1
|
Pla L, Berdún S, Mir M, Rivas L, Miserere S, Dulay S, Samitier J, Eixarch E, Illa M, Gratacós E. Non-invasive monitoring of pH and oxygen using miniaturized electrochemical sensors in an animal model of acute hypoxia. J Transl Med 2021; 19:53. [PMID: 33541374 PMCID: PMC7863274 DOI: 10.1186/s12967-021-02715-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 01/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background One of the most prevalent causes of fetal hypoxia leading to stillbirth is placental insufficiency. Hemodynamic changes evaluated with Doppler ultrasound have been used as a surrogate marker of fetal hypoxia. However, Doppler evaluation cannot be performed continuously. As a first step, the present work aimed to evaluate the performance of miniaturized electrochemical sensors in the continuous monitoring of oxygen and pH changes in a model of acute hypoxia-acidosis. Methods pH and oxygen electrochemical sensors were evaluated in a ventilatory hypoxia rabbit model. The ventilator hypoxia protocol included 3 differential phases: basal (100% FiO2), the hypoxia-acidosis period (10% FiO2) and recovery (100% FiO2). Sensors were tested in blood tissue (ex vivo sensing) and in muscular tissue (in vivo sensing). pH electrochemical and oxygen sensors were evaluated on the day of insertion (short-term evaluation) and pH electrochemical sensors were also tested after 5 days of insertion (long-term evaluation). pH and oxygen sensing were registered throughout the ventilatory hypoxia protocol (basal, hypoxia-acidosis, and recovery) and were compared with blood gas metabolites results from carotid artery catheterization (obtained with the EPOC blood analyzer). Finally, histological assessment was performed on the sensor insertion site. One-way ANOVA was used for the analysis of the evolution of acid-based metabolites and electrochemical sensor signaling results; a t-test was used for pre- and post-calibration analyses; and chi-square analyses for categorical variables. Results At the short-term evaluation, both the pH and oxygen electrochemical sensors distinguished the basal and hypoxia-acidosis periods in both the in vivo and ex vivo sensing. However, only the ex vivo sensing detected the recovery period. In the long-term evaluation, the pH electrochemical sensor signal seemed to lose sensibility. Finally, histological assessment revealed no signs of alteration on the day of evaluation (short-term), whereas in the long-term evaluation a sub-acute inflammatory reaction adjacent to the implantation site was detected. Conclusions Miniaturized electrochemical sensors represent a new generation of tools for the continuous monitoring of hypoxia-acidosis, which is especially indicated in high-risk pregnancies. Further studies including more tissue-compatible material would be required in order to improve long-term electrochemical sensing.
Collapse
Affiliation(s)
- Laura Pla
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Sergio Berdún
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain
| | - Mònica Mir
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona, Martí I Franquès 1, 08028, Barcelona, Spain
| | - Lourders Rivas
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Sandrine Miserere
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Samuel Dulay
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain
| | - Josep Samitier
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales Y Nanomedicina (CIBER-BBN), Monforte de Lemos 3-5, Pabellón 11, 28029, Madrid, Spain.,Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC) Barcelona Institute of Science and Technology (BIST), 12 Baldiri Reixac 15-21, 08028, Barcelona, Spain.,Department of Electronics and Biomedical Engineering, University of Barcelona, Martí I Franquès 1, 08028, Barcelona, Spain
| | - Elisenda Eixarch
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Centre for Biomedical Research On Rare Diseases (CIBER-ER), Barcelona, Spain
| | - Miriam Illa
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain. .,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain.
| | - Eduard Gratacós
- BCNatal
- Fetal Medicine Research Center (Hospital Clínic and Hospital Sant Joan de Déu), Universitat de Barcelona, Barcelona, Spain.,Institut D'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain.,Centre for Biomedical Research On Rare Diseases (CIBER-ER), Barcelona, Spain.,Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain
| |
Collapse
|
2
|
Interstitial lactate, lactate/pyruvate and glucose in rat muscle before, during and in the recovery from global hypoxia. Acta Vet Scand 2014; 56:72. [PMID: 25391249 PMCID: PMC4234838 DOI: 10.1186/s13028-014-0072-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 10/15/2014] [Indexed: 11/18/2022] Open
Abstract
Background Hypoxia results in an imbalance between oxygen supply and oxygen consumption. This study utilized microdialysis to monitor changes in the energy-related metabolites lactate, pyruvate and glucose in rat muscle before, during and after 30 minutes of transient global hypoxia. Hypoxia was induced in anaesthetised rats by reducing inspired oxygen to 6% O2 in nitrogen. Results Basal values for lactate, the lactate/pyruvate ratio and glucose were 0.72 ± 0.04 mmol/l, 10.03 ± 1.16 and 3.55 ± 0.19 mmol/l (n = 10), respectively. Significant increases in lactate and the lactate/pyruvate ratio were found in the muscle after the induction of hypoxia. Maximum values of 2.26 ± 0.37 mmol/l for lactate were reached during early reperfusion, while the lactate/pyruvate ratio reached maximum values of 35.84 ± 7.81 at the end of hypoxia. Following recovery to ventilation with air, extracellular lactate levels and the lactate/pyruvate ratio returned to control levels within 30–40 minutes. Extracellular glucose levels showed no significant difference between hypoxia and control experiments. Conclusions In our study, the complete post-hypoxic recovery of metabolite levels suggests that metabolic enzymes of the skeletal muscle and their related cellular components may be able to tolerate severe hypoxic periods without prolonged damage. The consumption of glucose in the muscle in relation to its delivery seems to be unaffected.
Collapse
|
3
|
Elsayh KI, Zahran AM, El-Abaseri TB, Mohamed AO, El-Metwally TH. Hypoxia Biomarkers, Oxidative Stress, and Circulating Microparticles in Pediatric Patients With Thalassemia in Upper Egypt. Clin Appl Thromb Hemost 2013; 20:536-45. [DOI: 10.1177/1076029612472552] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the oxidative stress, hypoxia biomarkers, and circulating microparticles (MPs) in β thalassemia major. The study included 56 children with thalassemia and 46 healthy controls. Hypoxia biomarkers, oxidative stress biomarkers, and total plasma fragmented DNA (fDNA) were detected by the standard methods. The MPs were assessed by flow cytometry. Hypoxia and oxidative stress biomarkers, fDNA, and MPs were higher and total antioxidant capacity (TAC) was lower in patients with thalassemia than the controls. In splenectomized patients and those who had complications, vascular endothelial growth factor (VEGF), malondialdehyde, fDNA, endothelial, platelet, and activated platelet MP levels were higher while, TAC was lower than the nonsplenectomized patients. In conclusion, the increased tissue hypoxia, oxidative stress in β thalassemia, and its relationship with DNA damage and MPs release could explain many complications of thalassemia and may have therapeutic implications. The VEGF could serve as an important indicator for adequacy of blood transfusion in thalassemia.
Collapse
Affiliation(s)
- Khalid I. Elsayh
- Pediatric Department, Faculty of Medicine. Assiut University, Egypt
| | - Asmaa M. Zahran
- Oncological Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Egypt
| | - Taghrid B. El-Abaseri
- Medical Biochemistry Department, Faculty of Medicine. Siuz Canal University, Ismailia, Egypt
| | - Amany O. Mohamed
- Medical Biochemistry Department, Faculty of Medicine. Assiut University, Egypt
| | | |
Collapse
|
4
|
Hamed EA, El-Abaseri TB, Mohamed AO, Ahmed AR, El-Metwally TH. Hypoxia and oxidative stress markers in pediatric patients undergoing hemodialysis: cross section study. BMC Nephrol 2012; 13:136. [PMID: 23061474 PMCID: PMC3509393 DOI: 10.1186/1471-2369-13-136] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 10/10/2012] [Indexed: 12/04/2022] Open
Abstract
Background Tissue injury due to hypoxia and/or free radicals is common in a variety of disease processes. This cross-sectional study aimed to investigate effect of chronic kidney diseases (CKD) and hemodialysis (HD) on hypoxia and oxidative stress biomarkers. Methods Forty pediatric patients with CKD on HD and 20 healthy children were recruited. Plasma hypoxia induced factor-1α (HIF-1α), vascular endothelial growth factor (VEGF) were measured by specific ELISA kits while, total antioxidant capacity (TAC), total peroxide (TPX), pyruvate and lactate by enzymatic/chemical colorimetric methods. Oxidative stress index (OSI) and lactate/pyruvate (L/P) ratio were calculated. Results TAC was significantly lower while TPX, OSI and VEGF were higher in patients at before- and after-dialysis session than controls. Lactate and HIF-1α levels were significantly higher at before-dialysis session than controls. Before dialysis, TAC and L/P ratio were lower than after-dialysis. In before-dialysis session, VEGF correlated positively with pyruvate, HIF-1α and OSI correlated positively with TPX, but, negatively with TAC. In after-dialysis session, HIF-1α correlated negatively with TPX and OSI; while, OSI correlated positively with TPX. Conclusions CKD patients succumb considerable tissue hypoxia with oxidative stress. Hemodialysis ameliorated hypoxia but lowered antioxidants as evidenced by decreased levels of HIF-1α and TAC at before- compared to after-dialysis levels.
Collapse
Affiliation(s)
- Enas A Hamed
- Departments of Medical Physiology, Assiut University, Assiut, Egypt.
| | | | | | | | | |
Collapse
|
5
|
Kinetics of adipose tissue microdialysis-derived metabolites in critically ill septic patients: associations with sepsis severity and clinical outcome. Shock 2011; 35:343-8. [PMID: 21102374 DOI: 10.1097/shk.0b013e318206aafa] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Microdialysis (MD) provides the opportunity to monitor tissue metabolic changes. This study aimed to describe the kinetics of MD-derived metabolites during the course of critical sepsis, to assess whether these metabolites are useful in grading sepsis severity, and to investigate their prognostic use. To this end, 54 mechanically ventilated septic patients were prospectively studied, out of which 39 had shock. Upon sepsis onset, an MD catheter was inserted into the subcutaneous adipose tissue of the upper thigh. Dialysate samples were analyzed for glucose, pyruvate, lactate, and glycerol. Sampling was performed six times per day for a maximum of 6 days. The daily mean values of MD measurements were calculated for each patient. Arterial blood was analyzed for glucose, lactate, and glycerol concomitantly with dialysate sampling. Blood glucose and tissue glucose levels along with lactate levels were high during the entire study period. Tissue pyruvate and glycerol were also raised, whereas the lactate-pyruvate ratio was preserved. At study entry, patients with septic shock had higher tissue lactate (3.3 vs. 1.9 mmol/L, P = 0.01) and glycerol (340 vs. 169 μmol/L, P = 0.04) levels compared with those without shock. Nonsurvivors had higher tissue lactate (P = 0.008), glycerol (P = 0.004), and pyruvate (P = 0.002) levels than survivors during the whole observation period. Logistic regression analysis showed that age (odds ratio [OR], 1.075; 95% confidence interval [CI], 1.004-1.150; P = 0.03), Sequential Organ Failure Assessment score on day 1 (OR, 1.550; 95% CI, 1.043-2.312; P = 0.03), and tissue glycerol on day 1 (OR, 1.007; 95% CI, 1.001-1.012; P = 0.01) predicted mortality independently. In conclusion, critical sepsis is characterized by high tissue lactate and pyruvate levels and a preserved lactate-pyruvate ratio, suggesting a nonischemic mechanism for raised blood lactate levels. Septic shock is associated with higher tissue lactate and glycerol levels compared with sepsis without shock. Elevated tissue lactate, pyruvate, and glycerol levels are related to poor clinical outcome, with the latter constituting an independent predictor.
Collapse
|
6
|
Normoxic versus hyperoxic resuscitation in pediatric asphyxial cardiac arrest: effects on oxidative stress. Crit Care Med 2011; 39:335-43. [PMID: 21057313 DOI: 10.1097/ccm.0b013e3181ffda0e] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE To determine the effects of normoxic vs. hyperoxic resuscitation on oxidative stress in a model of pediatric asphyxial cardiac arrest. DESIGN Prospective, interventional study. SETTING University research laboratory. SUBJECTS Postnatal day 16-18 rats (n = 5 per group). INTERVENTIONS Rats underwent asphyxial cardiac arrest for 9 min. Rats were randomized to receive 100% oxygen, room air, or 100% oxygen with polynitroxyl albumin (10 mL·kg⁻¹ intravenously, 0 and 30 min after resuscitation) for 1 hr from the start of cardiopulmonary resuscitation. Shams recovered in 100% oxygen or room air after surgery. MEASUREMENTS AND MAIN RESULTS Physiological variables were recorded at baseline to 1 hr after resuscitation. At 6 hrs after asphyxial cardiac arrest, levels of reduced glutathione and protein-thiols (fluorescent assay), activities of total superoxide dismutase and mitochondrial manganese superoxide dismutase (cytochrome c reduction method), manganese superoxide dismutase expression (Western blot), and lipid peroxidation (4-hydroxynonenal Michael adducts) were evaluated in brain tissue homogenates. Hippocampal 3-nitrotyrosine levels were determined by immunohistochemistry 72 hrs after asphyxial cardiac arrest. Survival did not differ among groups. At 1 hr after resuscitation, Pao2, pH, and mean arterial pressure were decreased in room air vs. 100% oxygen rats (59 ± 3 vs. 465 ± 46 mm Hg, 7.36 ± 0.05 vs. 7.42 ± 0.03, 35 ± 4 vs. 45 ± 5 mm Hg; p < .05). Rats resuscitated with 100% oxygen had decreased hippocampal reduced glutathione levels vs. sham (15.3 ± 0.4 vs. 20.9 ± 4.1 nmol·mg protein⁻¹; p < .01). Hippocampal manganese superoxide dismutase activity was significantly increased in 100% oxygen rats vs. sham (14 ± 2.4 vs. 9.5 ± 1.6 units·mg protein⁻¹, p < .01), with no difference in protein expression of manganese superoxide dismutase. Room air and 100% oxygen plus polynitroxyl albumin groups had hippocampal reduced glutathione and manganese superoxide dismutase activity levels comparable with sham. Protein thiol levels were unchanged across groups. Compared with all other groups, rats receiving 100% oxygen had increased immunopositivity for 3-nitrotyrosine in the hippocampus and increased lipid peroxidation in the cortex. CONCLUSIONS Resuscitation with 100% oxygen leads to increased oxidative stress in a model that mimics pediatric cardiac arrest. This may be prevented by using room air or giving an antioxidant with 100% oxygen resuscitation.
Collapse
|
7
|
Chow AM, Chan KW, Fan SJ, Yang J, Cheung JS, Khong PL, Wu EX. In vivo proton magnetic resonance spectroscopy of hepatic ischemia/reperfusion injury in an experimental model. Acad Radiol 2011; 18:246-52. [PMID: 21111640 DOI: 10.1016/j.acra.2010.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/02/2010] [Accepted: 09/20/2010] [Indexed: 01/03/2023]
Abstract
RATIONALE AND OBJECTIVES Hepatic ischemia/reperfusion injury (IRI) occurs during certain hepatobiliary surgeries, hemorrhagic shock, and veno-occlusive disease. Biochemical changes caused by hepatic IRI lead to hepatocellular remodeling, including cellular regeneration or irreversible apoptosis. This study aims to characterize and monitor the metabolic changes in hepatic IRI using proton magnetic resonance spectroscopy (¹H MRS). MATERIALS AND METHODS Sprague-Dawley rats (n = 8) were scanned with ¹H MRS using 5.0 × 5.0 × 5.0 mm³ voxel over a homogeneous liver parenchyma at 7 Tesla with a respiratory-gated point-resolved spectroscopy sequence at 1 day before, 6 hours, 1 day, and 1 week after 30 minutes total hepatic IRI. Signal integral ratios of choline-containing compounds (CCC), glycogen and glucose complex (Glyu), methylene proton ((-CH₂-)(n)), and methene proton (-CH=CH-) to lipid (integral sum of methyl proton (-CH₃), (-CH₂-)(n) and -CH=CH-) were quantified by areas under peaks longitudinally. RESULTS The CCC-to-lipid and Glyu-to-lipid ratios at 6 hours after IRI were significantly higher than those at 1 day before, 1 day, and 1 week after injury. The (-CH₂-)(n)-to-lipid, and -CH=CH-to-lipid ratios showed no significant differences over different time points. Hepatocellular regeneration was observed at 6 hours after IRI in histology with immunohistochemical technique. CONCLUSIONS Changes in CCC-to-lipid and Glyu-to-lipid ratios likely reflect the hepatocellular remodeling and impaired glucose utilization upon hepatic IRI, respectively. The experimental findings in the current study demonstrated that ¹H MRS is a valuable tool for characterizing either global or regional metabolic changes in liver noninvasively and longitudinally. Such capability has the potential to lead to early diagnosis and detection of impaired liver function.
Collapse
|
8
|
Cibicek N, Zivna H, Vrublova E, Cibicek J, Cermakova E, Palicka V. Gastric submucosal microdialysis in the detection of rat stomach ischemia--a comparison of the 3H2O efflux technique with metabolic monitoring. Physiol Meas 2010; 31:1355-68. [PMID: 20733248 DOI: 10.1088/0967-3334/31/10/005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microdialysis has been utilized for nutritive blood flow measurements, but both the advantages and disadvantages of various approaches have not been evaluated in parallel in the stomach yet. Our aim was to compare the (3)H(2)O efflux technique with biochemical monitoring during temporary celiac artery occlusion in anesthetized rats. Microdialysis probes were implanted in the gastric submucosa and perfused with (3)H(2)O; samples were analyzed for β-activity, glucose, lactate, pyruvate and glycerol. Gastric mucosa and plasma were subjected to morphometry and analysis of myeloperoxidase, total thiols and lactatdehydrogenase. The most dramatic responses to ischemia were observed in lactate/pyruvate and lactate/glucose (%) ratios (6.1-9.3×, p < 0.0001); the changes in (3)H(2)O efflux and glycerol were less pronounced (1.1-1.7×, p < 0.0001 and < 0.01, respectively). (3)H(2)O efflux correlated best with the lactate/glucose ratio and glucose alone (r = 0.693 and -0.681, respectively, p < 0.0001). A correlation was also found between plasma lactatdehydrogenase and relative glycerol release (r = 0.600, p < 0.05). Myeloperoxidase, lactatdehydrogenase and histology score were increased by ischemia/reperfusion (0.06-0.12 nkat g(-1), p < 0.05, 0.26-0.44 nkat g(-1), p < 0.05 and 1.79-2.33, p < 0.05, respectively), macroscopy and plasma thiols remained unchanged. Microdialysis is useful in monitoring gastric ischemia, metabolic monitoring being superior to the (3)H(2)O efflux technique. The results question the efficacy of the utilized model to produce standardized major gastric damage.
Collapse
Affiliation(s)
- Norbert Cibicek
- Institute of Clinical Biochemistry and Diagnostics, Charles University in Prague, Faculty of Medicine in Hradec Králové and University Hospital Hradec Králové, Czech Republic.
| | | | | | | | | | | |
Collapse
|
9
|
Gravante G, Ong SL, Metcalfe MS, Sorge R, Bikhchandani J, Lloyd DM, Dennison AR. Effects of Hypoxia Due to Isovolemic Hemodilution on an Ex Vivo Normothermic Perfused Liver Model. J Surg Res 2010; 160:73-80. [DOI: 10.1016/j.jss.2008.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 09/01/2008] [Accepted: 09/24/2008] [Indexed: 11/27/2022]
|
10
|
Significant [C3a] Increase in Free Flaps After Prolonged Ischemia. J Surg Res 2008; 150:125-30. [PMID: 18694577 DOI: 10.1016/j.jss.2008.02.060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Revised: 12/19/2007] [Accepted: 02/22/2008] [Indexed: 01/22/2023]
|
11
|
Nixon S, Sieg A, Delgado-Charro MB, Guy RH. Reverse iontophoresis of L‐lactate: In vitro and in vivo studies. J Pharm Sci 2007; 96:3457-65. [PMID: 17506512 DOI: 10.1002/jps.20989] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This work investigates the reverse iontophoretic extraction of lactate, a widely used marker of tissue distress in critically ill patients and of sports performance. In vitro experiments were performed to establish the relationship between subdermal lactate levels and lactate iontophoretic extraction fluxes. Subsequently, the iontophoretic extraction of lactate was performed in vivo in healthy volunteers. Lactate was quickly and easily extracted by iontophoresis both in vitro and in vivo. During a short initial phase, iontophoresis extracts the lactate present in the skin reservoir, providing information of relevance, perhaps, for dermatological and cosmetic applications. In a second step, lactate is extracted from the interstitial subdermal fluid allowing local lactate kinetics to be followed in a completely non-invasive way. The simultaneous in vivo extraction of chloride, and its possible role as an internal standard to calibrate lactate reverse iontophoretic fluxes, was also demonstrated. Despite these positive findings, however, considerably more research is necessary to eliminate potential artefacts and to facilitate interpretation of the data.
Collapse
Affiliation(s)
- Susan Nixon
- Novartis Consumer Health SA, Nyon, Switzerland
| | | | | | | |
Collapse
|
12
|
Sommer T. Microdialysis of the bowel: the possibility of monitoring intestinal ischemia. Expert Rev Med Devices 2006; 2:277-86. [PMID: 16288591 DOI: 10.1586/17434440.2.3.277] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Assessment of the intestinal circulation in a clinical setting still presents a significant diagnostic challenge. In patients suspected of having intestinal ischemia pre- or postoperatively, there is no clinically relevant marker which can determine whether the bowel is suffering from lack of oxygen or not. Microdialysis is a microinvasive technique that makes it possible to continuously detect tissue-specific metabolic changes. Recently, it has been demonstrated that intestinal ischemia can be detected and monitored continuously by the use of a microdialysis catheter placed in the proximity of the ischemic bowel. This review summarizes the clinical dilemma of intestinal ischemia and the latest experimental results using the microdialysis technique to detect critical perfusion in the small intestine. The possibility of using microdialysis in a clinical setting is outlined with the perspective of using it as a pre- or postoperative monitoring tool in relevant patients.
Collapse
Affiliation(s)
- Thorbjørn Sommer
- Department of Surgical Gastroenterology, Aalborg University Hospital, Aalborg DK-9000, Denmark.
| |
Collapse
|
13
|
Gilbert E, Tang JM, Ludvig N, Bergold PJ. Elevated lactate suppresses neuronal firing in vivo and inhibits glucose metabolism in hippocampal slice cultures. Brain Res 2006; 1117:213-23. [PMID: 16996036 DOI: 10.1016/j.brainres.2006.07.107] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Revised: 07/27/2006] [Accepted: 07/28/2006] [Indexed: 01/10/2023]
Abstract
Glucose is well accepted as the major fuel for neuronal activity, while it remains controversial whether lactate also supports neural activity. In hippocampal slice cultures, synaptic transmission supported by glucose was reversibly suppressed by lactate. To test whether lactate had a similar inhibitory effect in vivo, lactate was perfused into the hippocampi of unanesthetized rats while recording the firing of nearby pyramidal cells. Lactate perfusion suppressed pyramidal cell firing by 87.5+/-8.3% (n=6). Firing suppression was slow in onset and fully reversible and was associated with increased lactate concentration at the site of the recording electrode. In vivo suppression of neural activity by lactate occurred in the presence of glucose; therefore we tested whether suppression of neural firing was due to lactate interference with glucose metabolism. Competition between glucose and lactate was measured in hippocampal slice cultures. Lactate had no effect on glucose uptake. Lactate suppressed glucose oxidation when applied at an elevated, pathological concentration (10 mM), but not at its physiological concentration (1 mM). Pyruvate (10 mM) also inhibited glucose oxidation but was significantly less effective than lactate. The greater suppressive effect of lactate as compared to pyruvate suggests that alteration of the NAD(+)/NADH ratio underlies the suppression of glucose oxidation by lactate. ATP in slice culture was unchanged in glucose (1 mM), but significantly reduced in lactate (1 mM). ATP in slice culture was significantly increased by combination of glucose (1 mM) and lactate (1 mM). These data suggest that alteration of redox ratio underlies the suppression of neural discharge and glucose metabolism by lactate.
Collapse
Affiliation(s)
- Erin Gilbert
- Program in Neural and Behavioral Science, State University New York-Downstate Medical Center, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
14
|
Lefeuvre S, Marchand S, Lamarche I, Mimoz O, Couet W. Microdialysis study of imipenem distribution in the intraperitoneal fluid of rats with or without experimental peritonitis. Antimicrob Agents Chemother 2006; 50:34-7. [PMID: 16377663 PMCID: PMC1346822 DOI: 10.1128/aac.50.1.34-37.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to extend the use of microdialysis to the investigation of antibiotic distribution into the intraperitoneal fluid of rats with or without peritonitis. Microdialysis probes were inserted into the jugular vein and peritoneal cavity of control rats or rats with intra-abdominal sepsis (n = 8 in each group) induced by cecal ligation and punctures. Imipenem (IPM) probe recoveries were determined in each rat by retrodialysis by drug. IPM was infused intravenously at a dose of 30 mg . kg(-1) over 30 min, microdialysis samples were collected for 120 min, and IPM concentrations were determined by high-performance liquid chromatography. Intraperitoneal infection had no statistically significant effect on IPM clearance (11.9 +/- 2.3 ml.min(-1).kg(-1) in control rats versus 10.9 +/- 2.1 ml.min(-1).kg(-1) in rats with peritonitis) or the volume of distribution (296 +/- 47 ml.kg(-1) in control rats versus 310 +/- 49 ml.kg(-1) in rats with peritonitis). IPM concentration profiles in intraperitoneal fluid and blood were virtually superimposed in control rats, whereas in infected animals, the mean intraperitoneal IPM concentrations were apparently slightly lower than corresponding blood levels. However, the areas under the concentration-versus-time curve estimated in intraperitoneal fluid and blood were not significantly different in both groups, with the corresponding ratios close to unity (1.01 +/- 0.19 and 0.89 +/- 0.28 in control rats and rats with peritonitis, respectively). In conclusion, IPM distribution in intraperitoneal fluid is rapid and complete both in control rats and in rats with peritonitis.
Collapse
Affiliation(s)
- Sandrine Lefeuvre
- EA 3809, Pôle Biologie Santé (PBS), Médecine-Sud, Niveau 1, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | | | | | | | |
Collapse
|
15
|
Kuisma M, Boyd J, Voipio V, Alaspää A, Roine RO, Rosenberg P. Comparison of 30 and the 100% inspired oxygen concentrations during early post-resuscitation period: a randomised controlled pilot study. Resuscitation 2006; 69:199-206. [PMID: 16500018 DOI: 10.1016/j.resuscitation.2005.08.010] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Revised: 08/09/2005] [Accepted: 08/16/2005] [Indexed: 11/25/2022]
Abstract
OBJECTIVES High oxygen concentration in blood may be harmful in the reperfusion phase after cardiopulmonary resuscitation. We compared the effect of 30 and 100% inspired oxygen concentrations on blood oxygenation and the level of serum markers (NSE, S-100) of neuronal injury during the early post-resuscitation period in humans. METHODS Patients resuscitated from witnessed out-of-hospital ventricular fibrillation were randomised after the return of spontaneous circulation (ROSC) to be ventilated either with 30% (group A) or 100% (group B) oxygen for 60 min. Main outcome measures were NSE and S-100 levels at 24 and 48 h after ROSC, the adequacy of oxygenation at 10 and 60 min after ROSC and, in group A, the need to raise FiO(2) to avoid hypoxaemia. Blood oxygen saturation <95% was the threshold for this intervention. RESULTS Thirty-two patients were randomised and 28 (14 in group A and 14 in group B) remained eligible for the final analysis. The mean PaO(2) at 10 min was 21.1 kPa in group A and 49.7 kPa in group B. The corresponding values at 60 min were 14.6 and 46.5 kPa. PaO(2) values did not fall to the hypoxaemic level in group A. In another group FiO(2) had to be raised in five cases (36%) but in two cases it was returned to 0.30 rapidly. The mean NSE at 24 and 48 h was 10.9 and 14.2 microg/l in group A and 13.0 and 18.6 microg/l in group B (ns). S-100 at corresponding time points was 0.21 and 0.23 microg/l in group A and 0.73 and 0.49 microg/l in group B (ns). In the subgroup not treated with therapeutic hypothermia in hospital NSE at 24h was higher in group B (mean 7.6 versus 13.5 microg/l, p=0.0487). CONCLUSIONS Most patients had acceptable arterial oxygenation when ventilated with 30% oxygen during the immediate post-resuscitation period. There was no indication that 30% oxygen with SpO(2) monitoring and oxygen backup to avoid SpO(2)<95% did worse that the group receiving 100% oxygen. The use of 100% oxygen was associated with increased level of NSE at 24h in patients not treated with therapeutic hypothermia. The clinical significance of this finding is unknown and an outcome-powered study is feasible.
Collapse
Affiliation(s)
- M Kuisma
- Helsinki EMS, Helsinki University Central Hospital, P.O. Box 112, FIN-00099 Helsingin Kaupunki, Finland.
| | | | | | | | | | | |
Collapse
|
16
|
Gilbert E, Bergold PJ. Oxidation of 14C-labeled substrates by hippocampal slice cultures. ACTA ACUST UNITED AC 2005; 15:135-41. [PMID: 16137919 DOI: 10.1016/j.brainresprot.2005.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2005] [Revised: 06/20/2005] [Accepted: 06/23/2005] [Indexed: 11/30/2022]
Abstract
In vitro studies of glucose and lactate utilization have been performed in acute hippocampal slices or dissociated neurons and glia. While some studies concluded that lactate and glucose are equivalent substrates to support evoked synaptic activity, others showed decreased synaptic activity in the presence of lactate as compared to glucose. We found diminished neural activity in the presence of lactate in hippocampal slice cultures. We developed a method to examine the oxidation rates of 14C-labeled substrates by hippocampal slice cultures. The rate of 14CO2 production from either 14C-glucose or 14C-lactate remained unchanged for 6 h suggesting that slice cultures are metabolically stable. While the glucose oxidation rate saturated between 2.8 and 10 mM, lactate oxidation rate had not saturated at 10 mM. These data suggest that organotypic slice cultures provide a method to examine elements of cerebral metabolism in vitro.
Collapse
Affiliation(s)
- Erin Gilbert
- Program in Neural and Behavioral Science, State University New York-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, New York 11203, USA
| | | |
Collapse
|