Kim T, Hewlett EL. Newly secreted adenylate cyclase toxin is responsible for intoxication of target cells by Bordetella pertussis. Mol Microbiol 2004; 53:1709-19. [PMID: 15341649 DOI: 10.1111/j.1365-2958.2004.04227.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Adenylate cyclase (AC) toxin is present on the surface of Bordetella pertussis organisms and their addition to eukaryotic cells results in increases in intracellular cAMP. To test the hypothesis that surface-bound toxin is the source for intoxication of cells when incubated with B. pertussis, we characterized the requirements of intoxication from intact bacteria and found that this process is calcium-dependent and blocked by monoclonal antibody to AC toxin or antibody against CD11b, a surface glycoprotein receptor for the toxin. Increases in intracellular cAMP correlate with the number of adherent bacteria, not the total number present in the medium, suggesting that interaction of bacteria with target cells is important for efficient delivery of AC toxin. A filamentous haemagglutinin-deficient mutant (BP353) and a clinical isolate (GMT1), both of which have a marked reduction in AC toxin on their surface, and wild-type B. pertussis (BP338) from which surface AC toxin has been removed by trypsin, were fully competent for intoxicating target cells, demonstrating that surface-bound AC toxin is not responsible for intoxication. B. pertussis killed by gentamicin or gamma irradiation were unable to intoxicate, illustrating that toxin delivery requires viable bacteria. Furthermore, CCCP, a protonophore that disrupts the proton gradient necessary for the secretion of related RTX toxins, blocked intoxication by whole bacteria. These data establish that delivery of this toxin by intact B. pertussis is not dependent on the surface-associated AC toxin, but requires close association of live bacteria with target cells and the active secretion of AC toxin.
Collapse
Affiliation(s)
- M C Gray
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | | | | | | | |
Collapse
|
15
|
Eraso AJ, Inés A. Bacteriocin of Enterococcus from lactoserum able to cause oxidative stress in Staphylococcus aureus. Biochem Biophys Res Commun 2004; 314:897-901. [PMID: 14741721 DOI: 10.1016/j.bbrc.2003.12.179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of a bacteriocin of Enterococcus on the oxidative metabolism of sensitive bacteria was investigated through the detection of oxidative stress by chemiluminescence (CL). The bacteriocin named EntB was purified to study the action on Staphylococcus aureus isolated from cosmetic. Chromatographic separation of EntB indicated different states of oligomerization with molecular weights multiple of 12,000Da monomeric form. The monomer purified by ion exchange was studied in its capacity to affect the oxidative metabolism of S. aureus, which showed increase of anion superoxide (O(2)(-)) when incubated with EntB. This effect was compared to the action of EntB on leukocytes as an assay of toxicity. EntB did not generate significant oxidative stress in leukocytes. Pyoverdin, a leukotoxic pigment of Pseudomonas fluorescens, was taken as reference, and it was found that this pigment caused similar oxidative stress to EntB in S. aureus; however, pyoverdin generated high production of anion superoxide (O(2)(-)) in leukocytes, while EntB did not increase the level of O(2)(-).
Collapse
Affiliation(s)
- Alberto Jorge Eraso
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Exactas, Fisicoquímica y Naturales, Universidad Nacional de Río Cuarto, Argentina.
| | | |
Collapse
|