1
|
Cipullo M, Valentín Gesé G, Gopalakrishna S, Krueger A, Lobo V, Pirozhkova MA, Marks J, Páleníková P, Shiriaev D, Liu Y, Misic J, Cai Y, Nguyen MD, Abdelbagi A, Li X, Minczuk M, Hafner M, Benhalevy D, Sarshad AA, Atanassov I, Hällberg BM, Rorbach J. GTPBP8 plays a role in mitoribosome formation in human mitochondria. Nat Commun 2024; 15:5664. [PMID: 38969660 PMCID: PMC11229512 DOI: 10.1038/s41467-024-50011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 06/26/2024] [Indexed: 07/07/2024] Open
Abstract
Mitochondrial gene expression relies on mitoribosomes to translate mitochondrial mRNAs. The biogenesis of mitoribosomes is an intricate process involving multiple assembly factors. Among these factors, GTP-binding proteins (GTPBPs) play important roles. In bacterial systems, numerous GTPBPs are required for ribosome subunit maturation, with EngB being a GTPBP involved in the ribosomal large subunit assembly. In this study, we focus on exploring the function of GTPBP8, the human homolog of EngB. We find that ablation of GTPBP8 leads to the inhibition of mitochondrial translation, resulting in significant impairment of oxidative phosphorylation. Structural analysis of mitoribosomes from GTPBP8 knock-out cells shows the accumulation of mitoribosomal large subunit assembly intermediates that are incapable of forming functional monosomes. Furthermore, fPAR-CLIP analysis reveals that GTPBP8 is an RNA-binding protein that interacts specifically with the mitochondrial ribosome large subunit 16 S rRNA. Our study highlights the role of GTPBP8 as a component of the mitochondrial gene expression machinery involved in mitochondrial large subunit maturation.
Collapse
Affiliation(s)
- Miriam Cipullo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Genís Valentín Gesé
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, 17165, Sweden
| | - Shreekara Gopalakrishna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Annika Krueger
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Vivian Lobo
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Maria A Pirozhkova
- Lab for Cellular RNA Biology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - James Marks
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Petra Páleníková
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Dmitrii Shiriaev
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Yong Liu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Jelena Misic
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Yu Cai
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Minh Duc Nguyen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Abubakar Abdelbagi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden
| | - Xinping Li
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, CB2 0XY, UK
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniel Benhalevy
- Lab for Cellular RNA Biology, Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Aishe A Sarshad
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-40530, Gothenburg, Sweden
| | - Ilian Atanassov
- Proteomics Core Facility, Max-Planck-Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, 50931, Cologne, Germany
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, Stockholm, 17165, Sweden
| | - Joanna Rorbach
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, 17165, Sweden.
| |
Collapse
|
2
|
Zhao S, Makarova KS, Zheng W, Zhan L, Wan Q, Liu Y, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread photosynthesis reaction centre barrel proteins are necessary for haloarchaeal cell division. Nat Microbiol 2024; 9:712-726. [PMID: 38443574 DOI: 10.1038/s41564-024-01615-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Cell division is fundamental to all cellular life. Most archaea depend on either the prokaryotic tubulin homologue FtsZ or the endosomal sorting complex required for transport for division but neither system has been robustly characterized. Here, we show that three of the four photosynthesis reaction centre barrel domain proteins of Haloferax volcanii (renamed cell division proteins B1/2/3 (CdpB1/2/3)) play important roles in cell division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for cell division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologues of CdpB proteins are also involved in cell division in other haloarchaea, indicating a conserved function of these proteins. Phylogenetic analysis shows that photosynthetic reaction centre barrel proteins are widely distributed among archaea and appear to be central to cell division in most if not all archaea.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Alobaidallah MSA, García V, De Mets R, Wellner SM, Thomsen LE, Herrero-Fresno A, Olsen JE. Uncovering the Important Genetic Factors for Growth during Cefotaxime-Gentamicin Combination Treatment in blaCTX-M-1 Encoding Escherichia coli. Antibiotics (Basel) 2023; 12:993. [PMID: 37370312 DOI: 10.3390/antibiotics12060993] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Due to the rapid spread of CTX-M type ESBLs, the rate of resistance to third-generation cephalosporin has increased among Gram-negative bacteria, especially in Escherichia coli, and there is a need to find ways to re-sensitize ESBL E. coli to cephalosporin treatment. A previous study showed that genes involved in protein synthesis were significantly up-regulated in the presence of subinhibitory concentration of cefotaxime (CTX) in a CTX-M-1-producing E. coli. In this study, the interaction between CTX and gentamicin (GEN), targeting protein synthesis, was evaluated in MG1655/pTF2, and the MIC of CTX was strongly reduced (128-fold) in the presence of this combnation therapy. Since the underlying mechanism behind this synergy is not known, we constructed a saturated transposon mutant library in MG1655/pTF2::blaCTX-M-1 containing 315,925 unique transposon insertions to measure mutant depletion upon exposure to CTX, GEN, and combination treatment of CTX and GEN by Transposon Directed Insertion-site Sequencing (TraDIS). We identified 57 genes that were depleted (log2FC ≤ -2 and with q.value ≤ 0.01) during exposure to CTX, 18 for GEN, and 31 for combination treatment of CTX and GEN. For validation, we deleted eight genes that were either uniquely identified in combination treatment, overlapped with monotherapy of GEN, or were shared between combination treatment and monotherapy with CTX and GEN. Of these genes, we found that the inactivation of dnaK, mnmA, rsgA, and ybeD increased the efficacy of both CTX and GEN treatment, the inactivation of cpxR and yafN increased the efficacy of only CTX, and the inactivation of mnmA, rsgA, and ybeD resulted in increased synergy between CTX and GEN. Thus, the study points to putative targets for helper drugs that can restore susceptibility to these important drugs, and it indicates that genes involved in protein synthesis are essential for the synergy between these two drugs. In summary, the study identified mutants that sensitize ESBL-producing E. coli to CTX and a combination of CTX and GEN, and it increased our understanding of the mechanism behind synergy between β-lactam and aminoglycoside drugs. This forms a framework for developing new strategies to combat infections caused by resistant bacteria.
Collapse
Affiliation(s)
- Mosaed Saleh A Alobaidallah
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah 21423, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah 22384, Saudi Arabia
| | - Vanesa García
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- Laboratorio de Referencia de Escherichia coli (LREC), Departamento de Microbioloxía e Parasitoloxía, Facultade de Veterinaria, Universidade de Santiago de Compostela (USC), 27002 Lugo, Spain
| | - Richard De Mets
- Department of Biomedical Sciences, Core Facility for Integrated Microscopy, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Sandra M Wellner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Line E Thomsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| | - Ana Herrero-Fresno
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
- National Food Institute, Technical University of Denmark, 2800 Lyngby, Denmark
| | - John Elmerdahl Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg, Denmark
| |
Collapse
|
4
|
Zhao S, Makarova KS, Zheng W, Liu Y, Zhan L, Wan Q, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread PRC barrel proteins play critical roles in archaeal cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534520. [PMID: 37090588 PMCID: PMC10120694 DOI: 10.1101/2023.03.28.534520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Cell division is fundamental to all cellular life. Most of the archaea employ one of two alternative division machineries, one centered around the prokaryotic tubulin homolog FtsZ and the other around the endosomal sorting complex required for transport (ESCRT). However, neither of these mechanisms has been thoroughly characterized in archaea. Here, we show that three of the four PRC (Photosynthetic Reaction Center) barrel domain proteins of Haloferax volcanii (renamed Cell division proteins B1/2/3 (CdpB1/2/3)), play important roles in division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologs of CdpB proteins are also involved in cell division in other haloarchaea. Phylogenetic analysis shows that PRC barrel proteins are widely distributed among archaea, including the highly conserved CdvA protein of the crenarchaeal ESCRT-based division system. Thus, diverse PRC barrel proteins appear to be central to cell division in most if not all archaea. Further study of these proteins is expected to elucidate the division mechanisms in archaea and their evolution.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
5
|
(p)ppGpp-mediated stress response induced by defects in outer membrane biogenesis and ATP production promotes survival in Escherichia coli. Sci Rep 2019; 9:2934. [PMID: 30814571 PMCID: PMC6393671 DOI: 10.1038/s41598-019-39371-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/22/2019] [Indexed: 12/05/2022] Open
Abstract
Cellular growth requires a high level of coordination to ensure that all processes run in concert. The role of the nucleotide alarmone (p)ppGpp has been extensively studied in response to external stresses, such as amino acid starvation, in Escherichia coli, but much less is known about the involvement of (p)ppGpp in response to perturbations in intracellular processes. We therefore employed CRISPRi to transcriptionally repress essential genes involved in 14 vital processes and investigated whether a (p)ppGpp-mediated response would be induced. We show that (p)ppGpp is produced and required for a pertinent stress response during interference with outer membrane biogenesis and ADP synthesis specifically. When these processes were perturbed via the transcriptional repression of essential genes, wild type E. coli MG1655 ceased growing and entered a semi-dormant state, whereas isogenic (p)ppGpp0 cells continued to grow uncontrollably to the point of lysis. Furthermore, in vivo measurements revealed that the ATP levels were intrinsically offset in (p)ppGpp0 cells, further indicating a role for the alarmone in cellular energy homeostasis. In summary, our investigation suggests that (p)ppGpp acts as a coordinator of cell growth in response to imbalances in outer membrane biogenesis and adenosine ribonucleotide synthesis, elucidating novel roles for (p)ppGpp in bacterial physiology.
Collapse
|
6
|
Opitz C, Ahrné E, Goldie KN, Schmidt A, Grzesiek S. Deuterium induces a distinctive Escherichia coli proteome that correlates with the reduction in growth rate. J Biol Chem 2019; 294:2279-2292. [PMID: 30545941 PMCID: PMC6378978 DOI: 10.1074/jbc.ra118.006914] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/13/2018] [Indexed: 12/14/2022] Open
Abstract
Substitution of protium (H) for deuterium (D) strongly affects biological systems. Whereas higher eukaryotes such as plants and mammals hardly survive a deuterium content of >30%, many microorganisms can grow on fully deuterated media, albeit at reduced rates. Very little is known about how the H/D replacement influences life at the systems level. Here, we used MS-based analysis to follow the adaptation of a large part of the Escherichia coli proteome from growth on a protonated full medium, over a protonated minimal medium, to a completely deuterated minimal medium. We could quantify >1800 proteins under all conditions, several 100 of which exhibited strong regulation during both adaptation processes. The adaptation to minimal medium strongly up-regulated amino acid synthesis and sugar metabolism and down-regulated translational proteins on average by 9%, concomitant with a reduction in growth rate from 1.8 to 0.67 h-1 In contrast, deuteration caused a very wide proteomic response over many cell functional categories, together with an additional down-regulation of the translational proteins by 5%. The latter coincided with a further reduction in growth rate to 0.37 h-1, revealing a clear linear correlation between growth rate and abundance of translational proteins. No significant morphological effects are observed under light and electron microscopies. Across all protein categories, about 80% of the proteins up-regulated under deuteration are enzymes with hydrogen transfer functions. Thus, the H/D kinetic isotope effect appears as the major limiting factor of cellular functions under deuteration.
Collapse
Affiliation(s)
- Christian Opitz
- From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland and
| | - Erik Ahrné
- From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland and
| | - Kenneth N Goldie
- Center for Cellular Imaging and Nanoanalytics, Biozentrum, University of Basel, CH-4058 Basel, Switzerland
| | - Alexander Schmidt
- From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland and
| | - Stephan Grzesiek
- From the Biozentrum, University of Basel, CH-4056 Basel, Switzerland and
| |
Collapse
|
7
|
Lewis LM, Engle LJ, Pierceall WE, Hughes DE, Shaw KJ. Affinity Capillary Electrophoresis for the Screening of Novel Antimicrobial Targets. ACTA ACUST UNITED AC 2016; 9:303-8. [PMID: 15191647 DOI: 10.1177/1087057104263439] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The increasing number of multiantibiotic-resistant organisms, including methicillin-resistant Staphylococcus aureus (MRSA), requires the development of novel chemotherapies that are structurally distinct and exempt from current resistance mechanisms. Bioinformatics data mining of microbial genomes has revealed numerous previously unexploited essential open reading frames (ORFs) of unknown biochemical function. The potential of these proteins as screening targets is not readily apparent because most screening technologies rely on knowledge of biological function. To address this problem, the authors employed affinity capillary electrophoresis (ACE) to identify antimicrobial compounds that bound the novel target YihA. Screening a small-molecule library of 44,000 compounds initially identified 115 binders, of which 76% were confirmed. Furthermore, the ACE assay distinguished diverse compounds that possessed drug-like properties and antimicrobial activity against drug-resistant clinical isolates. These data validate ACE as a valuable tool for the fast, efficient detection of specific binding molecules that possess biological activity.
Collapse
Affiliation(s)
- L Michelle Lewis
- Johnson & Johnson Pharmaceutical Research and Development, 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
8
|
Hidalgo AA, Villagra NA, Jerez SA, Fuentes JA, Mora GC. A conditionally lethal mutant of Salmonella Typhimurium induces a protective response in mice. Biochem Biophys Res Commun 2016; 470:313-318. [PMID: 26792728 DOI: 10.1016/j.bbrc.2016.01.058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 12/22/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
Abstract
Here we present the design of a conditionally lethal mutant of Salmonella enterica serovar Typhimurium (S. Typhimurium) which growth depends on tetracycline (Tet). Four mutants of S. Typhimurium, with Tet-conditional growth, were created by inserting the tetRA cassette. Three of the mutants presented a conditional-lethal phenotype in vitro. One mutant in the yabB gene remained conditional inside cells and did not persisted after 24 h in cell cultures. The capacity of S. Typhimurium yabB::tetRA to invade deep organs was investigated in intraperitoneally (IP) infected mice fed with or without chlortetracycline (CTet), a Tet analog with lower antibiotic activity. The yabB::tetRA mutant was undetectable in liver or spleen of animals under normal diet, while in mice under diet including CTet, yabB::tetRA invaded at a level comparable to the WT in mice under normal diet. Moreover, yabB::tetRA produced a strong humoral-immunoresponse after one IP immunization with 10(6) bacteria, measured as serum reactivity against S. Typhimurium whole cell extract. By contrast, oral immunization with 10(6) bacteria was weaker and variable on inducing antibodies. Consistently, IP infected mice were fully protected in a challenge with 10(4) oral S. Typhimurium, while protection was partial in orally immunized mice. Our data indicate that S. Typhimurium yabB::tetRA is a conditionally attenuated strain capable of inducing a protective response in mice in non-permissive conditions.
Collapse
Affiliation(s)
| | | | - Sebastián A Jerez
- Facultad de Medicina, Universidad Andres Bello, Santiago, Chile; Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Guido C Mora
- Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
9
|
Gliniewicz K, Wildung M, Orfe LH, Wiens GD, Cain KD, Lahmers KK, Snekvik KR, Call DR. Potential mechanisms of attenuation for rifampicin-passaged strains of Flavobacterium psychrophilum. BMC Microbiol 2015; 15:179. [PMID: 26377311 PMCID: PMC4571129 DOI: 10.1186/s12866-015-0518-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/10/2015] [Indexed: 11/21/2022] Open
Abstract
Background Flavobacterium psychrophilum is the etiologic agent of bacterial coldwater disease in salmonids. Earlier research showed that a rifampicin-passaged strain of F. psychrophilum (CSF 259-93B.17) caused no disease in rainbow trout (Oncorhynchus mykiss, Walbaum) while inducing a protective immune response against challenge with the virulent CSF 259–93 strain. We hypothesized that rifampicin passage leads to an accumulation of genomic mutations that, by chance, reduce virulence. To assess the pattern of phenotypic and genotypic changes associated with passage, we examined proteomic, LPS and single-nucleotide polymorphism (SNP) differences for two F. psychrophilum strains (CSF 259–93 and THC 02–90) that were passaged with and without rifampicin selection. Results Rifampicin resistance was conveyed by expected mutations in rpoB, although affecting different DNA bases depending on the strain. One rifampicin-passaged CSF 259–93 strain (CR) was attenuated (4 % mortality) in challenged fish, but only accumulated eight nonsynonymous SNPs compared to the parent strain. A CSF 259–93 strain passaged without rifampicin (CN) accumulated five nonsynonymous SNPs and was partially attenuated (28 % mortality) compared to the parent strain (54.5 % mortality). In contrast, there were no significant change in fish mortalities among THC 02–90 wild-type and passaged strains, despite numerous SNPs accumulated during passage with (n = 174) and without rifampicin (n = 126). While only three missense SNPs were associated with attenuation, a Ser492Phe rpoB mutation in the CR strain may contribute to further attenuation. All strains except CR retained a gliding motility phenotype. Few proteomic differences were observed by 2D SDS-PAGE and there were no apparent changes in LPS between strains. Comparative methylome analysis of two strains (CR and TR) identified no shared methylation motifs for these two strains. Conclusion Multiple genomic changes arose during passage experiments with rifampicin selection pressure. Consistent with our hypothesis, unique strain-specific mutations were detected for the fully attenuated (CR), partially attenuated (CN) and another fully attenuated strain (B17). Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0518-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karol Gliniewicz
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Present address: Department of Biological Sciences, University of Idaho, Moscow, Idaho, USA.
| | - Mark Wildung
- Molecular Biology and Genomics Core, Washington State University, Pullman, WA, USA.
| | - Lisa H Orfe
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| | - Gregory D Wiens
- USDA-ARS-National Center for Cool and Cold Water Aquaculture, Leetown, WV, USA.
| | - Kenneth D Cain
- Department of Fish and Wildlife Resources, University of Idaho, Moscow, ID, USA.
| | - Kevin K Lahmers
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| | - Kevin R Snekvik
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Washington Animal Disease Diagnostic Laboratory, Washington State University, Pullman, WA, USA.
| | - Douglas R Call
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA. .,Paul G. Allen School for Global Animal Health, Washington State University, Pullman, WA, USA.
| |
Collapse
|
10
|
Wicker-Planquart C, Ceres N, Jault JM. The C-terminal α-helix of YsxC is essential for its binding to 50S ribosome and rRNAs. FEBS Lett 2015; 589:2080-6. [PMID: 26103561 DOI: 10.1016/j.febslet.2015.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 06/01/2015] [Accepted: 06/09/2015] [Indexed: 11/28/2022]
Abstract
YsxC is an essential P-loop GTPase that interacts with the 50S subunit of the ribosome. The putative implication in ribosome binding of two basic clusters of YsxC, a conserved positively charged patch including R31, R116, H117 and K146 lying adjacent to the nucleotide-binding site, and the C-terminal alpha helix, was investigated. C-terminal truncation variants of YsxC were unable to bind to both ribosome and rRNAs, whereas mutations in the other cluster did not affect YsxC binding. Our results indicate that the basic C-terminal region of YsxC is required for its binding to the 50S ribosomal subunit.
Collapse
Affiliation(s)
- Catherine Wicker-Planquart
- CNRS, IBS, 6 rue Jules Horowitz, 38000 Grenoble, France; Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| | - Nicoletta Ceres
- BMSSI, UMR 5086 CNRS/Université Claude Bernard Lyon I, France
| | - Jean-Michel Jault
- CNRS, IBS, 6 rue Jules Horowitz, 38000 Grenoble, France; Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| |
Collapse
|
11
|
Wicker-Planquart C, Jault JM. Interaction between Bacillus subtilis YsxC and ribosomes (or rRNAs). FEBS Lett 2015; 589:1026-32. [PMID: 25771857 DOI: 10.1016/j.febslet.2015.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 03/04/2015] [Indexed: 11/28/2022]
Abstract
YsxC is an essential P-loop GTPase, that binds to the 50S ribosomal subunit, and is required for the proper assembly of the ribosome. The aim of this study was to characterize YsxC ribosome interactions. The stoichiometry of YsxC ribosome subunit complex was evaluated. We showed that YsxC binding to the 50S ribosomal subunit is not affected by GTP, but in the presence of GDP the stoichiometry of YsxC-ribosome is decreased. YsxC GTPase activity was stimulated upon 50S ribosomal subunit binding. In addition, it is shown for the first time that YsxC binds both 16S and 23S ribosomal RNAs.
Collapse
Affiliation(s)
- Catherine Wicker-Planquart
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| | - Jean-Michel Jault
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), F-38027 Grenoble, France; CNRS, IBS, F-38027 Grenoble, France; CEA, DSV, IBS, F-38027 Grenoble, France.
| |
Collapse
|
12
|
The highly conserved MraZ protein is a transcriptional regulator in Escherichia coli. J Bacteriol 2014; 196:2053-66. [PMID: 24659771 DOI: 10.1128/jb.01370-13] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mraZ and mraW genes are highly conserved in bacteria, both in sequence and in their position at the head of the division and cell wall (dcw) gene cluster. Located directly upstream of the mraZ gene, the Pmra promoter drives the transcription of mraZ and mraW, as well as many essential cell division and cell wall genes, but no regulator of Pmra has been found to date. Although MraZ has structural similarity to the AbrB transition state regulator and the MazE antitoxin and MraW is known to methylate the 16S rRNA, mraZ and mraW null mutants have no detectable phenotypes. Here we show that overproduction of Escherichia coli MraZ inhibited cell division and was lethal in rich medium at high induction levels and in minimal medium at low induction levels. Co-overproduction of MraW suppressed MraZ toxicity, and loss of MraW enhanced MraZ toxicity, suggesting that MraZ and MraW have antagonistic functions. MraZ-green fluorescent protein localized to the nucleoid, suggesting that it binds DNA. Consistent with this idea, purified MraZ directly bound a region of DNA containing three direct repeats between Pmra and the mraZ gene. Excess MraZ reduced the expression of an mraZ-lacZ reporter, suggesting that MraZ acts as a repressor of Pmra, whereas a DNA-binding mutant form of MraZ failed to repress expression. Transcriptome sequencing (RNA-seq) analysis suggested that MraZ also regulates the expression of genes outside the dcw cluster. In support of this, purified MraZ could directly bind to a putative operator site upstream of mioC, one of the repressed genes identified by RNA-seq.
Collapse
|
13
|
Suwastika IN, Denawa M, Yomogihara S, Im CH, Bang WY, Ohniwa RL, Bahk JD, Takeyasu K, Shiina T. Evidence for lateral gene transfer (LGT) in the evolution of eubacteria-derived small GTPases in plant organelles. FRONTIERS IN PLANT SCIENCE 2014; 5:678. [PMID: 25566271 PMCID: PMC4263083 DOI: 10.3389/fpls.2014.00678] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 11/13/2014] [Indexed: 05/04/2023]
Abstract
The genomes of free-living bacteria frequently exchange genes via lateral gene transfer (LGT), which has played a major role in bacterial evolution. LGT also played a significant role in the acquisition of genes from non-cyanobacterial bacteria to the lineage of "primary" algae and land plants. Small GTPases are widely distributed among prokaryotes and eukaryotes. In this study, we inferred the evolutionary history of organelle-targeted small GTPases in plants. Arabidopsis thaliana contains at least one ortholog in seven subfamilies of OBG-HflX-like and TrmE-Era-EngA-YihA-Septin-like GTPase superfamilies (together referred to as Era-like GTPases). Subcellular localization analysis of all Era-like GTPases in Arabidopsis revealed that all 30 eubacteria-related GTPases are localized to chloroplasts and/or mitochondria, whereas archaea-related DRG and NOG1 are localized to the cytoplasm and nucleus, respectively, suggesting that chloroplast- and mitochondrion-localized GTPases are derived from the ancestral cyanobacterium and α-proteobacterium, respectively, through endosymbiotic gene transfer (EGT). However, phylogenetic analyses revealed that plant organelle GTPase evolution is rather complex. Among the eubacterium-related GTPases, only four localized to chloroplasts (including one dual targeting GTPase) and two localized to mitochondria were derived from cyanobacteria and α-proteobacteria, respectively. Three other chloroplast-targeted GTPases were related to α-proteobacterial proteins, rather than to cyanobacterial GTPases. Furthermore, we found that four other GTPases showed neither cyanobacterial nor α-proteobacterial affiliation. Instead, these GTPases were closely related to clades from other eubacteria, such as Bacteroides (Era1, EngB-1, and EngB-2) and green non-sulfur bacteria (HflX). This study thus provides novel evidence that LGT significantly contributed to the evolution of organelle-targeted Era-like GTPases in plants.
Collapse
Affiliation(s)
- I. Nengah Suwastika
- Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
- Department of Biology, Faculty of Science, Tadulako UniversityPalu, Indonesia
| | - Masatsugu Denawa
- Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
- Graduate School of Medicine, Kyoto UniversityKyoto, Japan
| | - Saki Yomogihara
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
| | - Chak Han Im
- Division of Life Science (BK21 plus program), Graduate School of Gyeongsang National UniversityJinju, South Korea
| | - Woo Young Bang
- Division of Life Science (BK21 plus program), Graduate School of Gyeongsang National UniversityJinju, South Korea
| | - Ryosuke L. Ohniwa
- Division of Biomedical Science, Faculty of Medicine, University of TsukubaTsukuba, Japan
| | - Jeong Dong Bahk
- Division of Life Science (BK21 plus program), Graduate School of Gyeongsang National UniversityJinju, South Korea
| | - Kunio Takeyasu
- Graduate School of Biostudies, Kyoto UniversityKyoto, Japan
| | - Takashi Shiina
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural UniversityKyoto, Japan
- *Correspondence: Takashi Shiina, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo-nakaragi-cho, Sakyo-ku, Kyoto 606-8522, Japan e-mail:
| |
Collapse
|
14
|
Abstract
The ribosome is an RNA- and protein-based macromolecule having multiple functional domains to facilitate protein synthesis, and it is synthesized through multiple steps including transcription, stepwise cleavages of the primary transcript, modifications of ribosomal proteins and RNAs and assemblies of ribosomal proteins with rRNAs. This process requires dozens of trans-acting factors including GTP- and ATP-binding proteins to overcome several energy-consuming steps. Despite accumulation of genetic, biochemical and structural data, the entire process of bacterial ribosome synthesis remains elusive. Here, we review GTPases involved in bacterial ribosome maturation.
Collapse
Affiliation(s)
- Simon Goto
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan
| | | | | |
Collapse
|
15
|
Becker M, Gzyl KE, Altamirano AM, Vuong A, Urbahn K, Wieden HJ. The 70S ribosome modulates the ATPase activity of Escherichia coli YchF. RNA Biol 2012; 9:1288-301. [PMID: 22995830 PMCID: PMC3583859 DOI: 10.4161/rna.22131] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
YchF is one of two universally conserved GTPases with unknown cellular function. As a first step toward elucidating YchF's cellular role, we performed a detailed biochemical characterization of the protein from Escherichia coli. Our data from fluorescence titrations not only confirmed the surprising finding that YchFE.coli binds adenine nucleotides more efficiently than guanine nucleotides, but also provides the first evidence suggesting that YchF assumes two distinct conformational states (ATP- and ADP-bound) consistent with the functional cycle of a typical GTPase. Based on an in vivo pull-down experiment using a His-tagged variant of YchF from E. coli (YchFE.coli), we were able to isolate a megadalton complex containing the 70S ribosome. Based on this finding, we report the successful reconstitution of a YchF•70S complex in vitro, revealing an affinity (KD) of the YchFE.coli•ADPNP complex for 70S ribosomes of 3 μM. The in vitro reconstitution data also suggests that the identity of the nucleotide-bound state of YchF (ADP or ATP) modulates its affinity for 70S ribosomes. A detailed Michaelis-Menten analysis of YchF's catalytic activity in the presence and the absence of the 70S ribosome and its subunits revealed for the first time that the 70S ribosome is able to stimulate YchF's ATPase activity (~10-fold), confirming the ribosome as part of the functional cycle of YchF. Our findings taken together with previously reported data for the human homolog of YchF (hOLA1) indicate a high level of evolutionary conservation in the enzymatic properties of YchF and suggest that the ribosome is the main functional partner of YchF not only in bacteria.
Collapse
Affiliation(s)
- Marion Becker
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Katherine E. Gzyl
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Alvin M. Altamirano
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Anthony Vuong
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Kirstin Urbahn
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
| | - Hans-Joachim Wieden
- Department of Chemistry and Biochemistry; University of Lethbridge; Lethbridge, AB Canada
- Alberta RNA Research and Training Institute; University of Lethbridge; Lethbridge, AB Canada
| |
Collapse
|
16
|
The universally conserved prokaryotic GTPases. Microbiol Mol Biol Rev 2012; 75:507-42, second and third pages of table of contents. [PMID: 21885683 DOI: 10.1128/mmbr.00009-11] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Members of the large superclass of P-loop GTPases share a core domain with a conserved three-dimensional structure. In eukaryotes, these proteins are implicated in various crucial cellular processes, including translation, membrane trafficking, cell cycle progression, and membrane signaling. As targets of mutation and toxins, GTPases are involved in the pathogenesis of cancer and infectious diseases. In prokaryotes also, it is hard to overestimate the importance of GTPases in cell physiology. Numerous papers have shed new light on the role of bacterial GTPases in cell cycle regulation, ribosome assembly, the stress response, and other cellular processes. Moreover, bacterial GTPases have been identified as high-potential drug targets. A key paper published over 2 decades ago stated that, "It may never again be possible to capture [GTPases] in a family portrait" (H. R. Bourne, D. A. Sanders, and F. McCormick, Nature 348:125-132, 1990) and indeed, the last 20 years have seen a tremendous increase in publications on the subject. Sequence analysis identified 13 bacterial GTPases that are conserved in at least 75% of all bacterial species. We here provide an overview of these 13 protein subfamilies, covering their cellular functions as well as cellular localization and expression levels, three-dimensional structures, biochemical properties, and gene organization. Conserved roles in eukaryotic homologs will be discussed as well. A comprehensive overview summarizing current knowledge on prokaryotic GTPases will aid in further elucidating the function of these important proteins.
Collapse
|
17
|
Cooper EL, García-Lara J, Foster SJ. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability. BMC Microbiol 2009; 9:266. [PMID: 20021644 PMCID: PMC2811118 DOI: 10.1186/1471-2180-9-266] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 12/18/2009] [Indexed: 12/25/2022] Open
Abstract
Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP) of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.
Collapse
Affiliation(s)
- Elizabeth L Cooper
- Department of Molecular Biology and Microbiology, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | |
Collapse
|
18
|
Abstract
The assembly of the ribosome, a complex molecular machine composed of RNA and protein, is a poorly understood process. Recent work has demonstrated that GTPases are likely to play key roles in the assembly of ribosomes in bacteria and eukaryotes. This review highlights several bacterial ribosome assembly GTPases (RA-GTPases) and discusses possible functions for these proteins in the biogenesis of individual ribosomal subunits and subunit joining. RA-GTPases appear to link various aspects of the cell cycle and metabolism with translation. How these RA-GTPases may coordinate these connections are discussed.
Collapse
Affiliation(s)
- Robert A Britton
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
19
|
Abstract
YsxC is a small GTPase of Bacillus subtilis with essential but still unknown function, although recent works have suggested that it might be involved in ribosome biogenesis. Here, purified YsxC overexpressed in Escherichia coli was found to be partly associated with high-molecular-weight material, most likely rRNA, and thus eluted from gel filtration as a large complex. In addition, purification of ribosomes from an E. coli strain overexpressing YsxC allowed the copurification of the YsxC protein. Purified YsxC was shown to bind preferentially to the 50S subunit of B. subtilis ribosomes; this interaction was modulated by nucleotides and was stronger in the presence of a nonhydrolyzable GTP analogue than with GTP. Far-Western blotting analysis performed with His(6)-YsxC and ribosomal proteins separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed that YsxC interacted with at least four ribosomal proteins from the 50S subunit. Two of these putative protein partners were identified by mass spectrometry as L1 and L3, while the third reactive band in the one-dimensional gel contained L6 and L10. The fourth band that reacted with YsxC contained a mixture of three proteins, L7/L12, L23, and L27, suggesting that at least one of them binds to YsxC. Coimmobilization assays confirmed that L1, L6, and L7/L12 interact with YsxC. Together, these results suggest that YsxC plays a role in ribosome assembly.
Collapse
|
20
|
Wilson DN, Nierhaus KH. The weird and wonderful world of bacterial ribosome regulation. Crit Rev Biochem Mol Biol 2007; 42:187-219. [PMID: 17562451 DOI: 10.1080/10409230701360843] [Citation(s) in RCA: 169] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In every organism, translation of the genetic information into functional proteins is performed on the ribosome. In Escherichia coli up to 40% of the cell's total energy turnover is channelled toward the ribosome and protein synthesis. Thus, elaborate networks of translation regulation pathways have evolved to modulate gene expression in response to growth rate and external factors, ranging from nutrient deprivation, to chemical (pH, ionic strength) and physical (temperature) fluctuations. Since the fundamental players involved in regulation of the different phases of translation have already been extensively reviewed elsewhere, this review focuses on lesser known and characterized factors that regulate the ribosome, ranging from processing, modification and assembly factors, unusual initiation and elongation factors, to a variety of stress response proteins.
Collapse
Affiliation(s)
- Daniel N Wilson
- Gene Center and Department of Chemistry and Biochemistry, University of Munich, Munich, Germany.
| | | |
Collapse
|
21
|
Borges CL, Parente JA, Pereira M, Soares CMDA. Identification of the GTPase superfamily in Mycoplasma synoviae and Mycoplasma hyopneumoniae. Genet Mol Biol 2007. [DOI: 10.1590/s1415-47572007000200007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Schaefer L, Uicker WC, Wicker-Planquart C, Foucher AE, Jault JM, Britton RA. Multiple GTPases participate in the assembly of the large ribosomal subunit in Bacillus subtilis. J Bacteriol 2006; 188:8252-8. [PMID: 16997968 PMCID: PMC1698177 DOI: 10.1128/jb.01213-06] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GTPases have been demonstrated to be necessary for the proper assembly of the ribosome in bacteria and eukaryotes. Here, we show that the essential GTPases YphC and YsxC are required for large ribosomal subunit biogenesis in Bacillus subtilis. Sucrose density gradient centrifugation of large ribosomal subunits isolated from YphC-depleted cells and YsxC-depleted cells indicates that they are similar to the 45S intermediate previously identified in RbgA-depleted cells. The sedimentation of the large-subunit intermediate isolated from YphC-depleted cells was identical to the intermediate found in RbgA-depleted cells, while the intermediate isolated from YsxC-depleted cells sedimented slightly slower than 45S, suggesting that it is a novel intermediate. Analysis of the protein composition of the large-subunit intermediates isolated from either YphC-depleted cells or YsxC-depleted cells indicated that L16 and L36 are missing. Purified YphC and YsxC are able to interact with the ribosome in vitro, supporting a direct role for these two proteins in the assembly of the 50S subunit. Our results indicate that, as has been demonstrated for Saccharomyces cerevisiae ribosome biogenesis, bacterial 50S ribosome assembly requires the function of multiple essential GTPases.
Collapse
Affiliation(s)
- Laura Schaefer
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
23
|
Kulkarni PR, Cui X, Williams JW, Stevens AM, Kulkarni RV. Prediction of CsrA-regulating small RNAs in bacteria and their experimental verification in Vibrio fischeri. Nucleic Acids Res 2006; 34:3361-9. [PMID: 16822857 PMCID: PMC1488887 DOI: 10.1093/nar/gkl439] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The role of small RNAs as critical components of global regulatory networks has been highlighted by several recent studies. An important class of such small RNAs is represented by CsrB and CsrC of Escherichia coli, which control the activity of the global regulator CsrA. Given the critical role played by CsrA in several bacterial species, an important problem is the identification of CsrA-regulating small RNAs. In this paper, we develop a computer program (CSRNA_FIND) designed to locate potential CsrA-regulating small RNAs in bacteria. Using CSRNA_FIND to search the genomes of bacteria having homologs of CsrA, we identify all the experimentally known CsrA-regulating small RNAs and also make predictions for several novel small RNAs. We have verified experimentally our predictions for two CsrA-regulating small RNAs in Vibrio fischeri. As more genomes are sequenced, CSRNA_FIND can be used to locate the corresponding small RNAs that regulate CsrA homologs. This work thus opens up several avenues of research in understanding the mode of CsrA regulation through small RNAs in bacteria.
Collapse
Affiliation(s)
| | - Xiaohui Cui
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA 24061, USA
| | - Joshua W. Williams
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA 24061, USA
| | - Ann M. Stevens
- Department of Biological Sciences, Virginia Polytechnic Institute and State UniversityBlacksburg, VA 24061, USA
| | - Rahul V. Kulkarni
- To whom correspondence should be addressed. Tel: +1 540 231 3332; Fax: +1 540 231 7511;
| |
Collapse
|
24
|
Brown ED. Conserved P-loop GTPases of unknown function in bacteria: an emerging and vital ensemble in bacterial physiology. Biochem Cell Biol 2006; 83:738-46. [PMID: 16333325 DOI: 10.1139/o05-162] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Establishing the roles of conserved gene products in bacteria is of fundamental importance to our understanding of the core protein complement necessary to sustain cellular life. P-loop GTPases and related ATPases represent an abundant and remarkable group of proteins in bacteria that, in many cases, have evaded characterization. Here, efforts aimed at understanding the cellular function of a group of 8 conserved, poorly characterized genes encoding P-loop GTPases, era, obg, trmE, yjeQ, engA, yihA, hflX, ychF, and a related ATPase, yjeE, are reviewed in considerable detail. While concrete cellular roles remain elusive for all of these genes and considerable pleiotropy has plagued their study, experiments to date have frequently implicated the ribosome. In the case of era, obg, yjeQ, and engA, the evidence is most consistent with roles in ribosome biogenesis, though the prediction is necessarily putative. While the protein encoded in trmE clearly has a catalytic function in tRNA modification, the participation of its GTPase domain remains obscure, as do the functions of the remaining proteins. A full understanding of the cellular functions of all of these important proteins remains the goal of ongoing studies of cellular phenotype and protein biochemistry.
Collapse
Affiliation(s)
- Eric D Brown
- Antimicrobial Research Centre and Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
25
|
Benders GA, Powell BC, Hutchison CA. Transcriptional analysis of the conserved ftsZ gene cluster in Mycoplasma genitalium and Mycoplasma pneumoniae. J Bacteriol 2005; 187:4542-51. [PMID: 15968065 PMCID: PMC1151755 DOI: 10.1128/jb.187.13.4542-4551.2005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several experimental approaches were used to construct a detailed transcriptional profile of the phylogenetically conserved ftsZ cell division gene cluster in both Mycoplasma genitalium and its closest relative, Mycoplasma pneumoniae. We determined initiation and termination points for the cluster, as well as an absolute steady-state RNA level for each gene. Transcription of this cluster in both these organisms was shown to be highly strand specific. While the four genes in this cluster are cotranscribed, their transcription unit also includes two genes of close proximity yet disparate function. A transcription initiation point immediately upstream of these two genes was detected in M. genitalium but not M. pneumoniae. In M. pneumoniae, transcription of the six genes terminates at a poly(U)-tailed hairpin. In M. genitalium, this transcription terminates at two closely spaced points by an unknown mechanism. Real-time reverse transcription-PCR analysis of this cluster in M. pneumoniae shows that mRNA levels for all six genes vary at most fivefold and form a gradient of decreasing quantity with increasing distance from the promoter at the beginning of the cluster. mRNA from coding regions was approximately 20- to 100-fold more abundant than that from intergenic regions. We estimated the most abundant mRNA we detected at 0.6 copy per cell. We conclude that groups of functionally related genes in M. genitalium and M. pneumoniae are often preceded by promoters but rarely followed by terminators. This causes functionally unrelated genes to be commonly cotranscribed in these organisms.
Collapse
Affiliation(s)
- Gwynedd A Benders
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | |
Collapse
|
26
|
Cardona ST, Valvano MA. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. Plasmid 2005; 54:219-28. [PMID: 15925406 DOI: 10.1016/j.plasmid.2005.03.004] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 03/20/2005] [Accepted: 03/23/2005] [Indexed: 11/25/2022]
Abstract
Infection of the respiratory tract caused by Burkholderia cepacia complex poses a serious risk for cystic fibrosis (CF) patients due to the high morbidity and mortality associated with the chronic infection and the lack of efficacious antimicrobial treatments. A detailed understanding of the pathogenicity of B. cepacia complex infections is hampered in part by the limited availability of genetic tools and the inherent resistance of these isolates to the most common antibiotics used for genetic selection. In this study, we report the construction of an expression vector which uses the rhamnose-regulated P(rhaB) promoter of Escherichia coli. The functionality of the vector was assessed by expressing the enhanced green fluorescent protein (eGFP) gene (e-gfp) and determining the levels of fluorescence emission. These experiments demonstrated that P(rhaB) is responsive to low concentrations of rhamnose and it can be effectively repressed with 0.2% glucose. We also demonstrate that the tight regulation of gene expression by P(rhaB) promoter allows us to extend the capabilities of this vector to the identification of essential genes.
Collapse
Affiliation(s)
- Silvia T Cardona
- Department of Microbiology and Immunology, The University of Western Ont., Canada
| | | |
Collapse
|
27
|
Foti JJ, Schienda J, Sutera VA, Lovett ST. A bacterial G protein-mediated response to replication arrest. Mol Cell 2005; 17:549-60. [PMID: 15721258 DOI: 10.1016/j.molcel.2005.01.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/29/2004] [Accepted: 01/14/2005] [Indexed: 01/24/2023]
Abstract
To define factors in E. coli promoting survival to replication fork stress, we isolated insertion mutants sensitive to replication inhibitors. One insertion caused partial loss of the universally conserved GTPase, obgE/yhbZ gene. Although obgE is essential for growth, our insertion allele supported viability until challenged with various replication inhibitors. A mutation designed to negate the GTPase activity of the protein produced similar phenotypes, but was genetically dominant. Synergistic genetic interactions with recA and recB suggested that chromosome breaks and regressed forks accumulate in obgE mutants. Mutants in obgE also exhibited asynchronous overreplication during normal growth, as revealed by flow cytometry. ObgE overexpression caused SeqA foci, normally localized to replication forks, to spread extensively within the cell. We propose that ObgE defines a pathway analogous to the replication checkpoint response of eukaryotes and acts in a complementary way to the RecA-dependent SOS response to promote bacterial cell survival to replication fork arrest.
Collapse
Affiliation(s)
- James J Foti
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|
28
|
Adams MA, Udell CM, Pal GP, Jia Z. MraZ from Escherichia coli: cloning, purification, crystallization and preliminary X-ray analysis. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:378-80. [PMID: 16511046 PMCID: PMC1952425 DOI: 10.1107/s1744309105007657] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 03/09/2005] [Indexed: 11/11/2022]
Abstract
The MraZ family of proteins, also referred to as the UPF0040 family, are highly conserved in bacteria and are thought to play a role in cell-wall biosynthesis and cell division. The murein region A (mra) gene cluster encodes MraZ proteins along with a number of other proteins involved in this complex process. To date, there has been no clear functional assignment provided for MraZ proteins and the structure of a homologue from Mycoplasma pneumoniae, MPN314, failed to suggest a molecular function. The b0081 gene from Escherichia coli that encodes the MraZ protein was cloned and the protein was overexpressed, purified and crystallized. This data is presented along with evidence that the E. coli homologue exists in a different oligomeric state to the MPN314 protein.
Collapse
Affiliation(s)
- Melanie A. Adams
- Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Christian M. Udell
- Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Gour Pada Pal
- Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Zongchao Jia
- Department of Biochemistry, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Correspondence e-mail:
| |
Collapse
|
29
|
Hidalgo AA, Trombert AN, Castro-Alonso JC, Santiviago CA, Tesser BR, Youderian P, Mora GC. Insertions of mini-Tn10 transposon T-POP in Salmonella enterica sv. typhi. Genetics 2005; 167:1069-77. [PMID: 15280224 PMCID: PMC1470937 DOI: 10.1534/genetics.104.026682] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have mutagenized a clinical strain of Salmonella enterica sv. typhi with mini-transposon Tn10dTet (T-POP) to obtain conditional lethal (tetracycline-dependent) mutants with T-POP insertions upstream of essential genes. Generalized transducing phage P22 was used to introduce T-POP from a S. typhimurium donor into a S. typhi recipient. Chromosomal DNA was purified from the mutagenized donor strains, fragmented, and then electroporated into S. typhi to backcross the original T-POP insertions. Four tetracycline-dependent mutants with two distinct terminal phenotypes were found among 1700 mutants with T-POP insertions. When grown in the absence of tetracycline, two of the four tetracycline-dependent mutants arrest at a late stage in the cell cycle, can be rescued by outgrowth in media with tetracycline, and define a reversible checkpoint late in the cell cycle. One of these insertions creates an operon fusion with a gene, yqgF, that is conserved among gram-negative bacteria and likely encodes an essential Holliday junction resolvase. T-POP insertions can be used not only to identify essential S. typhi genes but also to reveal novel phenotypes resulting from the depletion of their products.
Collapse
Affiliation(s)
- Alejandro A Hidalgo
- Unidad de Microbiología, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340 Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
30
|
Galperin MY, Koonin EV. 'Conserved hypothetical' proteins: prioritization of targets for experimental study. Nucleic Acids Res 2004; 32:5452-63. [PMID: 15479782 PMCID: PMC524295 DOI: 10.1093/nar/gkh885] [Citation(s) in RCA: 298] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Comparative genomics shows that a substantial fraction of the genes in sequenced genomes encodes 'conserved hypothetical' proteins, i.e. those that are found in organisms from several phylogenetic lineages but have not been functionally characterized. Here, we briefly discuss recent progress in functional characterization of prokaryotic 'conserved hypothetical' proteins and the possible criteria for prioritizing targets for experimental study. Based on these criteria, the chief one being wide phyletic spread, we offer two 'top 10' lists of highly attractive targets. The first list consists of proteins for which biochemical activity could be predicted with reasonable confidence but the biological function was predicted only in general terms, if at all ('known unknowns'). The second list includes proteins for which there is no prediction of biochemical activity, even if, for some, general biological clues exist ('unknown unknowns'). The experimental characterization of these and other 'conserved hypothetical' proteins is expected to reveal new, crucial aspects of microbial biology and could also lead to better functional prediction for medically relevant human homologs.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | |
Collapse
|
31
|
Levdikov VM, Blagova EV, Brannigan JA, Cladière L, Antson AA, Isupov MN, Séror SJ, Wilkinson AJ. The crystal structure of YloQ, a circularly permuted GTPase essential for Bacillus subtilis viability. J Mol Biol 2004; 340:767-82. [PMID: 15223319 DOI: 10.1016/j.jmb.2004.05.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Revised: 05/17/2004] [Accepted: 05/18/2004] [Indexed: 12/01/2022]
Abstract
yloQ is one of 11 essential genes in Bacillus subtilis with unknown roles in the physiology of the cell. It encodes a polypeptide of 298 residues with motifs characteristic of GTPases. As a contribution to elucidating its indispensable cellular function, we have solved the crystal structure of YloQ to 1.6 A spacing, revealing a three-domain organisation. At the heart of the molecule is the putative GTPase domain, which exhibits a classical alpha/beta nucleotide-binding fold with a topology very similar to that of Ras and Era. However, as anticipated from the order in which the conserved G protein motifs appear in the sequence, the GTPase domain fold in YloQ is circularly permuted with respect to the classical GTPases. The nucleotide-binding pocket in YloQ is unoccupied, and analysis of the phosphate-binding (P) loop indicates that conformational changes in this region would be needed to accommodate GTP. The GTPase domain is flanked at its N terminus by a beta-barrel domain with an oligonucleotide/oligosaccharide-binding (OB) fold, and at its C terminus by an alpha-helical domain containing a coordinated zinc ion. This combination of protein modules is unique to YloQ and its orthologues. Sequence comparisons reveal a clustering of conserved basic and aromatic residues on one face of the OB domain, perhaps pointing to a role for YloQ in nucleic acid binding. The zinc ion in the alpha-helical domain is coordinated by three cysteine residues and a histidine residue in a novel ligand organisation. The juxtaposition of the switch I and switch II regions of the G domain and the OB and zinc-binding domains suggests that chemical events at the GTPase active site may be transduced into relative movements of these domains. The pattern of conserved residues and electrostatic surface potential calculations suggest that the OB and/or Zn-binding domains participate in nucleic acid binding consistent with a possible role for YloQ at some stage during mRNA translation.
Collapse
Affiliation(s)
- Vladimir M Levdikov
- Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, UK
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Chen S, Jancrick J, Yokota H, Kim R, Kim SH. Crystal structure of a protein associated with cell division from Mycoplasma pneumoniae (GI: 13508053): a novel fold with a conserved sequence motif. Proteins 2004; 55:785-91. [PMID: 15146477 DOI: 10.1002/prot.10593] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
UPF0040 is a family of proteins implicated in a cellular function of bacteria cell division. There is no structure information available on protein of this family. We have determined the crystal structure of a protein from Mycoplasma pneumoniae that belongs to this family using X-ray crystallography. Structural homology search reveals that this protein has a novel fold with no significant similarity to any proteins of known three-dimensional structure. The crystal structures of the protein in three different crystal forms reveal that the protein exists as a ring of octamer. The conserved protein residues, including a highly conserved DXXXR motif, are examined on the basis of crystal structure.
Collapse
Affiliation(s)
- Shengfeng Chen
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
33
|
Ruzheinikov SN, Das SK, Sedelnikova SE, Baker PJ, Artymiuk PJ, García-Lara J, Foster SJ, Rice DW. Analysis of the open and closed conformations of the GTP-binding protein YsxC from Bacillus subtilis. J Mol Biol 2004; 339:265-78. [PMID: 15136032 DOI: 10.1016/j.jmb.2004.03.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2003] [Revised: 03/16/2004] [Accepted: 03/22/2004] [Indexed: 11/20/2022]
Abstract
Genetic analysis has suggested that the product of the Bacillus subtilis ysxC gene is essential for survival of the microorganism and hence may represent a target for the development of a novel anti-infective agent. B.subtilis YsxC is a member of the translation factor related class of GTPases and its crystal structure has been determined in an apo form and in complex with GDP and GMPPNP/Mg2+. Analysis of these structures has allowed us to examine the conformational changes that occur during the process of nucleotide binding and GTP hydrolysis. These structural changes particularly affect parts of the switch I and switch II region of YsxC, which become ordered and disordered, respectively in the "closed" or "on" GTP-bound state and disordered and ordered, respectively, in the "open" or "off" GDP-bound conformation. Finally, the binding of the magnesium cation results in subtle shifts of residues in the G3 region, at the start of switch II, which serve to optimize the interaction with a key aspartic acid residue. The structural flexibility observed in YsxC is likely to contribute to the role of the protein, possibly allowing transduction of an essential intracellular signal, which may be mediated via interactions with a conserved patch of surface-exposed, basic residues that lies adjacent to the GTP-binding site.
Collapse
Affiliation(s)
- Sergey N Ruzheinikov
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lehoux IE, Mazzulla MJ, Baker A, Petit CM. Purification and characterization of YihA, an essential GTP-binding protein from Escherichia coli. Protein Expr Purif 2003; 30:203-9. [PMID: 12880769 DOI: 10.1016/s1046-5928(03)00107-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
YihA has previously been characterized as an essential gene of unknown function in both Escherichia coli and Bacillus subtilis. It is conserved in bacteria and represents an attractive target for the discovery of new antibiotics. YihA encodes a putative GTP-binding protein. We have cloned and overexpressed the gene encoding E. coli YihA and initiated biochemical studies as a first step towards understanding its biological function. We showed by circular dichroism that the purified protein has a secondary structure typical of most GTP-binding proteins. It binds guanine nucleotides specifically, as demonstrated by fluorescence resonance energy transfer between 2'-(or-3')-O-(N-methylanthraniloyl) nucleotides (mant-nucleotides) and the tryptophans of YihA. The K(d) values for GDP and GTP were determined by competition with 2'-(or-3')-O-(N-methylanthraniloyl) GDP to be 3 and 27 microM, respectively. Using mutants of YihA we show that nucleotide binding occurs at the putative GTP-binding domain predicted from the primary sequence.
Collapse
Affiliation(s)
- Isabelle E Lehoux
- GlaxoSmithKline Pharmaceuticals, 1250 South Collegeville Road, UP4430, P.O. Box 5089, PA 19426-0989, Collegeville, USA
| | | | | | | |
Collapse
|
35
|
Abstract
The recently discovered structural similarities between the archaeal Orc1/Cdc6 and bacterial DnaA initiator proteins for chromosome replication have exciting implications for cell cycle regulation. Together with current attempts to identify archaeal chromosome replication origins, the information is likely to yield fundamental insights into replication control in both archaea and eukaryotes within the near future. Several proteins that affect, or are likely to affect, chromatin structure and genome segregation in archaea have been described recently, including Sph1 and 2, ScpA and B, Sir2, Alba and Rio1p. Important insights into the properties of the MinD and FtsZ cell division proteins, and of putative cytoskeletal elements, have recently been gained in bacteria. As these proteins also are present among archaea, it is likely that the new information will also be essential for understanding archaeal genome segregation and cell division. A series of interesting cell cycle issues has been brought to light through the discovery of the novel Nanoarchaeota phylum, and these are outlined briefly. Exciting areas for extended cell cycle investigations of archaea are identified, including termination of chromosome replication, application of in situ cytological techniques for localization of cell cycle proteins and the regulatory roles of GTP-binding proteins and small RNAs.
Collapse
Affiliation(s)
- Rolf Bernander
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, Norbyvägen 18C, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
36
|
Abstract
The GTPase superfamily of cellular regulators is well represented in bacteria. A small number are universally conserved over the entire range of bacterial species. Such a pervasive taxonomic distribution suggests that these enzymes play important roles in bacterial cellular systems. Recent advances have demonstrated that bacterial GTPases are important regulators of ribosome function, and important for the distribution of DNA to daughter cells following cell division. In addition, the atomic structure of a unique GTPase, EngA, has recently been established. Unlike any other GTPase, EngA contains tandem GTP-binding domains. This structural study suggests that the GTPase cycles of the domains are regulated differentially in a manner that remains to be elucidated.
Collapse
Affiliation(s)
- Catherine E Caldon
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
37
|
Wang B, Kuramitsu HK. Assessment of the utilization of the antisense RNA strategy to identify essential genes in heterologous bacteria. FEMS Microbiol Lett 2003; 220:171-6. [PMID: 12670677 DOI: 10.1016/s0378-1097(03)00128-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We employed an antisense RNA approach to identify essential genes common in both Gram-positive and Gram-negative bacteria by cloning a random library of Streptococcus mutans chromosomal DNA into an expression vector and transforming Escherichia coli. Twelve out of 27 E. coli transformants with growth defective phenotypes contained individual structural genes of S. mutans in the antisense orientation relative to the E. coli promoter. Thirty-three percent of these transformants (4/12) corresponded to the genes (gyrA, ileS, rplE and yihA orthologs) which are essential for bacterial viability.
Collapse
Affiliation(s)
- Bing Wang
- Department of Oral Biology, State University of New York at Buffalo, Buffalo, NY 14212, USA
| | | |
Collapse
|
38
|
Morimoto T, Loh PC, Hirai T, Asai K, Kobayashi K, Moriya S, Ogasawara N. Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis. MICROBIOLOGY (READING, ENGLAND) 2002; 148:3539-3552. [PMID: 12427945 DOI: 10.1099/00221287-148-11-3539] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
GTP-binding proteins are found in all domains of life and are involved in various essential cellular processes. With the recent explosion of available genome sequence data, a widely distributed bacterial subfamily of GTP-binding proteins was discovered, represented by the Escherichia coli Era and the Bacillus subtilis Obg proteins. Although only a limited number of the GTP-binding proteins belonging to the subfamily have been experimentally characterized, and their function remains unknown, the available data suggests that many of them are essential to bacterial growth. When the complete genomic sequence of B. subtilis was surveyed for genes encoding GTP-binding proteins of the Era/Obg family, nine such genes were identified. As a first step in elucidating the functional networks of those nine GTP-binding proteins, data presented here indicates that six of them are essential for B. subtilis viability. Additionally, it is shown that the six essential proteins are able to specifically bind GTP and GDP in vitro. Experimental depletion of the essential GTP-binding proteins was examined in the context of cell morphology and chromosome replication, and it was found that two proteins, Bex and YqeH, appeared to participate in the regulation of initiation of chromosome replication. Collectively, these results suggest that members of the GTP-binding Era/Obg family are important proteins with precise, yet still not fully understood, roles in bacterial growth and viability.
Collapse
Affiliation(s)
- Takuya Morimoto
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Pek Chin Loh
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Tomohiro Hirai
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Kei Asai
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Kazuo Kobayashi
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Shigeki Moriya
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| | - Naotake Ogasawara
- Department of Microbial Cell Biology, Graduate school of Biological Sciences, Nara Institute of Science and Technology, 8916-5, Takayama, Ikoma, Nara 630-0101, Japan1
| |
Collapse
|
39
|
Merlin C, McAteer S, Masters M. Tools for characterization of Escherichia coli genes of unknown function. J Bacteriol 2002; 184:4573-81. [PMID: 12142427 PMCID: PMC135234 DOI: 10.1128/jb.184.16.4573-4581.2002] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the power of sequencing and of emerging high-throughput technologies to collect data rapidly, the definitive functional characterization of unknown genes still requires biochemical and genetic analysis in case-by-case studies. This often involves the deletion of target genes and phenotypic characterization of the deletants. We describe here modifications of an existing deletion method which facilitates the deletion process and enables convenient analysis of the expression properties of the target gene by replacing it with an FRT-lacZ-aph-P(lac)-FRT cassette. The lacZ gene specifically reports the activity of the deleted gene and therefore allows the determination of the conditions under which it is actively expressed. The aph gene, encoding resistance to kanamycin, provides a selectable means of transducing a deleted locus between strains so that the deletion can be combined with other relevant mutations. The lac promoter helps to overcome possible polar effects on downstream genes within an operon. Because the cassette is flanked by two directly repeated FRT sites, the cassette can be excised by the Flp recombinase provided in trans. Removing the cassette leaves an in-frame deletion with a short scar which should not interfere with downstream expression. Replacements of yacF, yacG, yacH, yacK (cueO), yacL, ruvA, ruvB, yabB, and yabC made with the cassette were used to verify its properties.
Collapse
Affiliation(s)
- Christophe Merlin
- Institute for Cell and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | | | | |
Collapse
|
40
|
Leipe DD, Wolf YI, Koonin EV, Aravind L. Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 2002; 317:41-72. [PMID: 11916378 DOI: 10.1006/jmbi.2001.5378] [Citation(s) in RCA: 860] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sequences and available structures were compared for all the widely distributed representatives of the P-loop GTPases and GTPase-related proteins with the aim of constructing an evolutionary classification for this superclass of proteins and reconstructing the principal events in their evolution. The GTPase superclass can be divided into two large classes, each of which has a unique set of sequence and structural signatures (synapomorphies). The first class, designated TRAFAC (after translation factors) includes enzymes involved in translation (initiation, elongation, and release factors), signal transduction (in particular, the extended Ras-like family), cell motility, and intracellular transport. The second class, designated SIMIBI (after signal recognition particle, MinD, and BioD), consists of signal recognition particle (SRP) GTPases, the assemblage of MinD-like ATPases, which are involved in protein localization, chromosome partitioning, and membrane transport, and a group of metabolic enzymes with kinase or related phosphate transferase activity. These two classes together contain over 20 distinct families that are further subdivided into 57 subfamilies (ancient lineages) on the basis of conserved sequence motifs, shared structural features, and domain architectures. Ten subfamilies show a universal phyletic distribution compatible with presence in the last universal common ancestor of the extant life forms (LUCA). These include four translation factors, two OBG-like GTPases, the YawG/YlqF-like GTPases (these two subfamilies also consist of predicted translation factors), the two signal-recognition-associated GTPases, and the MRP subfamily of MinD-like ATPases. The distribution of nucleotide specificity among the proteins of the GTPase superclass indicates that the common ancestor of the entire superclass was a GTPase and that a secondary switch to ATPase activity has occurred on several independent occasions during evolution. The functions of most GTPases that are traceable to LUCA are associated with translation. However, in contrast to other superclasses of P-loop NTPases (RecA-F1/F0, AAA+, helicases, ABC), GTPases do not participate in NTP-dependent nucleic acid unwinding and reorganizing activities. Hence, we hypothesize that the ancestral GTPase was an enzyme with a generic regulatory role in translation, with subsequent diversification resulting in acquisition of diverse functions in transport, protein trafficking, and signaling. In addition to the classification of previously known families of GTPases and related ATPases, we introduce several previously undetected families and describe new functional predictions.
Collapse
Affiliation(s)
- Detlef D Leipe
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | | | | | | |
Collapse
|
41
|
Caldon CE, Yoong P, March PE. Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 2001; 41:289-97. [PMID: 11489118 DOI: 10.1046/j.1365-2958.2001.02536.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The GTPases comprise a protein superfamily of highly conserved molecular switches adapted to many diverse functions. These proteins are found in all domains of life and often perform essential roles in fundamental cellular processes. Analysis of data from genome sequencing projects demonstrates that bacteria possess a core of 11 universally conserved GTPases (elongation factor G and Tu, initiation factor 2, LepA, Era, Obg, ThdF/TrmE, Ffh, FtsY, EngA and YchF). Investigations aimed at understanding the function of GTPases indicate that a second conserved feature of these proteins is that they elicit their function through interaction with RNA and/or ribosomes. An emerging concept suggests that the 11 universal GTPases are either necessary for ribosome function or transmitting information from the ribosome to downstream targets for the purpose of generating specific cellular responses. Furthermore, it is suggested that progenitor GTPases were early regulators of RNA function and may have existed in precursors of cellular systems driven by catalytic RNA. If this is the case, then a corollary of this hypothesis is that GTPases that do not bind RNA arose at a later time from an RNA-binding progenitor that lost the capability to bind RNA.
Collapse
Affiliation(s)
- C E Caldon
- School of Microbiology and Immunology, The University of New South Wales, Sydney, Australia
| | | | | |
Collapse
|
42
|
Abstract
Perhaps the biggest single task facing a bacterial cell is to divide into daughter cells that contain the normal complement of chromosomes. Recent technical and conceptual breakthroughs in bacterial cell biology, combined with the flood of genome sequence information and the excellent genetic tools in several model systems, have shed new light on the mechanism of prokaryotic cell division. There is good evidence that in most species, a molecular machine, organized by the tubulin-like FtsZ protein, assembles at the site of division and orchestrates the splitting of the cell. The determinants that target the machine to the right place at the right time are beginning to be understood in the model systems, but it is still a mystery how the machine actually generates the constrictive force necessary for cytokinesis. Moreover, although some cell division determinants such as FtsZ are present in a broad spectrum of prokaryotic species, the lack of FtsZ in some species and different profiles of cell division proteins in different families suggests that there are diverse mechanisms for regulating cell division.
Collapse
Affiliation(s)
- W Margolin
- Department of Microbiology and Molecular Genetics, University of Texas-Houston Medical School, 6431 Fannin, Houston, Texas 77030, USA.
| |
Collapse
|