1
|
Laporte D, Huot JL, Bader G, Enkler L, Senger B, Becker HD. Exploring the evolutionary diversity and assembly modes of multi-aminoacyl-tRNA synthetase complexes: lessons from unicellular organisms. FEBS Lett 2014; 588:4268-78. [PMID: 25315413 DOI: 10.1016/j.febslet.2014.10.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/03/2014] [Accepted: 10/06/2014] [Indexed: 10/24/2022]
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are ubiquitous and ancient enzymes, mostly known for their essential role in generating aminoacylated tRNAs. During the last two decades, many aaRSs have been found to perform additional and equally crucial tasks outside translation. In metazoans, aaRSs have been shown to assemble, together with non-enzymatic assembly proteins called aaRSs-interacting multifunctional proteins (AIMPs), into so-called multi-synthetase complexes (MSCs). Metazoan MSCs are dynamic particles able to specifically release some of their constituents in response to a given stimulus. Upon their release from MSCs, aaRSs can reach other subcellular compartments, where they often participate to cellular processes that do not exploit their primary function of synthesizing aminoacyl-tRNAs. The dynamics of MSCs and the expansion of the aaRSs functional repertoire are features that are so far thought to be restricted to higher and multicellular eukaryotes. However, much can be learnt about how MSCs are assembled and function from apparently 'simple' organisms. Here we provide an overview on the diversity of these MSCs, their composition, mode of assembly and the functions that their constituents, namely aaRSs and AIMPs, exert in unicellular organisms.
Collapse
Affiliation(s)
- Daphné Laporte
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Jonathan L Huot
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Gaétan Bader
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Ludovic Enkler
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Bruno Senger
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France
| | - Hubert Dominique Becker
- UMR 'Génétique Moléculaire, Génomique, Microbiologie', CNRS, Université de Strasbourg, 21 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
2
|
Comte C, Tonin Y, Heckel-Mager AM, Boucheham A, Smirnov A, Auré K, Lombès A, Martin RP, Entelis N, Tarassov I. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res 2012; 41:418-33. [PMID: 23087375 PMCID: PMC3592399 DOI: 10.1093/nar/gks965] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial mutations, an important cause of incurable human neuromuscular diseases, are mostly heteroplasmic: mutated mitochondrial DNA is present in cells simultaneously with wild-type genomes, the pathogenic threshold being generally >70% of mutant mtDNA. We studied whether heteroplasmy level could be decreased by specifically designed oligoribonucleotides, targeted into mitochondria by the pathway delivering RNA molecules in vivo. Using mitochondrially imported RNAs as vectors, we demonstrated that oligoribonucleotides complementary to mutant mtDNA region can specifically reduce the proportion of mtDNA bearing a large deletion associated with the Kearns Sayre Syndrome in cultured transmitochondrial cybrid cells. These findings may be relevant to developing of a new tool for therapy of mtDNA associated diseases.
Collapse
Affiliation(s)
- Caroline Comte
- Department of Molecular and Cellular Genetics, UMR Génétique Moléculaire, Génomique, Microbiologie, CNRS, Université de Strasbourg, Strasbourg, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Liao CC, Lin CH, Chen SJ, Wang CC. Trans-kingdom rescue of Gln-tRNAGln synthesis in yeast cytoplasm and mitochondria. Nucleic Acids Res 2012; 40:9171-81. [PMID: 22821561 PMCID: PMC3467082 DOI: 10.1093/nar/gks689] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Aminoacylation of transfer RNAGln (tRNAGln) is performed by distinct mechanisms in different kingdoms and represents the most diverged route of aminoacyl-tRNA synthesis found in nature. In Saccharomyces cerevisiae, cytosolic Gln-tRNAGln is generated by direct glutaminylation of tRNAGln by glutaminyl-tRNA synthetase (GlnRS), whereas mitochondrial Gln-tRNAGln is formed by an indirect pathway involving charging by a non-discriminating glutamyl-tRNA synthetase and the subsequent transamidation by a specific Glu-tRNAGln amidotransferase. Previous studies showed that fusion of a yeast non-specific tRNA-binding cofactor, Arc1p, to Escherichia coli GlnRS enables the bacterial enzyme to substitute for its yeast homologue in vivo. We report herein that the same fusion enzyme, upon being imported into mitochondria, substituted the indirect pathway for Gln-tRNAGln synthesis as well, despite significant differences in the identity determinants of E. coli and yeast cytosolic and mitochondrial tRNAGln isoacceptors. Fusion of Arc1p to the bacterial enzyme significantly enhanced its aminoacylation activity towards yeast tRNAGln isoacceptors in vitro. Our study provides a mechanism by which trans-kingdom rescue of distinct pathways of Gln-tRNAGln synthesis can be conferred by a single enzyme.
Collapse
Affiliation(s)
- Chih-Chi Liao
- Department of Life Sciences, National Central University, Jung-li 32001, Taiwan, Republic of China
| | | | | | | |
Collapse
|
4
|
Fischer F, Huot JL, Lorber B, Diss G, Hendrickson TL, Becker HD, Lapointe J, Kern D. The asparagine-transamidosome from Helicobacter pylori: a dual-kinetic mode in non-discriminating aspartyl-tRNA synthetase safeguards the genetic code. Nucleic Acids Res 2012; 40:4965-76. [PMID: 22362756 PMCID: PMC3367201 DOI: 10.1093/nar/gks167] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Helicobacter pylori catalyzes Asn-tRNA(Asn) formation by use of the indirect pathway that involves charging of Asp onto tRNA(Asn) by a non-discriminating aspartyl-tRNA synthetase (ND-AspRS), followed by conversion of the mischarged Asp into Asn by the GatCAB amidotransferase. We show that the partners of asparaginylation assemble into a dynamic Asn-transamidosome, which uses a different strategy than the Gln-transamidosome to prevent the release of the mischarged aminoacyl-tRNA intermediate. The complex is described by gel-filtration, dynamic light scattering and kinetic measurements. Two strategies for asparaginylation are shown: (i) tRNA(Asn) binds GatCAB first, allowing aminoacylation and immediate transamidation once ND-AspRS joins the complex; (ii) tRNA(Asn) is bound by ND-AspRS which releases the Asp-tRNA(Asn) product much slower than the cognate Asp-tRNA(Asp); this kinetic peculiarity allows GatCAB to bind and transamidate Asp-tRNA(Asn) before its release by the ND-AspRS. These results are discussed in the context of the interrelation between the Asn and Gln-transamidosomes which use the same GatCAB in H. pylori, and shed light on a kinetic mechanism that ensures faithful codon reassignment for Asn.
Collapse
Affiliation(s)
- Frédéric Fischer
- Institut de Biologie Moléculaire et Cellulaire, UPR 9002 du CNRS, Architecture et Réactivité de l'ARN, Université de Strasbourg, 15 rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Blaise M, Fréchin M, Oliéric V, Charron C, Sauter C, Lorber B, Roy H, Kern D. Crystal structure of the archaeal asparagine synthetase: interrelation with aspartyl-tRNA and asparaginyl-tRNA synthetases. J Mol Biol 2011; 412:437-52. [PMID: 21820443 DOI: 10.1016/j.jmb.2011.07.050] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 07/19/2011] [Accepted: 07/21/2011] [Indexed: 11/28/2022]
Abstract
Asparagine synthetase A (AsnA) catalyzes asparagine synthesis using aspartate, ATP, and ammonia as substrates. Asparagine is formed in two steps: the β-carboxylate group of aspartate is first activated by ATP to form an aminoacyl-AMP before its amidation by a nucleophilic attack with an ammonium ion. Interestingly, this mechanism of amino acid activation resembles that used by aminoacyl-tRNA synthetases, which first activate the α-carboxylate group of the amino acid to form also an aminoacyl-AMP before they transfer the activated amino acid onto the cognate tRNA. In a previous investigation, we have shown that the open reading frame of Pyrococcus abyssi annotated as asparaginyl-tRNA synthetase (AsnRS) 2 is, in fact, an archaeal asparagine synthetase A (AS-AR) that evolved from an ancestral aspartyl-tRNA synthetase (AspRS). We present here the crystal structure of this AS-AR. The fold of this protein is similar to that of bacterial AsnA and resembles the catalytic cores of AspRS and AsnRS. The high-resolution structures of AS-AR associated with its substrates and end-products help to understand the reaction mechanism of asparagine formation and release. A comparison of the catalytic core of AS-AR with those of archaeal AspRS and AsnRS and with that of bacterial AsnA reveals a strong conservation. This study uncovers how the active site of the ancestral AspRS rearranged throughout evolution to transform an enzyme activating the α-carboxylate group into an enzyme that is able to activate the β-carboxylate group of aspartate, which can react with ammonia instead of tRNA.
Collapse
Affiliation(s)
- Mickaël Blaise
- Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, Institut de Biologie Moléculaire et Cellulaire, UPR 9002, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Bailly M, Blaise M, Lorber B, Thirup S, Kern D. Isolation, crystallization and preliminary X-ray analysis of the transamidosome, a ribonucleoprotein involved in asparagine formation. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:577-81. [PMID: 19478435 DOI: 10.1107/s1744309109015000] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 04/22/2009] [Indexed: 11/10/2022]
Abstract
Thermus thermophilus deprived of asparagine synthetase synthesizes Asn on tRNA(Asn) via a tRNA-dependent pathway involving a nondiscriminating aspartyl-tRNA synthetase that charges Asp onto tRNA(Asn) prior to conversion of the Asp to Asn by GatCAB, a tRNA-dependent amidotransferase. This pathway also constitutes the route of Asn-tRNA(Asn) formation by bacteria and archaea deprived of asparaginyl-tRNA synthetase. The partners involved in tRNA-dependent Asn formation in T. thermophilus assemble into a ternary complex called the transamidosome. This particule produces Asn-tRNA(Asn) in the presence of free Asp, ATP and an amido-group donor. Crystals of the transamidosome from T. thermophilus were obtained in the presence of PEG 4000 in MES-NaOH buffer pH 6.5. They belonged to the primitive monoclinic space group P2(1), with unit-cell parameters a = 115.9, b = 214.0, c = 127.8 A, beta = 93.3 degrees . A complete data set was collected to 3 A resolution. Here, the isolation and crystallization of the transamidosome from T. thermophilus and preliminary crystallographic data are reported.
Collapse
Affiliation(s)
- Marc Bailly
- UPR 9002 'Architecture et Réactivité de l'ARN', Université de Strasbourg, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 Rue René Descartes, F-67084 Strasbourg CEDEX, France
| | | | | | | | | |
Collapse
|
7
|
Affiliation(s)
- Richard Giegé
- Département Machineries Traductionnelles, UPR 9002 Architecture et Reactivite de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, 15 rue René Descartes, 67084 Strasbourg Cedex, France.
| |
Collapse
|
8
|
Kolesnikova O, Entelis N, Kazakova H, Brandina I, Martin RP, Tarassov I. Targeting of tRNA into yeast and human mitochondria: the role of anticodon nucleotides. Mitochondrion 2005; 2:95-107. [PMID: 16120312 DOI: 10.1016/s1567-7249(02)00013-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2002] [Revised: 03/29/2002] [Accepted: 03/29/2002] [Indexed: 12/27/2022]
Abstract
In vivo, yeast mitochondria import a single cytoplasmic tRNA, tRNA(CUU)Lys, while human mitochondria do not import any cytoplasmic tRNA. We have previously demonstrated that both yeast and human isolated mitochondria can specifically internalize tRNA(CUU)Lys, several of its mutant versions and some mutant versions of yeast cytosolic tRNA(UUU)Lys (not imported in vivo). Aminoacylation of tRNA(CUU)Lys by the cytoplasmic lysyl-tRNA synthetase was a prerequisite for its import. Here we are studying the influence of one-base replacements in the anticodon of tRNAs(Lys) on their aminoacylation, on binding to the precursor of the mitochondrial lysyl-tRNA synthetase (carrier protein directing the import), and on the efficiency of import into isolated yeast and human mitochondria. We show that the base U35 is the main identity element for the yeast cytoplasmic lysyl-tRNA synthetase. The single replacement that abolished import was C34G, while all the others only modulated the import efficiency. The need of aminoacylation for import and for interaction with the carrier protein was shown only for a subset of mutant versions, while the others could be recognized and internalized without aminoacylation or in misacylated forms.
Collapse
Affiliation(s)
- O Kolesnikova
- FRE 2375 CNRS Modèles Levures de Pathologies Humaines, Institut de Physiologie et Chimie Biologique, 21 rue René Descartes 67084, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
9
|
Roy H, Ling J, Irnov M, Ibba M. Post-transfer editing in vitro and in vivo by the beta subunit of phenylalanyl-tRNA synthetase. EMBO J 2004; 23:4639-48. [PMID: 15526031 PMCID: PMC533057 DOI: 10.1038/sj.emboj.7600474] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2004] [Accepted: 10/13/2004] [Indexed: 11/09/2022] Open
Abstract
Translation of the genetic code requires attachment of tRNAs to their cognate amino acids. Errors during amino-acid activation and tRNA esterification are corrected by aminoacyl-tRNA synthetase-catalyzed editing reactions, as extensively described for aliphatic amino acids. The contribution of editing to aromatic amino-acid discrimination is less well understood. We show that phenylalanyl-tRNA synthetase misactivates tyrosine and that it subsequently corrects such errors through hydrolysis of tyrosyl-adenylate and Tyr-tRNA(Phe). Structural modeling combined with an in vivo genetic screen identified the editing site in the B3/B4 domain of the beta subunit, 40 angstroms from the active site in the alpha subunit. Replacements of residues within the editing site had no effect on Phe-tRNA(Phe) synthesis, but abolished hydrolysis of Tyr-tRNA(Phe) in vitro. Expression of the corresponding mutants in Escherichia coli significantly slowed growth, and changed the activity of a recoded beta-galactosidase variant by misincorporating tyrosine in place of phenylalanine. This loss in aromatic amino-acid discrimination in vivo revealed that editing by phenylalanyl-tRNA synthetase is essential for faithful translation of the genetic code.
Collapse
Affiliation(s)
- Hervé Roy
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Jiqiang Ling
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Michael Irnov
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Michael Ibba
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
- Department of Microbiology, The Ohio State University, 556 Bioscience Building, 484 West 12th Avenue, Columbus, OH 43210-1292, USA. Tel.: +1 614 292 2120; Fax: +1 614 292 8120; E-mail:
| |
Collapse
|
10
|
Jester BC, Levengood JD, Roy H, Ibba M, Devine KM. Nonorthologous replacement of lysyl-tRNA synthetase prevents addition of lysine analogues to the genetic code. Proc Natl Acad Sci U S A 2003; 100:14351-6. [PMID: 14623972 PMCID: PMC283595 DOI: 10.1073/pnas.2036253100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2003] [Indexed: 11/18/2022] Open
Abstract
Insertion of lysine during protein synthesis depends on the enzyme lysyl-tRNA synthetase (LysRS), which exists in two unrelated forms, LysRS1 and LysRS2. LysRS1 has been found in most archaea and some bacteria, and LysRS2 has been found in eukarya, most bacteria, and a few archaea, but the two proteins are almost never found together in a single organism. Comparison of structures of LysRS1 and LysRS2 complexed with lysine suggested significant differences in their potential to bind lysine analogues with backbone replacements. One such naturally occurring compound, the metabolic intermediate S-(2-aminoethyl)-L-cysteine, is a bactericidal agent incorporated during protein synthesis via LysRS2. In vitro tests showed that S-(2-aminoethyl)-L-cysteine is a poor substrate for LysRS1, and that it inhibits LysRS1 200-fold less effectively than it inhibits LysRS2. In vivo inhibition by S-(2-aminoethyl)-L-cysteine was investigated by replacing the endogenous LysRS2 of Bacillus subtilis with LysRS1 from the Lyme disease pathogen Borrelia burgdorferi. B. subtilis strains producing LysRS1 alone were relatively insensitive to growth inhibition by S-(2-aminoethyl)-L-cysteine, whereas a WT strain or merodiploid strains producing both LysRS1 and LysRS2 showed significant growth inhibition under the same conditions. These growth effects arising from differences in amino acid recognition could contribute to the distribution of LysRS1 and LysRS2 in different organisms. More broadly, these data demonstrate how diversity of the aminoacyl-tRNA synthetases prevents infiltration of the genetic code by noncanonical amino acids, thereby providing a natural reservoir of potential antibiotic resistance.
Collapse
Affiliation(s)
- Brian C Jester
- Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | | | | | | | | |
Collapse
|
11
|
Johanson K, Hoang T, Sheth M, Hyman LE. GRS1, a yeast tRNA synthetase with a role in mRNA 3' end formation. J Biol Chem 2003; 278:35923-30. [PMID: 12855679 DOI: 10.1074/jbc.m304978200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription termination and 3' end formation are essential processes necessary for gene expression. However, the specific mechanisms responsible for these events remain elusive. A screen designed to identify trans-acting factors involved in these mechanisms in Saccharomyces cerevisiae identified a temperature-sensitive mutant that displayed phenotypes consistent with a role in transcription termination. The complementing gene was identified as GRS1, which encodes the S. cerevisiae glycyl-tRNA synthetase. This result, although unusual, is not unprecedented given that the involvement of tRNA synthetases in a variety of cellular processes other than translation has been well established. A direct role for the synthetase in transcription termination was determined through several in vitro assays using purified wild type and mutant enzyme. First, binding to two well characterized yeast mRNA 3' ends was demonstrated by cross-linking studies. In addition, it was found that all three substrates compete with each other for binding to GlyRS enzyme. Next, the affinity of the synthetase for the two mRNA 3' ends was found to be similar to that of its "natural" substrate, glycine tRNA in a nitrocellulose filter binding assay. The effect of the grs1-1 mutation was also examined and found to significantly reduce the affinity of the enzyme for the three RNA substrates. Taken together, these data indicate that not only does this synthetase interact with several different RNA substrates, but also that these substrates bind to the same site. These results establish a direct role for GRS1 in mRNA 3' end formation.
Collapse
Affiliation(s)
- Kelly Johanson
- Department of Biochemistry, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | | | |
Collapse
|
12
|
Kern D, Lorber B, Boulanger Y, Giege R. A peculiar property of aspartyl-tRNA synthetase from bakers' yeast: chemical modification of the protein by the enzymically synthesized aminoacyl adenylate. Biochemistry 2002. [DOI: 10.1021/bi00327a009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Entelis N, Kolesnikova O, Kazakova H, Brandina I, Kamenski P, Martin RP, Tarassov I. Import of nuclear encoded RNAs into yeast and human mitochondria: experimental approaches and possible biomedical applications. GENETIC ENGINEERING 2002; 24:191-213. [PMID: 12416306 DOI: 10.1007/978-1-4615-0721-5_9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Mitochondria import from the cytoplasm the vast majority of proteins and some RNAs. Although there exists extended knowledge concerning the mechanisms of protein import, the import of RNA is poorly understood. It was almost exclusively studied on the model of tRNA import, in several protozoans, plants and yeast. Mammalian mitochondria, which do not import tRNAs naturally, are hypothesized to import other small RNA molecules from the cytoplasm. We studied tRNA import in the yeast system, both in vitro and in vivo, and applied similar approaches to study 5S rRNA import into human mitochondria. Despite the obvious divergence of RNA import systems suggested for different species, we find that in yeast and human cells this pathway involves similar mechanisms exploiting cytosolic proteins to target the RNA to the organelle and requiring the integrity of pre-protein import apparatus. The import pathway might be of interest from a biomedical point of view, to target into mitochondria RNAs that could suppress pathological mutations in mitochondrial DNA. Yeast represents a good model to elaborate such a gene therapy approach. We have described here the various approaches and protocols to study RNA import into mitochondria of yeast and human cells in vitro and in vivo.
Collapse
Affiliation(s)
- N Entelis
- FRE 2375 of the CNRS (MEPH), Institut de Physiologie et Chimie Biologique 21, rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
14
|
Entelis NS, Kolesnikova OA, Dogan S, Martin RP, Tarassov IA. 5 S rRNA and tRNA import into human mitochondria. Comparison of in vitro requirements. J Biol Chem 2001; 276:45642-53. [PMID: 11551911 DOI: 10.1074/jbc.m103906200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In vivo, human mitochondria import 5 S rRNA and do not import tRNAs from the cytoplasm. We demonstrated previously that isolated human mitochondria are able to internalize a yeast tRNA(Lys) in the presence of yeast soluble factors. Here, we describe an assay for specific uptake of 5 S rRNA by isolated human mitochondria and compare its requirements with the artificial tRNA import. The efficiency of 5 S rRNA uptake by isolated mitochondria was comparable with that found in vivo. The import was shown to depend on ATP and the transmembrane electrochemical potential and was directed by soluble proteins. Blocking the pre-protein import channel inhibited internalization of both 5 S rRNA and tRNA, which suggests this apparatus be involved in RNA uptake by the mitochondria. We show that human mitochondria can also selectively internalize several in vitro synthesized versions of yeast tRNA(Lys) as well as a transcript of the human mitochondrial tRNA(Lys). Either yeast or human soluble proteins can direct this import, suggesting that human cells possess all factors needed for such an artificial translocation. On the other hand, the efficiency of import directed by yeast or human protein factors varies significantly, depending on the tRNA version. Similarly to the yeast system, tRNA(Lys) import into human mitochondria depended on aminoacylation and on the precursor of the mitochondrial lysyl-tRNA synthetase. 5 S rRNA import was also dependent upon soluble protein(s), which were distinct from the factors providing tRNA internalization.
Collapse
Affiliation(s)
- N S Entelis
- Formation de Recherche en Evolution 2375, CNRS Modèles d'Etude de Pathologies Humaines, 21 rue René Descartes, 67084 Strasbourg, France
| | | | | | | | | |
Collapse
|
15
|
|
16
|
Mazauric MH, Reinbolt J, Lorber B, Ebel C, Keith G, Giegé R, Kern D. An example of non-conservation of oligomeric structure in prokaryotic aminoacyl-tRNA synthetases. Biochemical and structural properties of glycyl-tRNA synthetase from Thermus thermophilus. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 241:814-26. [PMID: 8944770 DOI: 10.1111/j.1432-1033.1996.00814.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycyl-tRNA synthetase (Gly-tRNA synthetase) from Thermus thermophilus was purified to homogeneity and with high yield using a five-step purification procedure in amounts sufficient to solve its crystallographic structure [Logan, D.T., Mazauric, M.-H., Kern, D. & Moras, D. (1995) EMBO J. 14, 4156-4167]. Molecular-mass determinations of the native and denatured protein indicate an oligomeric structure of the alpha 2 type consistent with that found for eukaryotic Gly-tRNA synthetases (yeast and Bombyx mori), but different from that of Gly-tRNA synthetases from mesophilic prokaryotes (Escherichia coli and Bacillus brevis) which are alpha 2 beta 2 tetramers. N-terminal sequencing of the polypeptide chain reveals significant identity, reaching 50% with those of the eukaryotic enzymes (B. mori, Homo sapiens, yeast and Caenorhabditis elegans) but no significant identity was found with both alpha and beta chains of the prokaryotic enzymes (E. coli, Haemophilus influenzae and Coxiella burnetii) albeit the enzyme is deprived of the N-terminal extension characterizing eukaryotic synthetases. Thus, the thermophilic Gly-tRNA synthetase combines strong structural homologies of eukaryotic Gly-tRNA synthetases with a feature of prokaryotic synthetases. Heat-stability measurements show that this synthetase keeps its ATP-PPi exchange and aminoacylation activities up to 70 degrees C. Glycyladenylate strongly protects the enzyme against thermal inactivation at higher temperatures. Unexpectedly, tRNA(Gly) does not induce protection. Cross-aminoacylations reveal that the thermophilic Gly-tRNA synthetase charges heterologous E. coli tRNA(gly(GCC)) and tRNA(Gly(GCC)) and yeast tRNA(Gly(GCC)) as efficiently as T. thermophilus tRNA(Gly). All these aminoacylation reactions are characterized by similar activation energies as deduced from Arrhenius plots. Therefore, contrary to the E. coli and H. sapiens Gly-tRNA synthetases, the prokaryotic thermophilic enzyme does not possess a strict species specificity. The results are discussed in the context of the three-dimensional structure of the synthetase and in the view of the particular evolution of the glycinylation systems.
Collapse
Affiliation(s)
- M H Mazauric
- UPR 9002 du CNRS, Institut de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | | | | | | | | | | | | |
Collapse
|
17
|
Larrinoa IF, Heredia CF. Yeast proteinase yscB inactivates the leucyl tRNA synthetase in extracts of Saccharomyces cerevisiae. BIOCHIMICA ET BIOPHYSICA ACTA 1991; 1073:502-8. [PMID: 2015274 DOI: 10.1016/0304-4165(91)90222-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The aminoacyl-tRNA synthetases are inactivated in extracts of Saccharomyces cerevisiae preferentially to other yeast enzymes and the rate of inactivation greatly increases in extracts of nitrogen-starved cells. The intensity of inactivation varies for the different synthetases. Under conditions in which more than 80 per cent of the leucyl and isoleucyl-tRNA synthetases are inactivated, the activities of the synthetases for serine and arginine remain unchanged and the synthetases for other amino acids are inactivated to different extents. We have analyzed the characteristics of inactivation of the leucyl-tRNA synthetase, and identified the inactivating agent as the yeast proteinase yscB by the following criteria: co-induction of both activities by nitrogen starvation; same pattern of sensitivity to yeast proteinase inhibitors; co-purification through a procedure designed to purify the proteinase yscB and lack of inactivating activity in extracts of a nitrogen-starved yeast mutant lacking proteinase yscB.
Collapse
Affiliation(s)
- I F Larrinoa
- Instituto de Investigaciones Biomédicas del CSIC, Facultad de Medicina de la UAM, Madrid, Spain
| | | |
Collapse
|
18
|
Perret V, Florentz C, Giegé R. Efficient aminoacylation of a yeast tRNA(Asp) transcript with a 5' extension. FEBS Lett 1990; 270:4-8. [PMID: 2226785 DOI: 10.1016/0014-5793(90)81221-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A yeast aspartic acid tRNA with a 5' extension of 14 nucleotides was obtained by in vitro transcription with T7 DNA dependent RNA polymerase. This transcript, called extended tRNA(Asp) transcript, retains its aspartylation capacity with the same Km and only three times reduced kcat values as compared to those measured for canonical tRNA(Asp). This result indicates that the 5' extension of the amino acid acceptor stem of tRNA(Asp) does not interfere with recognition by aspartyl-tRNA synthetase. However, in contrast to the wild-type tRNA(Asp) transcript, the 5' extended molecule presents a reduced capacity to be mischarged by arginyl-tRNA synthetase, suggesting the existence of different structural requirements in aspartyl- and arginyl-tRNA synthetases for tRNA(Asp) recognition.
Collapse
Affiliation(s)
- V Perret
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | |
Collapse
|
19
|
Theobald A, Springer M, Grunberg-Manago M, Ebel JP, Giege R. Tertiary structure of Escherichia coli tRNA(3Thr) in solution and interaction of this tRNA with the cognate threonyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 175:511-24. [PMID: 2457500 DOI: 10.1111/j.1432-1033.1988.tb14223.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The solution structure of Escherichia coli tRNA(3Thr) (anticodon GGU) and the residues of this tRNA in contact with the alpha 2 dimeric threonyl-tRNA synthetase were studied by chemical and enzymatic footprinting experiments. Alkylation of phosphodiester bonds by ethylnitrosourea and of N-7 positions in guanosines and N-3 positions in cytidines by dimethyl sulphate as well as carbethoxylation of N-7 positions in adenosines by diethyl pyrocarbonate were conducted on different conformers of tRNA(3Thr). The enzymatic structural probes were nuclease S1 and the cobra venom ribonuclease. Results will be compared to those of three other tRNAs, tRNA(Asp), tRNA(Phe) and tRNA(Trp), already mapped with these probes. The reactivity of phosphates towards ethylnitrosourea of the unfolded tRNA was compared to that of the native molecule. The alkylation pattern of tRNA(3Thr) shows some similarities to that of yeast tRNA(Phe) and mammalian tRNA(Trp), especially in the D-arm (positions 19 and 24) and with tRNA(Trp), at position 50, the junction between the variable region and the T-stem. In the T-loop, tRNA(3Thr), similarly to the three other tRNAs, shows protections against alkylation at phosphates 59 and 60. However, tRNA(3Thr) is unique as far as very strong protections are also found for phosphates 55 to 58 in the T-loop. Compared with yeast tRNA(Asp), the main differences in reactivity concern phosphates 19, 24 and 50. Mapping of bases with dimethyl sulphate and diethyl pyrocarbonate reveal conformational similarities with yeast tRNA(Phe). A striking conformational feature of tRNA(3Thr) is found in the 3'-side of its anticodon stem, where G40, surrounded by two G residues, is alkylated under native conditions, in contrast to other G residues in stem regions of tRNAs which are unreactive when sandwiched between two purines. This data is indicative of a perturbed helical conformation in the anticodon stem at the level of the 30-40 base pairs. Footprinting experiments, with chemical and enzymatic probes, on the tRNA complexed with its cognate threonyl-tRNA synthetase indicate significant protections in the anticodon stem and loop region, in the extra-loop, and in the amino acid accepting region. The involvement of the anticodon of tRNA(3Thr) in the recognition process with threonyl-tRNA synthetase was demonstrated by nuclease S1 mapping and by the protection of G34 and G35 against alkylation by dimethyl sulphate. These data are discussed in the light of the tRNA/synthetase recognition problem and of the structural and functional properties of the tRNA-like structure present in the operator region of the thrS mRNA.
Collapse
Affiliation(s)
- A Theobald
- Institut de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
20
|
Lorber B, Mejdoub H, Reinbolt J, Boulanger Y, Giegé R. Properties of N-terminal truncated yeast aspartyl-tRNA synthetase and structural characteristics of the cleaved domain. EUROPEAN JOURNAL OF BIOCHEMISTRY 1988; 174:155-61. [PMID: 3286258 DOI: 10.1111/j.1432-1033.1988.tb14076.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cytoplasmic aspartyl-tRNA synthetase from Saccharomyces cerevisiae is a dimer made up of identical subunits of Mr 64,000 as shown by biochemical and crystallographic analyses. Previous studies have emphasized the high sensitivity of the amino-terminal region (residues 1-32) to proteolytic enzymes. This work reports the results of limited tryptic or chymotryptic digestion of the purified enzyme which gives rise to a truncated species that has lost the first 50-64 residues with full retention of both the activity and the dimeric structure. In contrast the larger tryptic fragment is distinguished from the whole enzyme by its weaker retention on heparin-substituted agarose gels. The cleaved N-terminal part presents peculiar structural features, such as a high content in lysine residues arranged in a palindromic fashion. The properties of the trypsin-modified enzyme and of the cleaved amino-terminal region are discussed in relation to the known structural characteristics of aspartyl-tRNA synthetase and of other eukaryotic aminoacyl-tRNA synthetases.
Collapse
Affiliation(s)
- B Lorber
- Institut de Biologie Moléculaire et Cellulaire du Centre National de la Recherche Scientifique, Strasbourg, France
| | | | | | | | | |
Collapse
|
21
|
Tukalo MA, Kubler MD, Kern D, Mougel M, Ehresmann C, Ebel JP, Ehresmann B, Giegé R. trans-Diamminedichloroplatinum(II), a reversible RNA-protein cross-linking agent. Application to the ribosome and to an aminoacyl-tRNA synthetase/tRNA complex. Biochemistry 1987; 26:5200-8. [PMID: 3311162 DOI: 10.1021/bi00390a045] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A new approach allowing detection of contact points between RNAs and proteins has been developed using trans-diamminedichloroplatinum(II) as the cross-linking reagent. The advantage of the method relies on the fact that the coordination bonds between platinum and the potential acceptors on proteins and nucleic acids (mainly S of cysteine or methionine residues; N of imidazole rings in histidine residues; N7 of guanine, N1 of adenine, and N3 of cytosine residues) can be reversed, so that the cross-linked oligonucleotides or peptides in contact within a complex can be analyzed directly. The method was worked out with the ribosome from Escherichia coli and the tRNAVal/valyl-tRNA synthetase system from the yeast Saccharomyces cerevisiae. In the first system the platinum approach permitted detection of ribosomal proteins cross-linked to 16S rRNA within the 30S subunits (mainly S18 and to a lower extent S3, S4, S11, and S13/S14); in the second system major oligonucleotides of tRNAVal cross-linked to valyl-tRNA synthetase were detected in the anticodon stem and loop, in the variable loop, and in the 3' terminal amino acid accepting region. These results are discussed in light of the current knowledge on ribosome and tRNAs and of potential applications of the methodology.
Collapse
Affiliation(s)
- M A Tukalo
- Laboratoire de Biochimie, Institut de Biologie Moléculaire et Cellulaire du CNRS, Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Wikman FP, Romby P, Metz MH, Reinbolt J, Clark BF, Ebel JP, Ehresmann C, Ehresmann B. Crosslinking of elongation factor Tu to tRNA(Phe) by trans-diamminedichloroplatinum (II). Characterization of two crosslinking sites in the tRNA. Nucleic Acids Res 1987; 15:5787-801. [PMID: 3302946 PMCID: PMC306023 DOI: 10.1093/nar/15.14.5787] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trans-diamminedichloroplatinum (II) was used to induce reversible crosslinks between EF-Tu and Phe-tRNA(Phe) within the ternary EF-Tu/GTP/Phe-tRNA(Phe) complex. Up to 40% of the complex was specifically converted into crosslinked species. Two crosslinking sites have been unambiguously identified. The major one encompassing nucleotides 58 to 65 is located in the 3'-part of the T-stem, and the minor one encompassing nucleotides 31 to 42 includes the anticodon loop and part of the 3'-strand of the anticodon stem.
Collapse
|
23
|
Lorber B, Kern D, Mejdoub H, Boulanger Y, Reinbolt J, Giege R. The microheterogeneity of the crystallizable yeast cytoplasmic aspartyl-tRNA synthetase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1987; 165:409-17. [PMID: 3297688 DOI: 10.1111/j.1432-1033.1987.tb11454.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Yeast aspartyl-tRNA synthetase is a dimeric enzyme (alpha 2, Mr 125,000) which can be crystallized either alone or complexed with tRNAAsp. When analyzed by electrophoretic methods, the pure enzyme presents structural heterogeneities even when recovered from crystals. Up to three enzyme populations could be identified by polyacrylamide gel electrophoresis and more than ten by isoelectric focusing. They have similar molecular masses and mainly differ in their charge. All are fully active. This microheterogeneity is also revealed by ion-exchange chromatography and chromatofocusing. Several levels of heterogeneity have been defined. A first type, which is reversible, is linked to redox effects and/or to conformational states of the protein. A second one, revealed by immunological methods, is generated by partial and differential proteolysis occurring during enzyme purification from yeast cells harvested in growth phase. As demonstrated by end-group analysis, the fragmentation concerns exclusively the N-terminal end of the enzyme. The main cleavage points are Gln-19, Val-20 and Gly-26. Six minor cuts are observed between positions 14 and 33. The present data are discussed in the perspective of the crystallographic studies on aspartyl-tRNA synthetase.
Collapse
|
24
|
Arafat W, Kern D, Dirheimer G. Inhibition of aminoacyl-tRNA synthetases by the mycotoxin patulin. Chem Biol Interact 1985; 56:333-49. [PMID: 3907866 DOI: 10.1016/0009-2797(85)90015-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The effect of patulin on tRNA aminoacylation has been determined. This mycotoxin inhibits the aminoacylation process by irreversibly inactivating aminoacyl-tRNA synthetases. At neutral and alkaline pH-values, the inactivation occurs mainly by modification of essential thiol groups of the protein, whereas at acidic pH, where the effect is the most pronounced, the modification of other amino acid residues cannot be excluded.
Collapse
|
25
|
Romby P, Moras D, Bergdoll M, Dumas P, Vlassov VV, Westhof E, Ebel JP, Giegé R. Yeast tRNAAsp tertiary structure in solution and areas of interaction of the tRNA with aspartyl-tRNA synthetase. A comparative study of the yeast phenylalanine system by phosphate alkylation experiments with ethylnitrosourea. J Mol Biol 1985; 184:455-71. [PMID: 3900415 DOI: 10.1016/0022-2836(85)90294-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Ethylnitrosourea is an alkylating reagent preferentially modifying phosphate groups in nucleic acids. It was used to monitor the tertiary structure, in solution, of yeast tRNAAsp and to determine those phosphate groups in contact with the cognate aspartyl-tRNA synthetase. Experiments involve 3' or 5'-end-labelled tRNA molecules, low yield modification of the free or complexed nucleic acid and specific splitting at the modified phosphate groups. The resulting end-labelled oligonucleotides are resolved on polyacrylamide sequencing gels and data analysed by autoradiography and densitometry. Experiments were conducted in parallel on yeast tRNAAsp and on tRNAPhe. In that way it was possible to compare the solution structure of two elongator tRNAs and to interpret the modification data using the known crystal structures of both tRNAs. Mapping of the phosphates in free tRNAAsp and tRNAPhe allowed the detection of differential reactivities for phosphates 8, 18, 19, 20, 22, 23, 24 and 49: phosphates 18, 19, 23, 24 and 49 are more reactive in tRNAAsp, while phosphates 8, 20 and 22 are more reactive in tRNAPhe. All other phosphates display similar reactivities in both tRNAs, in particular phosphate 60 in the T-loop, which is strongly protected. Most of these data are explained by the crystal structures of the tRNAs. Thermal transitions in tRNAAsp could be followed by chemical modifications of phosphates. Results indicate that the D-arm is more flexible than the T-loop. The phosphates in yeast tRNAAsp in contact with aspartyl-tRNA synthetase are essentially contained in three continuous stretches, including those at the corner of the amino acid accepting and D-arm, at the 5' side of the acceptor stem and in the variable loop. When represented in the three-dimensional structure of the tRNAAsp, it clearly appears that one side of the L-shaped tRNA molecule, that comprising the variable loop, is in contact with aspartyl-tRNA synthetase. In yeast tRNAPhe interacting with phenylalanyl-tRNA synthetase, the distribution of protected phosphates is different, although phosphates in the anticodon stem and variable loop are involved in both systems. With tRNAPhe, the data cannot be accommodated by the interaction model found for tRNAAsp, but they are consistent with the diagonal side model proposed by Rich & Schimmel (1977). The existence of different interaction schemes between tRNAs and aminoacyl-tRNA synthetases, correlated with the oligomeric structure of the enzyme, is proposed.
Collapse
|
26
|
Cirakoglu B, Waller JP. Do yeast aminoacyl-tRNA synthetases exist as soluble enzymes within the cytoplasm? EUROPEAN JOURNAL OF BIOCHEMISTRY 1985; 149:353-61. [PMID: 3888626 DOI: 10.1111/j.1432-1033.1985.tb08933.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The aminoacyl-tRNA synthetases from a crude extract of yeast were shown to bind to heparin-Ultrogel through ionic interactions, in conditions where the corresponding enzymes from Escherichia coli did not. The behaviour of purified lysyl-tRNA synthetases from yeast and E. coli was examined in detail. The native dimeric enzyme from yeast (Mr 2 X 73000) strongly interacted with immobilized heparin or tRNA, as well as with negatively charged liposomes, in conditions where the corresponding native enzyme from E. coli (Mr 2 X 65000) displayed no affinity for these supports. Moreover, the aptitude of the native enzyme from yeast to interact with polyanionic carriers was lost on proteolytic conversion to a fully active modified dimer of Mr 2 X 65500. A structural model is proposed, according to which each subunit of yeast lysyl-tRNA synthetase is composed of a functional domain similar in size to that of the prokaryotic enzyme, contiguous to a 'binding' domain responsible for association to negatively charged carriers. The evolutionary acquisition of this property by lower eukaryotic aminoacyl-tRNA synthetases suggests that it fulfils an important function in vivo, unrelated to catalysis. We propose that it promotes the compartmentalization of these enzymes within the cytoplasm, through associations with as yet unidentified, negatively charged components, by electrostatic interactions too fragile to withstand the usual extraction conditions.
Collapse
|
27
|
Garret M, Romby P, Giegé R, Litvak S. Interactions between avian myeloblastosis reverse transcriptase and tRNATrp. Mapping of complexed tRNA with chemicals and nucleases. Nucleic Acids Res 1984; 12:2259-71. [PMID: 6200830 PMCID: PMC318660 DOI: 10.1093/nar/12.5.2259] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The interactions between beef tRNATrp with avian myeloblastosis reverse transcriptase have been studied by statistical chemical modifications of phosphate (ethylnitrosourea) and cytidine (dimethyl sulfate) residues, as well as by digestion of complexed tRNA by Cobra venom nuclease and Neurospora crassa endonuclease. Results with nucleases and chemicals show that reverse transcriptase interacts preferentially with the D arm, the anticodon stem and the T psi stem. All these regions are located in the outside of the L-shaped structure of tRNA. This domain of interaction is different to that reported previously in the complex of beef tRNA with the cognate aminoacyl-tRNA synthetase (M. Garret et al.; Eur. J. Biochem. In press). Avian reverse transcriptase destabilizes the region of tRNA where most of the tertiary interactions maintaining the structure of tRNA are located.
Collapse
|
28
|
Scheffer JW, Howe N, Gunning PW, Austin L. Axoplasmic transport of transfer RNA in the chick optic system. J Neurochem 1984; 42:698-704. [PMID: 6198469 DOI: 10.1111/j.1471-4159.1984.tb02739.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It has previously been shown that 4S RNA is transported in the optic nerve of the chick, but that no movement of rRNA can be detected. The 4S component behaved as though it were composed mainly of transfer RNA (tRNA), but the possibility remained that it could contain significant amounts of material resulting from RNA degradation. The transport of this 4S component has been examined in more detail to determine its nature. In addition, the transported material was examined to establish whether the transport of tRNA is a general phenomenon or that there are only a limited number of species involved. This was done using the same principles applied in the previous study; i.e., the specific activities of separated 4S RNA species appearing in the optic tectum 4 days after intraocular injection of [3H]uridine were compared with that of 5S RNA, a nontransported species. The separation was accomplished using 2.8-5-10-17% slab polyacrylamide gels, and 18 separate regions of 4S species could be identified. The results show that at least most, if not all 4S RNA species are transported. In a separate series of experiments the 4S RNA was aminoacylated and again separated on slab gels. In this instance, the RNA was labelled with [3H]uridine and the aminoacyl component with [14C]amino acids. Gel profiles of these dual-labelled components showed excellent correspondence between the two labels, demonstrating that 4S RNA species could be aminoacylated and were therefore tRNA species.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
|
29
|
Creppy EE, Kern D, Steyn PS, Vleggaar R, Röschenthaler R, Dirheimer G. Comparative study of the effect of ochratoxin A analogues on yeast aminoacyl-tRNA synthetases and on the growth and protein synthesis of hepatoma cells. Toxicol Lett 1983; 19:217-24. [PMID: 6362078 DOI: 10.1016/0378-4274(83)90122-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Ochratoxin A (OTA), a naturally occurring mycotoxin of Aspergillus and Penicillium species, consists of a 5' chlorinated dihydromethyl isocoumarin linked to L,beta-phenylalanine by an alpha-amide bond. 8 analogues of OTA were prepared in which the phenylalanine was always substituted by another amino acid. The effects of these analogues on yeast tRNA amino acylation reaction and on growth and protein synthesis of hepatoma culture cells were compared with those of OTA. In addition, Ochratoxin B (OTB) and ochratoxin alpha (OT alpha) were examined. All the analogues of OTA had inhibitory effects in the 3 test systems, although to a lesser degree than OTA. The degree of inhibition depended on the kind of substituted amino acid, the tyrosine, valine, serine and alanine analogues being most effective, in contrast to the proline analogue. OTB and OT alpha were ineffective.
Collapse
|
30
|
Lorber B, Kern D, Dietrich A, Gangloff J, Ebel JP, Giegé R. Large scale purification and structural properties of yeast aspartyl-tRNA synthetase. Biochem Biophys Res Commun 1983; 117:259-67. [PMID: 6362667 DOI: 10.1016/0006-291x(83)91569-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A large scale purification procedure of baker's yeast aspartyl-tRNA synthetase is described which yields more than 200 mg pure protein starting from 30 Kg of wet commercial cells. The synthetase is an alpha 2 dimer of Mr = 125,000 +/- 5,000 which can be crystallized (J. Mol. Biol. 138, 1980, 129-135). The enzyme has an elongated shape with a Stokes radius of 50 A and a frictional ratio of 1.5. The synthetase has a tendency to aggregate but methods are described where this effect is overcome.
Collapse
|
31
|
Colas B, Boulanger Y. Glycosylation of yeast aspartyl-tRNA synthetase. Affinity labelling by glucose and glucose 6-phosphate. FEBS Lett 1983; 163:175-80. [PMID: 6357853 DOI: 10.1016/0014-5793(83)80813-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Several lines of evidence establish that the crystallizable aspartyl-tRNA synthetase from Baker's yeast contains some covalently bound glucose: (i) a positive staining of the enzyme was obtained after polyacrylamide gel electrophoresis followed by the concanavalin A-peroxidase test which is specific for glucose and mannose containing proteins; (ii) thin-layer chromatography and gas-liquid chromatography revealed the presence of glucose in enzyme hydrolysates; (iii) immunoaffinoelectrophoresis in agarose gels containing concanavalin A and antibodies raised against aspartyl-tRNA synthetase showed that the enzyme was able to precipitate entirely in the lectin. Finally incubation of the enzyme with [14C]glucose or [14C]glucose 6-phosphate led to the incorporation of radioactivity into trichloroacetic acid-precipitable protein. Indeed immunoprecipitation of [14C]glucose-labelled aspartyl-tRNA synthetase with specific antibodies using the rocket method followed by autoradiography gave a radioactive peak. This last result also demonstrates the possibility of in vitro glycosylation of yeast aspartyl-tRNA synthetase.
Collapse
|
32
|
Mirande M, Pailliez JP, Schwencke J, Waller JP. Sedimentation behaviour of aminoacyl-tRNA synthetases from mixed lysates of yeast and rabbit liver. BIOCHIMICA ET BIOPHYSICA ACTA 1983; 747:71-7. [PMID: 6349695 DOI: 10.1016/0167-4838(83)90123-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The subcellular distribution of five aminoacyl-tRNA synthetases from yeast, including lysyl-, arginyl- and methionyl-tRNA synthetases known to exist as high-molecular-weight complexes in lysates from higher eukaryotes, was investigated. To minimize the risks of proteolysis, spheroplasts prepared from exponentially grown yeast cells were lysed in the presence of several proteinase inhibitors, under conditions which preserved the integrity of the proteinase-rich vacuoles. The vacuole-free supernatant was subjected to sucrose density gradient centrifugation. No evidence for multimolecular associations of these enzymes was found. In particular, phenylalanyl-tRNA synthetase activity was not associated with the ribosomes, whereas purified phenylalanyl-tRNA synthetase from sheep liver, added to the yeast lysate prior to centrifugation, was entirely recovered in the ribosomal fraction. A mixture of lysates from yeast and rabbit liver was also subjected to sucrose gradient centrifugation and assayed for methionyl- and arginyl-tRNA synthetase activities, under conditions which allowed discrimination between the enzymes originating from yeast and rabbit. The two enzymes from rabbit liver were found to sediment exclusively as high-molecular-weight complexes, in contrast to the corresponding enzymes from yeast, which displayed sedimentation properties characteristic of free enzymes. The preservation of the complexed forms of mammalian aminoacyl-tRNA synthetases upon mixing of yeast and rabbit liver extracts argues against the possibility that failure to observe complexed forms of these enzymes in yeast was due to uncontrolled proteolysis. Furthermore, this result denies the presence, in the crude extract from liver, of components capable of inducing artefactual aggregation of the yeast aminoacyl-tRNA synthetases, and thus indirectly argues against an artefactual origin of the multienzyme complexes encountered in lysates from mammalian cells.
Collapse
|
33
|
Lorber B, Giegé R, Ebel JP, Berthet C, Thierry JC, Moras D. Crystallization of a tRNA . aminoacyl-tRNA synthetase complex. Characterization and first crystallographic data. J Biol Chem 1983. [DOI: 10.1016/s0021-9258(20)82082-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
34
|
Abstract
Isoelectric points and isoelectric focusing behaviour of 10 highly purified eukaryotic aminoacyl-tRNA synthetases from 3 sources, Saccharomyces cerevisiae, Euglena gracilis and Phaseolus vulgaris were examined. The pI-values measured on polyacrylamide gels under native conditions are situated between pH 5.0-7.5. A microheterogeneity was observed for 9 enzymes appearing otherwise homogeneous on gel electrophoresis. A compilation of the isoelectric points of aminoacyl-tRNA synthetases is given and literature data are compared with our experimental results.
Collapse
|
35
|
Sellami M, Rether B, Gangloff J, Ebel JP, Bonnet J. Enrichment and characterization of the mRNAs of four aminoacyl-tRNA synthetases from yeast. Nucleic Acids Res 1983; 11:3269-82. [PMID: 6344009 PMCID: PMC325962 DOI: 10.1093/nar/11.10.3269] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
We have partially purified the messenger RNAs for yeast arginyl-, aspartyl-, valyl-, alpha and beta subunits of phenylalanyl-tRNA synthetases in order to study their biosynthesis and ultimately, to isolate their genes. Sucrose gradient fractionation of poly U-Sepharose selected mRNAs resulted in a ten fold enrichment of the in vitro translation activity of these mRNAs. The translation products of messenger RNAs for arginyl- and valyl-tRNA synthetases have the same molecular weight as the purified enzymes; translation of aspartyl-tRNA synthetase messenger RNA yielded a 68 kD molecular weight polypeptide (while the purified cristallisable enzyme appears as a 64-66 kD doublet, which, as we showed is a proteolysis product). The translation of the mRNAs for alpha and beta phenylalanyl-tRNA synthetase gave polypeptides having the same molecular weight as those obtained from the purified enzyme, but the major translation products are slightly heavier, indicating that they may be translated as precursors. As estimated from centrifugation experiments mRNAs of arginyl-, aspartyl-, alpha and beta subunits of phenylalanyl-tRNA synthetase were 1700-2000 nucleotides long, indicating that alpha and beta are translated from two different mRNAs.
Collapse
|
36
|
Vlassov VV, Kern D, Romby P, Giegé R, Ebel JP. Interaction of tRNAPhe and tRNAVal with aminoacyl-tRNA synthetases. A chemical modification study. EUROPEAN JOURNAL OF BIOCHEMISTRY 1983; 132:537-44. [PMID: 6343077 DOI: 10.1111/j.1432-1033.1983.tb07395.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The alkylation by ethylnitrosourea of phosphodiester bonds in tRNAPhe from yeast and in tRNAVal from yeast and from rabbit liver and that by 4-(N-2-chloroethyl-N-methylamino)-benzylamine of N-7 atoms of guanosine residues in yeast tRNAVal have been used to study the interaction of these tRNAs with aminoacyl-tRNA synthetases. The modifications occurring at low yield were carried out on 3' and/or 5' end-labelled tRNAs either free or in the presence of cognate or non-cognate synthetases. After splitting of the tRNAs at the alkylated positions, the position of the modification sites in the tRNA sequences were detected by acrylamide gel electrophoresis. It was found that the synthetases protect against alkylation certain phosphate or guanosine residues in their cognate tRNAs. Non-cognate synthetases failed to protect efficiently specific positions in tRNA against modification. In yeast tRNAPhe the cognate phenylalanyl-tRNA synthetase protects certain phosphates located in all four stems and in the anticodon and extra-loop of the tRNA. Particularly strong protections occur on phosphate 34 in the anticodon loop and on phosphates 23, 27, 28, 41 and 46 in the D and anticodon stems. In yeast tRNAVal complexed with yeast valyl-tRNA synthetase the protected phosphates are essentially located in the corner between the amino-acid-accepting and D stems, in the D loop, anticodon stem and in the variable region of the tRNA. Three guanosine residues, located in the D stem, and another one in the 3' part of the anticodon stem were also found protected by the synthetase. In mammalian tRNAVal, complexed with the cognate but heterologous yeast valyl-tRNA synthetase, the protected phosphates lie in the anticodon stem, in the extra-loop and in the T psi arm. The location of the protected residues in the structure of three tRNAs suggests some common features in the binding of tRNAs to aminoacyl-tRNA synthetases. These results will be discussed in the light of informations on interaction sites obtained by nuclease digestion and ultraviolet cross-linking methods.
Collapse
|
37
|
Reinbolt J, Hounwanou N, Boulanger Y, Wittmann-Liebold B, Bosserhoff A. Reversed-phase liquid chromatography of peptides for direct micro-sequencing. J Chromatogr A 1983; 259:121-30. [PMID: 6343406 DOI: 10.1016/s0021-9673(01)87985-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Tryptic and cyanogen bromide peptides derived from yeast aspartyl-tRNA synthetase and from Escherichia coli ribosomal proteins were separated by reversed-phase liquid chromatography, employing volatile buffers of low ionic strength. The conditions used allow the performance of micro-sequencing without desalting or extensive lyophilization, and can therefore be applied to peptide mixtures containing hydrophobic fragments which tend to precipitate. To prevent losses of peptides, direct ultra-violet detection of the peptides was preferred, to detection by post-column derivatization with an additional stream splitting device. Preparative separations were performed with 5-10 nmol of peptide mixture; analytical runs were made with 5-10 micrograms of protein hydrolysate.
Collapse
|
38
|
Lorber B, Kern D, Giegé R, Ebel JP. Covalent attachment of aspartic acid to yeast aspartyl-tRNA synthetase induced by the enzyme. FEBS Lett 1982; 146:59-64. [PMID: 6754443 DOI: 10.1016/0014-5793(82)80705-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aspartic acid can be covalently linked to yeast aspartyl-tRNA synthetase and to other proteins, in the absence of tRNA, under conditions where the synthetase activates the amino acid into aspartyl-adenylate, i.e., in the presence of ATP and MgCl2. The linkage between aspartic acid and the protein is acid and alkali resistant; thus it is likely a peptide-like amide bond formed between the activated carboxylate group of aspartic acid and the primary amine function of the side chain of lysine residues.
Collapse
|
39
|
Bacha H, Renaud M, Lefevre JF, Remy P. Conformational activation of aminoacyl-tRNA synthetases upon binding of tRNA. A facet of a multi-step adaptation process leading to the optimal biological activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 127:87-95. [PMID: 6754376 DOI: 10.1111/j.1432-1033.1982.tb06841.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The activation of the catalytic center of aminoacyl-tRNA synthetases upon binding of the tRNA, previously reported in the case of yeast phenylalanyl-tRNA and valyl-tRNA synthetases [Renaud et al., (1981) Proc. Natl Acad. Sci. USA, 78, 1606-1608] has been investigated in other systems. It is shown that this property is encountered not only in cognate systems (phenylalanyl, valyl and arginyl) but also in the non-cognate systems which are particularly efficient in misaminoacylation reactions. The arginyl system, the peculiarity of which is to form the aminoacyladenylate only in the presence of the cognate tRNA, is shown to be a border-line case of this general process of catalytic center activation. In the case of the phenylalanyl system, the crucial role of the wybutine residue (adjacent to the anticodon) in the activation of phenylalanyl-tRNA synthetase by the tRNA core has been analysed by comparison with native or modified non-cognate tRNAs (tRNATyr, tRNAArg). It is proposed that upon complex formation between a tRNA and its cognate aminoacyl-tRNA synthetase, a multistep adaptation process takes place in order to promote the optimal rate for the aminoacylation reaction, thus contributing to the specificity of this reaction.
Collapse
|
40
|
Macromolecular complexes from sheep and rabbit containing seven aminoacyl-tRNA synthetases. III. Assignment of aminoacyl-tRNA synthetase activities to the polypeptide components of the complexes. J Biol Chem 1982. [DOI: 10.1016/s0021-9258(18)33932-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Giegé R, Lorber B, Ebel JP, Moras D, Thierry JC, Jacrot B, Zaccai G. Formation of a catalytically active complex between tRNAAsp and aspartyl-tRNA synthetase from yeast in high concentrations of ammonium sulphate. Biochimie 1982; 64:357-62. [PMID: 7049254 DOI: 10.1016/s0300-9084(82)80440-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The interactions of yeast tRNAAsp with cognate aspartyl-tRNA synthetase have been studied in high concentrations of either sodium chloride or ammonium sulphate by fluorescence titration and small-angle neutron scattering. In solutions containing more than 1M NaCl no complex is formed and enzymatic activity is abolished. In strong contrast, however, the physical measurements showed the formation of a two-to-one tRNA-enzyme complex, with high affinity, in 1.6 M (NH4)2SO4. Aminoacylation assays under the same salt conditions showed the enzymatic fixation of aspartic acid to tRNAAsp to occur at an appreciable rate. The present study emphasizes that the effects of salts on protein-nucleic acid interactions do not depend only on ionic strength but also on the nature of the salt. This study has allowed a rational approach to the crystallisation of a functional tRNAAsp-aspartyl-tRNA synthetase complex (Giegé, Lorber, Ebel, Thierry and Moras (1980) C.R. Acad. Sci. Paris, série D, 291, 393-396).
Collapse
|
42
|
Florentz C, Mengual R, Briand JP, Giegé R. Large-scale purification of the 3'-OH-terminal tRNA-like sequence (n = 159) of turnip-yellow-mosaic-virus RNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 123:89-93. [PMID: 7067700 DOI: 10.1111/j.1432-1033.1982.tb06502.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In order to undertake structural and functional studies on the 3'-terminal part of turnip yellow mosaic virus RNA, a structure which can be specifically aminoacylated by valyl-tRNA synthetase, we have developed large-scale methods for purifying the tRNA-like sequence. Several experimental approaches were tested. One procedure was retained enabling us to purify large quantities of the homogeneous tRNA-like fragment. Starting from 1.5 g turnip yellow mosaic virus, one obtains 400 mg RNA, which is partially digested by T1 ribonuclease and which yields 1-2 mg pure tRNA-like fragment after three chromatographic steps: two filtrations on Ultrogel ACA 54 and one reverse-phase chromatography (RPC 5) in the presence of urea. A method has been worked out allowing preparation of 10 mg of the fragment per month. The purified RNA material appeared homogeneous upon polyacrylamide gel electrophoresis under denaturing conditions. The isolated tRNA-like structure can be valylated to an extent of 100% in the presence of purified yeast valyl-tRNA synthetase with kinetic parameters resembling those of the tRNAVal aminoacylation.
Collapse
|
43
|
Butorin AS, Remy P, Ebel JP, Vassilenko SK. Comparison of the hydrolysis patterns of several tRNAs by cobra venom ribonuclease in different steps of the aminoacylation reaction. EUROPEAN JOURNAL OF BIOCHEMISTRY 1982; 121:587-95. [PMID: 6915854 DOI: 10.1111/j.1432-1033.1982.tb05827.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The hydrolysis of several tRNAs by an endonuclease extracted from the venom of Naja oxiana and specific for double-stranded, or at least highly ordered, regions has been studied under various experimental conditions. It is shown that the hydrolysis patterns of yeast tRNAPhe, tRNAVal and tRNAAsp in the isolated state are similar, most of the cuts occurring in the anticodon and acceptor stems. Ionic conditions are able to modify the hydrolysis pattern. The origin of these modifications is discussed. The protection against ribonuclease action, afforded to tRNAPhe, tRNAVal and tRNAAsp by the cognate aminoacyl-tRNA synthetase, is analyzed. It is shown that in all cases the anticodon stem is protected. The 3'-terminal region does not seem to be tightly engaged in the complex with the aminoacyl-tRNA synthetase. These results are discussed in the light of information on contact areas previously obtained by ultraviolet cross-linking techniques. The effects of the small ligands (ATP and amino acid) on the protection afforded to the tRNA by the cognate synthetase, have been studied. In the valine and aspartic acid systems, ATP induced a modification of the tRNA-enzyme complex leading to differences in the hydrolysis pattern of the 3'-accepting region. The effects of aminoacylation on the cleavage of tRNAPhe, tRNAVal and tRNAAsp were also studied. Whereas no modification of the cleavage map was observed in the aspartic system, aminoacylation resulted in slight but significant modifications of the hydrolysis pattern for tRNAPhe and tRNaVal in the 3'-terminal region.
Collapse
|
44
|
Diatewa M, Stahl AJ. Biosynthesis and transport of yeast mitochondrial phenylalanyl-tRNA synthetase. Nucleic Acids Res 1981; 9:6293-304. [PMID: 7033932 PMCID: PMC327604 DOI: 10.1093/nar/9.23.6293] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The biosynthesis of yeast mitochondrial Phe-tRNA synthetase is studied in vivo. Antibodies against the enzyme are raised in rabbits. They precipitate two proteins in the post-ribosomal supernatant of the yeast cell homogenate. Immunoprecipitate analysis on SDS - gel electrophoresis shows that the two types of mitochondrial enzyme subunits with molecular weights of 57,000 and 72,000, respectively, are cytoplasmically synthesized as larger, individual precursors. Terminal extensions of the precursors prevent enzyme activity. Mitochondrial membranes linked protease(s) play(s) an active role in maturation.
Collapse
|
45
|
Boutorin AS, Clark BF, Ebel JP, Kruse TA, Petersen HU, Remy P, Vassilenko S. A study of the interaction of Escherichia coli elongation factor-Tu with aminoacyl-tRNAs by partial digestion with cobra venom ribonuclease. J Mol Biol 1981; 152:593-608. [PMID: 7035684 DOI: 10.1016/0022-2836(81)90271-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
46
|
Method for isolation of aminoacyl-tRNA synthetases from plants: purification and some properties of methionyl, phenylalanyl and arginyl tRNA synthetases from yellow lupin seeds. Int J Biol Macromol 1981. [DOI: 10.1016/0141-8130(81)90077-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
47
|
Kern D, Giegé R, Ebel JP. Purification and some properties of alanyl- and leucyl-tRNA synthetases from baker's yeast. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 653:83-90. [PMID: 7013809 DOI: 10.1016/0005-2787(81)90106-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Alanyl- and leucyl-tRNA synthetases from baker's yeast were purified to homogeneity in the presence of the protease inhibitor phenylmethylsulfonyl fluoride. Both consist of single polypeptide chains of 118 000 and 125 000 daltons, respectively, as determined by polyacrylamide gel electrophoresis under denaturing conditions. The monomeric structure of leucyl-tRNA synthetase differs from the dimeric one obtained previously in the absence of protease inhibitors. This illustrates the sensitivity of the synthetases to proteolytic actions and indicates that native structures can only be obtained under optimal protecting conditions. Alanyl- and leucyl-tRNA synthetases differ with respect to pH optimum (6.5 and 8.5, respectively), Michaelis constant for amino acid (1 mM and 0.03, respectively) and in the rate-limiting step for the tRNA aminoacylation reaction. Whereas the catalytic step itself was rate-limiting for alanyl-tRNA synthetase, a step occurring after this was rate-limiting for leucyl-tRNA synthetase.
Collapse
|
48
|
Vlassov VV, Kern D, Giegé R, Ebel JP. Protection of phosphodiester bonds in yeast tRNAVal by its cognate aminoacyl-tRNA synthetase against alkylation by ethylnitrosourea. FEBS Lett 1981; 123:277-81. [PMID: 7014243 DOI: 10.1016/0014-5793(81)80307-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
49
|
Drocourt JL, Gangloff J, Dirheimer G, Thang MN. Interaction of yeast arginyl-tRNA synthetase and aspartyl-tRNA synthetase with Blue-dextran Sepharose : assignment of the Blue-Dextran Binding site on the synthetases. Biochem Biophys Res Commun 1980; 97:787-93. [PMID: 6162464 DOI: 10.1016/0006-291x(80)90333-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
50
|
Kalogerakos T, Dessen P, Fayat G, Blanquet S. Proteolytic cleavage of methionyl transfer ribonucleic acid synthetase from Bacillus stearothermophilus: effects on activity and structure. Biochemistry 1980; 19:3712-23. [PMID: 6250575 DOI: 10.1021/bi00557a012] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Methionyl-tRNA synthetase from Bacillus stearothermophilus, a dimer of molecular weight 2 X 85K, is converted by limited subtilisin digestion into a fully active monomeric fragment of molecular weight 64K. The reversible methionine activation reaction of these enzymes was followed through the variation of the intensity of their trypotophan fluorescence. Equilibrium and stopped-flow experiments show that the rate and mechanism for adenylate formation supported by the monomeric derivative are undistinguishable from those of each adenylating site of the native dimeric enzyme. In contrast, the rate of tRNA aminoacylation is improved upon limited proteolysis of the native enzyme. This behavior can be related to the anticooperativity of the binding of tRNA molecules to native dimeric enzyme. Accordingly, at 25 degrees C, the dimer might behave as a half-of-the-sites enzyme with only one active tRNA site at a time, compared to two after limited proteolysis with consequent irreversible disociation into two 64K fragments. Another modified form of the enzyme is obtained through limited tryptic digestion. This derivative is completely devoid of activity although its molecular weight under nondenaturating conditions remains undistinguishable from that of the 64K fragment generated by subtilisin. Denaturation reveals that this tryptic derivative is composed of two subfragments with molecular weights of 33K and 29K, respectively. The same fragments may also be directly obtained through limited tryptic digestion of the subtilsic fragment. Interestingly, although trypsin treatment has abolished the activity of the enzyme, fluorescence studies demonstrate that the ATP and methionine binding sites have remained intact. It is shown that the effect of the internal cut made by trypsin into the active 64K fragment has been to considerably depress the "coupling" between the methionine and nucleotide binding sites. Finally, the rate of inactivation of the enzyme by trypsin is observed to be substantially decreased by in situ synthetized methionyl adenylate but not by tRNA. These properties and others are discussed in relation to the problem of its significance of repeating sequences and structural "domains" within the class of aminoacyl-tRNA synthetases.
Collapse
|