1
|
Boff L, Schreiber A, da Rocha Matos A, Del Sarto J, Brunotte L, Munkert J, Melo Ottoni F, Silva Ramos G, Kreis W, Castro Braga F, José Alves R, Maia de Pádua R, Maria Oliveira Simões C, Ludwig S. Semisynthetic Cardenolides Acting as Antiviral Inhibitors of Influenza A Virus Replication by Preventing Polymerase Complex Formation. Molecules 2020; 25:molecules25204853. [PMID: 33096707 PMCID: PMC7587960 DOI: 10.3390/molecules25204853] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 02/05/2023] Open
Abstract
Influenza virus infections represent a major public health issue by causing annual epidemics and occasional pandemics that affect thousands of people worldwide. Vaccination is the main prophylaxis to prevent these epidemics/pandemics, although the effectiveness of licensed vaccines is rather limited due to the constant mutations of influenza virus antigenic characteristics. The available anti-influenza drugs are still restricted and there is an increasing viral resistance to these compounds, thus highlighting the need for research and development of new antiviral drugs. In this work, two semisynthetic derivatives of digitoxigenin, namely C10 (3β-((N-(2-hydroxyethyl)aminoacetyl)amino-3-deoxydigitoxigenin) and C11 (3β-(hydroxyacetyl)amino-3-deoxydigitoxigenin), showed anti-influenza A virus activity by affecting the expression of viral proteins at the early and late stages of replication cycle, and altering the transcription and synthesis of new viral proteins, thereby inhibiting the formation of new virions. Such antiviral action occurred due to the interference in the assembly of viral polymerase, resulting in an impaired polymerase activity and, therefore, reducing viral replication. Confirming the in vitro results, a clinically relevant ex vivo model of influenza virus infection of human tumor-free lung tissues corroborated the potential of these compounds, especially C10, to completely abrogate influenza A virus replication at the highest concentration tested (2.0 µM). Taken together, these promising results demonstrated that C10 and C11 can be considered as potential new anti-influenza drug candidates.
Collapse
Affiliation(s)
- Laurita Boff
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - André Schreiber
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Aline da Rocha Matos
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Respiratory Viruses and Measles Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 22775-051, Brazil
| | - Juliana Del Sarto
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Linda Brunotte
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| | - Jennifer Munkert
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Flaviano Melo Ottoni
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Gabriela Silva Ramos
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Wolfgang Kreis
- Pharmaceutical Biology, Department of Biology, Friedrich-Alexander-University, 91054 Erlangen-Nuremberg, Germany; (J.M.); (W.K.)
| | - Fernão Castro Braga
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Ricardo José Alves
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Rodrigo Maia de Pádua
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil; (F.M.O.); (G.S.R.); (F.C.B.); (R.J.A.); (R.M.d.P.)
| | - Cláudia Maria Oliveira Simões
- Laboratory of Applied Virology, Department of Pharmaceutical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
- Correspondence:
| | - Stephan Ludwig
- Institute of Virology (IVM), Centre for Molecular Biology of Inflammation (ZMBE), Westfaelische Wilhelms University (WWU), 48149 Münster, Germany; (L.B.); (A.S.); (A.d.R.M.); (J.D.S.); (L.B.); (S.L.)
| |
Collapse
|
2
|
Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res 2014; 25:39-49. [PMID: 25287280 PMCID: PMC4650580 DOI: 10.1038/cr.2014.130] [Citation(s) in RCA: 304] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/24/2022] Open
Abstract
Influenza A viruses (IAVs), particularly H1N1, H5N1 and H7N9, pose a substantial threat to public health worldwide. Here, we report that MIR2911, a honeysuckle (HS)-encoded atypical microRNA, directly targets IAVs with a broad spectrum. MIR2911 is highly stable in HS decoction, and continuous drinking or gavage feeding of HS decoction leads to a significant elevation of the MIR2911 level in mouse peripheral blood and lung. Bioinformatics prediction and a luciferase reporter assay showed that MIR2911 could target various IAVs, including H1N1, H5N1 and H7N9. Synthetic MIR2911 significantly inhibited H1N1-encoded PB2 and NS1 protein expression, but did not affect mutants in which the MIR2911-binding nucleotide sequences were altered. Synthetic MIR2911, extracted RNA from HS decoction and HS decoction all significantly inhibited H1N1 viral replication and rescued viral infection-induced mouse weight loss, but did not affect infection with a mutant virus in which the MIR2911-binding nucleotide sequences of PB2 and NS1 were altered. Importantly, the inhibitory effect of HS decoction on viral replication was abolished by an anti-MIR2911 antagomir, indicating that the physiological concentration of MIR2911 in HS decoction could directly and sufficiently suppress H1N1 viral replication. MIR2911 also inhibited H5N1 and H7N9 viral replication in vitro and in vivo. Strikingly, administration of MIR2911 or HS decoction dramatically reduced mouse mortality caused by H5N1 infection. Our results demonstrate that MIR2911 is the first active component identified in Traditional Chinese Medicine to directly target various IAVs and may represent a novel type of natural product that effectively suppresses viral infection.
Collapse
|
3
|
Noble E, Mathews DH, Chen JL, Turner DH, Takimoto T, Kim B. Biophysical analysis of influenza A virus RNA promoter at physiological temperatures. J Biol Chem 2011; 286:22965-70. [PMID: 21555520 PMCID: PMC3123064 DOI: 10.1074/jbc.m111.239509] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Each segment of the influenza A virus (IAV) genome contains conserved sequences at the 5′- and 3′-terminal ends, which form the promoter region necessary for polymerase binding and initiation of RNA synthesis. Although several models of interaction have been proposed it remains unclear if these two short, partially complementary, and highly conserved sequences can form a stable RNA duplex at physiological temperatures. First, our time-resolved FRET analysis revealed that a 14-mer 3′-RNA and a 15-mer 5′-RNA associate in solution, even at 42 °C. We also found that a nonfunctional RNA promoter containing the 3′-G3U mutation, as well as a promoter containing the compensatory 3′-G3U/C8A mutations, was able to form a duplex as efficiently as wild type. Second, UV melting analysis demonstrated that the wild-type and mutant RNA duplexes have similar stabilities in solution. We also observed an increase in thermostability for a looped promoter structure. The absence of differences in the stability and binding kinetics between wild type and a nonfunctional sequence suggests that the IAV promoter can be functionally inactivated without losing the capability to form a stable RNA duplex. Finally, using uridine specific chemical probing combined with mass spectrometry, we confirmed that the 5′ and 3′ sequences form a duplex which protects both RNAs from chemical modification, consistent with the previously published panhandle structure. These data support that these short, conserved promoter sequences form a stable complex at physiological temperatures, and this complex likely is important for polymerase recognition and viral replication.
Collapse
Affiliation(s)
- Erin Noble
- Department of Microbiology and Immunology, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | |
Collapse
|
4
|
Poole AM, Logan DT. Modern mRNA proofreading and repair: clues that the last universal common ancestor possessed an RNA genome? Mol Biol Evol 2005; 22:1444-55. [PMID: 15774424 PMCID: PMC7107533 DOI: 10.1093/molbev/msi132] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
RNA repair has now been demonstrated to be a genuine biological process and appears to be present in all three domains of life. In this article, we consider what this might mean for the transition from an early RNA-dominated world to modern cells possessing genetically encoded proteins and DNA. There are significant gaps in our understanding of how the modern protein-DNA world could have evolved from a simpler system, and it is currently uncertain whether DNA genomes evolved once or twice. Against this backdrop, the discovery of RNA repair in modern cells is timely food for thought and brings us conceptually one step closer to understanding how RNA genomes were replaced by DNA genomes. We have examined the available literature on multisubunit RNA polymerase structure and function and conclude that a strong case can be made that the Last Universal Common Ancestor (LUCA) possessed a repair-competent RNA polymerase, which would have been capable of acting on an RNA genome. However, while this lends credibility to the proposal that the LUCA had an RNA genome, the alternative, that LUCA had a DNA genome, cannot be completely ruled out.
Collapse
Affiliation(s)
- Anthony M Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden.
| | | |
Collapse
|
5
|
Ohtsu Y, Honda Y, Sakata Y, Kato H, Toyoda T. Fine mapping of the subunit binding sites of influenza virus RNA polymerase. Microbiol Immunol 2002; 46:167-75. [PMID: 12008925 DOI: 10.1111/j.1348-0421.2002.tb02682.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Influenza virus RNA polymerase consists of three subunits, PB1, PB2 and PA, and catalyzes both transcription and replication of the RNA genome. PB1 is a catalytic subunit of RNA polymerization and a core of the subunit assembly. The subunit binding sites were mapped at about several hundred amino-acid size. Fine mapping of the subunit binding sites was determined. The PB1-PA binding regions were mapped within in the N-terminal 25 amino acids of PB1 and 668-692 of PA. PB1 and PB2 interacted within wider regions, 600-757 of PB1 and 51-259 of PB2. In these amino-acid spans, 206-259 of PB2 may be the most important region of PB1 binding and 718-732 of PB1 may be the most important region of PB2 binding because the binding activity was lost when the regions were lost in the subunits. The additional regions contributed to strong binding of these subunits.
Collapse
Affiliation(s)
- Yasushi Ohtsu
- Department of Virology, Kurume University School of Medicine, Fukuoka, Japan
| | | | | | | | | |
Collapse
|
6
|
Honda A, Mizumoto K, Ishihama A. Minimum molecular architectures for transcription and replication of the influenza virus. Proc Natl Acad Sci U S A 2002; 99:13166-71. [PMID: 12271117 PMCID: PMC130604 DOI: 10.1073/pnas.152456799] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The RNA-dependent RNA polymerase of influenza virus is composed of three viral P proteins (PB1, PB2, and PA) and involved in both transcription and replication of the RNA genome. The PB1 subunit plays a key role in both the assembly of three P protein subunits and the catalytic function of RNA polymerization. We have established a simultaneous expression system of three P proteins in various combinations using recombinant baculoviruses, and isolated the PA-PB1-PB2 ternary (3P) complex and two kinds of the binary (2P) complex, PA-PB1 and PB1-PB2. The affinity-purified 3P complex showed all of the catalytic properties characteristic of the transcriptase, including capped RNA-binding, capped RNA cleavage, model viral RNA binding, model viral RNA-directed RNA synthesis, and polyadenylation of newly synthesized RNA. The PB1-PB2 binary complex showed essentially the same catalytic properties as does the 3P complex, whereas the PA-PB1 complex catalyzed de novo initiation of RNA synthesis in the absence of primers. Taken together we propose that the catalytic specificity of PB1 subunit is modulated to the transcriptase by binding PB2 or the replicase by interaction with PA.
Collapse
Affiliation(s)
- Ayae Honda
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | |
Collapse
|
7
|
Ohtsu Y, Honda Y, Toyoda T. Fine mapping of the subunit binding sites of influenza virus RNA polymerase. ACTA ACUST UNITED AC 2001. [DOI: 10.1016/s0531-5131(01)00395-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Leahy MB, Dobbyn HC, Brownlee GG. Hairpin loop structure in the 3' arm of the influenza A virus virion RNA promoter is required for endonuclease activity. J Virol 2001; 75:7042-9. [PMID: 11435584 PMCID: PMC114432 DOI: 10.1128/jvi.75.15.7042-7049.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have shown that the 5' arm of the influenza A virus virion RNA promoter requires a hairpin loop structure for efficient endonuclease activity of influenza virus RNA polymerase, an activity that is required for the cap-snatching activity of primers from host pre-mRNA. Here we examine whether a hairpin loop is also required in the 3' arm of the viral RNA promoter. We study point mutations at each nucleotide position (1 to 12) within the 3' arm of the promoter as well as complementary "rescue" mutations which restored base pairing in the stem of a potential hairpin loop. Our results suggest that endonuclease activity is absolutely dependent on the presence of a 3' hairpin loop structure. This is the first direct evidence for RNA secondary structure within the 3' arm being required for a specific stage, i.e., endonuclease cleavage, in the influenza virus replicative cycle.
Collapse
Affiliation(s)
- M B Leahy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | | | |
Collapse
|
9
|
Honda A, Endo A, Mizumoto K, Ishihama A. Differential roles of viral RNA and cRNA in functional modulation of the influenza virus RNA polymerase. J Biol Chem 2001; 276:31179-85. [PMID: 11373286 DOI: 10.1074/jbc.m102856200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RNA-dependent RNA polymerase of influenza virus is composed of three viral P proteins (PB1, PB2, and PA) and involved in both transcription and replication of the RNA genome. For the molecular anatomy of this multifunctional enzyme, we have established a simultaneous expression of three P proteins in cultured insect cells using recombinant baculoviruses. For purification of P protein complexes, the PA protein was expressed as a fusion with a histidine tag added at its N terminus. By using affinity chromatography, a complex consisting of the three P proteins was isolated from nuclear extracts of virus-infected cells. The affinity-purified 3P complex showed the activities of capped RNA binding, capped RNA cleavage, viral model RNA binding, model RNA-directed RNA synthesis, and polyadenylation of newly synthesized RNA. We conclude that a functional form of the viral RNA polymerase with the catalytic specificity of transcriptase is formed in recombinant baculovirus-infected insect cells. Using the viral RNA-free 3P complex, we found that the capped RNA cleavage takes place in the presence of vRNA but not of cRNA, indicating that the vRNA functions as a regulatory factor for the specificity control of viral RNA polymerase as well as a template for transcription. The structural elements of RNA directing the expression of RNA polymerase functions were analyzed using variant forms of the model RNA templates.
Collapse
Affiliation(s)
- A Honda
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.
| | | | | | | |
Collapse
|
10
|
Hara K, Shiota M, Kido H, Ohtsu Y, Kashiwagi T, Iwahashi J, Hamada N, Mizoue K, Tsumura N, Kato H, Toyoda T. Influenza virus RNA polymerase PA subunit is a novel serine protease with Ser624 at the active site. Genes Cells 2001; 6:87-97. [PMID: 11260254 DOI: 10.1046/j.1365-2443.2001.00399.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Influenza virus RNA polymerase is a multifunctional enzyme that catalyses both transcription and replication of the RNA genome. The function of the influenza virus RNA polymerase PA subunit in viral replication is poorly understood, although the enzyme is known to be required for cRNA --> vRNA synthesis. The protease related activity of PA has been discussed ever since protease-inducing activity was demonstrated in transfection experiments. RESULTS PA protein was highly purified from insect cells infected with the recombinant baculovirus carrying PA cDNA, and a novel chymotrypsin-type serine protease activity was identified with the synthetic peptide, Suc-LLVY-MCA, in the PA protein. [3H]DFP was crosslinked with PA and a mutational analysis revealed that serine624 was as an active site for the protease activity. CONCLUSIONS These results constitute the demonstration of protease activity in PA subunit of the influenza virus RNA polymerase complexes.
Collapse
Affiliation(s)
- K Hara
- Departments of Virology, Kurume University School of Medicine, Kurume 830-0011, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Hwang JS, Yamada K, Honda A, Nakade K, Ishihama A. Expression of functional influenza virus RNA polymerase in the methylotrophic yeast Pichia pastoris. J Virol 2000; 74:4074-84. [PMID: 10756019 PMCID: PMC111921 DOI: 10.1128/jvi.74.9.4074-4084.2000] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Influenza virus RNA polymerase with the subunit composition PB1-PB2-PA is a multifunctional enzyme with the activities of both synthesis and cleavage of RNA and is involved in both transcription and replication of the viral genome. In order to produce large amounts of the functional viral RNA polymerase sufficient for analysis of its structure-function relationships, the cDNAs for RNA segments 1, 2, and 3 of influenza virus A/PR/8, each under independent control of the alcohol oxidase gene promoter, were integrated into the chromosome of the methylotrophic yeast Pichia pastoris. Simultaneous expression of all three P proteins in the yeast P. pastoris was achieved by the addition of methanol. To purify the P protein complexes, a sequence coding for a histidine tag was added to the PB2 protein gene at its N terminus. Starting from the induced P. pastoris cell lysate, we partially purified a 3P complex by Ni(2+)-agarose affinity column chromatography. The 3P complex showed influenza virus model RNA-directed and ApG-primed RNA synthesis in vitro but was virtually inactive without addition of template or primer. The kinetic properties of model template-directed RNA synthesis and the requirements for template sequence were analyzed using the 3P complex. Furthermore, the 3P complex showed capped RNA-primed RNA synthesis. Thus, we conclude that functional influenza virus RNA polymerase with the catalytic properties of a transcriptase is formed in the methylotrophic yeast P. pastoris.
Collapse
Affiliation(s)
- J S Hwang
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | | | | | |
Collapse
|
12
|
Honda A, Mizumoto K, Ishihama A. Two separate sequences of PB2 subunit constitute the RNA cap-binding site of influenza virus RNA polymerase. Genes Cells 1999; 4:475-85. [PMID: 10526235 DOI: 10.1046/j.1365-2443.1999.00275.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Influenza virus RNA polymerase with the subunit composition of PB1-PB2-PA is a unique multifunctional enzyme with the activities of both synthesis and cleavage of RNA, and is involved in both transcription and replication of the RNA genome. Transcription is initiated by using capped RNA fragments, which are generated after cleavage of host cell mRNA by the RNA polymerase-associated capped RNA endonuclease. To identify the RNA cap 1-binding site on the RNA polymerase, viral ribonucleoprotein (RNP) cores were subjected to UV-crosslinking with RNA which was labelled with 32P only at the cap-1 structure. RESULTS After SDS-PAGE of UV-crosslinked cores, 32P was found to be associated only with the PB2 subunit (759 amino acid residues). The labelled PB2 was subjected, together with PB2 expressed in E. coli, to limited digestion with V8 protease. Analysis of the amino terminal sequences of some isolated fragments with the crosslinked cap-1 indicated that two separate sequences within the PB2 were involved in RNA cap-1 binding, one (N-site) at the N-terminal proximal region approximately between amino acid residues 242-282 downstream from the PB1 subunit-binding site and the other (C-site) between residues 538-577 including the cap-binding motifs. Two lines of evidence support the prediction of the involvement of two separate PB2 sequences on the RNA cap-binding: (i) cross-linking of the capped RNA on to expressed and isolated PB2 fragments, each containing either the N-site or the C-site; and (ii) competition of capped RNA-binding to PB2 by both of the N- and C-terminal PB2 fragments. Taking together, we propose that two separate sequences within PB2 constitute the capped RNA-binding site of the RNA polymerase. CONCLUSION Two separate sequences, one N-(242-282) and the other C-terminal (538-577) proximal segments of PB2 subunit, constitute the RNA cap-binding site of the influenza virus RNA polymerase.
Collapse
Affiliation(s)
- A Honda
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
13
|
Brown EG, Bailly JE. Genetic analysis of mouse-adapted influenza A virus identifies roles for the NA, PB1, and PB2 genes in virulence. Virus Res 1999; 61:63-76. [PMID: 10426210 DOI: 10.1016/s0168-1702(99)00027-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adaptation of the prototype A/FM/1/47 H1N1 strain to mice resulted in selection of the A/FM/1/47-MA variant with increased virulence. Earlier analysis identified mutations in the HA and M1 genes that increase virulence in the mouse. Complete sequence analysis identified mutations in the PB1, PB2, HA, NA, and M1 genes. Reassortants were produced between the parental FM and FM-MA strains to obtain viruses that differ due to combinations of mutant genes. To assess the relationship between virulence and replication, the median lethal dose was determined for mice and growth properties were assessed in mouse lung, MDCK cells and chicken embryo. Not only were all five mutations shown to control virulence but also the replicative capacity in the mouse. The HA, NA and M1 mutations increased yield in all three hosts whereas in combination the PB1 and PB2 mutations were host restrictive changing the virus to a mouse specific strain. For the NA and M1 mutations the increase in growth in mouse lung was proportional to a 2-fold (log10) increase in virulence however the HA mutation increased virulence largely independent of increased growth indicating a change in pathological properties that damage the host. Thus mutations that affect virulence can be classified according to host-dependent and independent ability to increase growth as well as changes in pathological properties. Each of the PB1, PB2, NA, HA, and M1 genes acquired gain-of-function mutations for mouse infection that involve structural motifs that may serve as markers for virulence or targets for antiviral therapy.
Collapse
Affiliation(s)
- E G Brown
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ont., Canada.
| | | |
Collapse
|
14
|
Masunaga K, Mizumoto K, Kato H, Ishihama A, Toyoda T. Molecular mapping of influenza virus RNA polymerase by site-specific antibodies. Virology 1999; 256:130-41. [PMID: 10087233 DOI: 10.1006/viro.1999.9625] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Influenza virus RNA polymerase with the subunit structure PB1-PB2-PA is involved in both transcription and replication of the RNA genome, including the unique cap-I-dependent RNase activity. To map the important domains for RNA polymerization, cap-I-dependent RNase, and cap-I-binding activity, we generated site-specific antibodies against overlapping 150-amino-acid peptides that cover each entire subunit. Monospecific antibodies against each subunit inhibited RNA synthesis in vitro. Those against PB1 and PB2 inhibited the cap-I-dependent RNase activity, but those against PB2 alone slightly inhibited the cap-I-binding activity. Antibodies against the N-terminal amino acids 1-159 of PB2 that overlap the PB1-binding site on PB2 and the C-terminal amino acids 501-617 of PA that overlap the putative nucleotide-binding site and PB1-binding site on PA inhibited RNA polymerizing activity as well as monospecific antibodies. Those against the N-terminal (amino acids 1-159); the central region (amino acids 305-559) of PB2, where a part of the cap-binding domain predicted previously is localized; the N-terminal (amino acids 1-222) of PB1; and amino acids 301-517 and 601-716 of PA inhibited the cap-I-dependent RNase activity. The cap-binding domain on PB2 could be mapped in amino acids 402-559, where one of the cap-binding domains mapped previously overlapped.
Collapse
Affiliation(s)
- K Masunaga
- Department of Virology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | | | | | | | | |
Collapse
|
15
|
Honda A, Mizumoto K, Ishihama A. Identification of the 5' terminal structure of influenza virus genome RNA by a newly developed enzymatic method. Virus Res 1998; 55:199-206. [PMID: 9725672 DOI: 10.1016/s0168-1702(98)00048-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A combination of T4 polynucleotide kinase, Escherichia coli alkaline phosphatase, yeast Saccharomyces cerevisiae capping enzyme consisting of alpha (RNA guanylyltransferase) and beta (RNA 5'-triphosphatase) subunits. and its alpha subunit without RNA 5'-phosphatase activity was used to establish a simple enzymatic method for determination of RNA species with 5'-hydroxyl, 5'-monophosphate, 5'-diphosphate or 5'-triphosphate termini. Using this method, we found that viral genome RNA (vRNA) segments of both A-type and C-type influenza viruses carry tri- or diphosphates at their 5' termini. The conclusion was based on the observations that: (i) 5' phosphorylation of vRNAs by T4 polynucleotide kinase takes place only after phosphatase treatment; and (ii) capping of vRNAs can be observed with both the intact yeast capping enzyme and its alpha subunit alone devoid of RNA 5'-triphosphatase activity; but (iii) the level of capping is higher for the alphabeta holoenzyme than the alpha subunit though the relative level varies depending on RNA preparations. The results support the de novo initiation for the RNA replication although transcription of influenza vRNAs is initiated by host cell capped RNAs as primers.
Collapse
Affiliation(s)
- A Honda
- Department of Molecular Genetics, National Institute of Genetics, Mishima, Shizuoka, Japan.
| | | | | |
Collapse
|