1
|
Giangrande A, Mujunen T, Luigi Cerone G, Botter A, Piitulainen H. Maintained volitional activation of the muscle alters the cortical processing of proprioceptive afference from the ankle joint. Neuroscience 2024; 560:314-325. [PMID: 39357642 DOI: 10.1016/j.neuroscience.2024.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Cortical proprioceptive processing of intermittent, passive movements can be assessed by extracting evoked and induced electroencephalographic (EEG) responses to somatosensory stimuli. Although the existent prior research on somatosensory stimulations, it remains unknown to what extent ongoing volitional muscle activation modulates the proprioceptive cortical processing of passive ankle-joint rotations. Twenty-five healthy volunteers (28.8 ± 7 yr, 14 males) underwent a total of 100 right ankle-joint passive rotations (4° dorsiflexions, 4 ± 0.25 s inter-stimulus interval, 30°/s peak angular velocity) evoked by a movement actuator during passive condition with relaxed ankle and active condition with a constant plantarflexion torque of 5 ± 2.5 Nm. Simultaneously, EEG, electromyographic (EMG) and kinematic signals were collected. Spatiotemporal features of evoked and induced EEG responses to the stimuli were extracted to estimate the modulation of the cortical proprioceptive processing between the active and passive conditions. Proprioceptive stimuli during the active condition elicited robustly ∼26 % larger evoked response and ∼38 % larger beta suppression amplitudes, but ∼42 % weaker beta rebound amplitude over the primary sensorimotor cortex than the passive condition, with no differences in terms of response latencies. These findings indicate that the active volitional motor task during naturalistic proprioceptive stimulation of the ankle joint enhances related cortical activation and reduces related cortical inhibition with respect to the passive condition. Possible factors explaining these results include mechanisms occurring at several levels of the proprioceptive processing from the peripheral muscle (i.e. mechanical, muscle spindle status, etc.) to the different central (i.e. spinal, sub-cortical and cortical) levels.
Collapse
Affiliation(s)
- Alessandra Giangrande
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland; Laboratory of Neuromuscular System and Rehabilitation Engineering, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy.
| | - Toni Mujunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Giacinto Luigi Cerone
- Laboratory of Neuromuscular System and Rehabilitation Engineering, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Alberto Botter
- Laboratory of Neuromuscular System and Rehabilitation Engineering, Department of Electronics and Telecommunications, Politecnico di Torino, Turin, Italy
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
2
|
Sade S, Pickholz H, Melzer I, Shapiro A. Development of an Elliptical Perturbation System that provides unexpected perturbations during elliptical walking (the EPES system). J Neuroeng Rehabil 2023; 20:125. [PMID: 37749627 PMCID: PMC10521489 DOI: 10.1186/s12984-023-01251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/15/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND 'Perturbation-based balance training' (PBBT) is a training method that was developed to improve balance reactive responses to unexpected balance loss. This training method is more effective in reducing fall rates than traditional balance training methods. Many PBBTs are performed during standing or treadmill walking which targeted specifically step reactive responses, we however, aimed to develop and build a mechatronic system that can provide unexpected perturbation during elliptical walking the Elliptical Perturbation System (the EPES system), with the aim of improving specifically the trunk and upper limbs balance reactive control. METHODS This paper describes the development, and building of the EPES system, using a stationary Elliptical Exercise device, which allows training of trunk and upper limbs balance reactive responses in older adults. RESULTS The EPES system provides 3-dimensional small, controlled, and unpredictable sudden perturbations during stationary elliptical walking. We developed software that can identify a trainee's trunk and arms reactive balance responses using a stereo camera. After identifying an effective trunk and arms reactive balance response, the software controls the EPES system motors to return the system to its horizontal baseline position after the perturbation. The system thus provides closed-loop feedback for a person's counterbalancing trunk and arm responses, helping to implement implicit motor learning for the trainee. The pilot results show that the EPES software can successfully identify balance reactive responses among participants who are exposed to a sudden unexpected perturbation during elliptical walking on the EPES system. CONCLUSIONS EPES trigger reactive balance responses involving counter-rotation action of body segments and simultaneously evoke arms, and trunk reactive response, thus reactive training effects should be expected.
Collapse
Affiliation(s)
- Shoval Sade
- Department of Mechanical Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hodaya Pickholz
- Schwartz Movement Analysis & Rehabilitation Laboratory, Physical Therapy Department, Faculty of Health Sciences, Recanati School for Community Health Professions, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, Israel
| | - Itshak Melzer
- Schwartz Movement Analysis & Rehabilitation Laboratory, Physical Therapy Department, Faculty of Health Sciences, Recanati School for Community Health Professions, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva, Israel.
| | - Amir Shapiro
- Department of Mechanical Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
3
|
Kitamura T, Masugi Y, Yamamoto SI, Ogata T, Kawashima N, Nakazawa K. Modulation of corticospinal excitability related to the forearm muscle during robot-assisted stepping in humans. Exp Brain Res 2023; 241:1089-1100. [PMID: 36928923 PMCID: PMC10082104 DOI: 10.1007/s00221-023-06565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/28/2023] [Indexed: 03/18/2023]
Abstract
In recent years, the neural control mechanisms of the arms and legs during human bipedal walking have been clarified. Rhythmic leg stepping leads to suppression of monosynaptic reflex excitability in forearm muscles. However, it is unknown whether and how corticospinal excitability of the forearm muscle is modulated during leg stepping. The purpose of the present study was to investigate the excitability of the corticospinal tract in the forearm muscle during passive and voluntary stepping. To compare the neural effects on corticospinal excitability to those on monosynaptic reflex excitability, the present study also assessed the excitability of the H-reflex in the forearm muscle during both types of stepping. A robotic gait orthosis was used to produce leg stepping movements similar to those of normal walking. Motor evoked potentials (MEPs) and H-reflexes were evoked in the flexor carpi radialis (FCR) muscle during passive and voluntary stepping. The results showed that FCR MEP amplitudes were significantly enhanced during the mid-stance and terminal-swing phases of voluntary stepping, while there was no significant difference between the phases during passive stepping. Conversely, the FCR H-reflex was suppressed during both voluntary and passive stepping, compared to the standing condition. The present results demonstrated that voluntary commands to leg muscles, combined with somatosensory inputs, may facilitate corticospinal excitability in the forearm muscle, and that somatosensory inputs during walking play a major role in monosynaptic reflex suppression in forearm muscle.
Collapse
Affiliation(s)
- Taku Kitamura
- Department of Bio-Science and Engineering, Graduate School of Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan.,Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Robotics Program, Tokyo Metropolitan College of Industrial Technology, Arakawa-ku, Tokyo, Japan
| | - Yohei Masugi
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.,Department of Physical Therapy, School of Health Sciences, Tokyo International University, Kawagoe-shi, Saitama, Japan
| | - Shin-Ichiroh Yamamoto
- Department of Bio-Science and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi, Saitama, Japan
| | - Toru Ogata
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan.,Department of Rehabilitation Medicine, The University of Tokyo Hospital, Bunkyo-ku, Tokyo, Japan
| | - Noritaka Kawashima
- Motor Control Section, Department of Rehabilitation for Movement Functions, Research Institute, National Rehabilitation Center for Persons with Disabilities, Tokorozawa-shi, Saitama, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-Ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
4
|
Phipps AM, Thompson AK. Altered cutaneous reflexes to non-noxious stimuli in the triceps surae of people with chronic incomplete spinal cord injury. J Neurophysiol 2023; 129:513-523. [PMID: 36722742 PMCID: PMC9970649 DOI: 10.1152/jn.00266.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/02/2023] Open
Abstract
Following spinal cord injury (SCI) task-dependent modulation of spinal reflexes are often impaired. To gain insight into the state of the spinal interneuronal pathways following injury, we studied the amplitude modulation of triceps surae cutaneous reflexes to non-noxious stimuli during standing and early-to-mid stance phase of walking in participants with and without chronic incomplete SCI. Reflex eliciting nerve stimulation was delivered to the superficial peroneal, sural, and distal tibial nerves about the ankle. Reflexes were analyzed in the short (SLR, 50-80 ms post stimulation onset) and the medium (MLR, 80-120 ms) latency response windows. Further, the relation between cutaneous and H-reflexes was also examined during standing. In participants without injuries the soleus SLR was modulated task-dependently with nerve specificity, and the soleus and medial gastrocnemius MLRs were modulated task-dependently. In contrast, participants with SCI, no task-dependent or nerve-specific modulation of triceps cutaneous reflexes was observed. The triceps surae cutaneous and H-reflexes were not correlated in either group (r = 0.01-0.37). The presence of cutaneous reflexes but the absence of significant amplitude modulation may suggest impaired function of spinal interneuronal pathways in this population. The lack of correlation between the cutaneous and H-reflexes may suggest that interneurons that are involved in H-reflex modulation and cutaneous reflex modulation do not receive common input, or the impact of the common input is outweighed by other input. Present findings highlight the importance of examining multiple spinal reflexes to better understanding spinal interneuronal pathways that affect motor control in people after SCI.
Collapse
Affiliation(s)
- Alan M Phipps
- Department of Health Science and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| | - Aiko K Thompson
- Department of Health Science and Research, College of Health Professions, Medical University of South Carolina, Charleston, South Carolina, United States
| |
Collapse
|
5
|
Villamar Z, Ludvig D, Perreault EJ. Short-latency stretch reflexes depend on the balance of activity in agonist and antagonist muscles during ballistic elbow movements. J Neurophysiol 2023; 129:7-16. [PMID: 36475940 PMCID: PMC9799151 DOI: 10.1152/jn.00171.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/28/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022] Open
Abstract
The spinal stretch reflex is a fundamental building block of motor function, with a sensitivity that varies continuously during movement and when changing between movement and posture. Many have investigated task-dependent reflex sensitivity, but few have provided simple, quantitative analyses of the relationship between the volitional control and stretch reflex sensitivity throughout tasks that require coordinated activity of several muscles. Here, we develop such an analysis and use it to test the hypothesis that modulation of reflex sensitivity during movement can be explained by the balance of activity within agonist and antagonist muscles better than by activity only in the muscle homonymous with the reflex. Subjects completed hundreds of flexion and extension movements as small, pseudorandom perturbations of elbow angle were applied to obtain estimates of stretch reflex amplitude throughout the movement. A subset of subjects performed a postural control task with muscle activities matched to those during movement. We found that reflex modulation during movement can be described by background activity in antagonist muscles about the elbow much better than by activity only in the muscle homonymous to the reflex (P < 0.001). Agonist muscle activity enhanced reflex sensitivity, whereas antagonist activity suppressed it. Surprisingly, the magnitude of these effects was similar, suggesting a balance of control between agonists and antagonists very different from the dominance of sensitivity to homonymous activity during posture. This balance is due to a large decrease in sensitivity to homonymous muscle activity during movement rather than substantial changes in the influence of antagonistic muscle activity.NEW & NOTEWORTHY This study examined the sensitivity of the stretch reflexes elicited in elbow muscles to the background activity in these same muscles during movement and postural tasks. We found a heightened reciprocal control of reflex sensitivity during movement that was not present during maintenance of posture. These results help explain previous discrepancies in reflex sensitivity measured during movement and posture and provide a simple model for assessing their contributions to muscle activity in both tasks.
Collapse
Affiliation(s)
- Zoe Villamar
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
| | - Daniel Ludvig
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
| | - Eric J Perreault
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
- Shirley Ryan AbilityLab, Chicago, Illinois
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| |
Collapse
|
6
|
Papavasileiou A, Hatzitaki V, Mademli L, Patikas DA. Temporal modulation of H-reflex in young and older people: Acute effects during Achilles tendon vibration while standing. Exp Gerontol 2022; 165:111844. [DOI: 10.1016/j.exger.2022.111844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/04/2022]
|
7
|
Kato T, Kaneko N, Sasaki A, Endo N, Yuasa A, Milosevic M, Watanabe K, Nakazawa K. Corticospinal excitability and somatosensory information processing of the lower limb muscle during upper limb voluntary or electrically induced muscle contractions. Eur J Neurosci 2022; 55:1810-1824. [PMID: 35274383 DOI: 10.1111/ejn.15643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/26/2022]
Abstract
Neural interactions between upper and lower limbs underlie motor coordination in humans. Specifically, upper limb voluntary muscle contraction can facilitate spinal and corticospinal excitability of the lower limb muscles. However, little remains known on the involvement of somatosensory information in arm-leg neural interactions. Here, we investigated effects of voluntary and electrically induced wrist flexion on corticospinal excitability and somatosensory information processing of the lower limbs. In Experiment 1, we measured transcranial magnetic stimulation (TMS)-evoked motor evoked potentials (MEPs) of the resting soleus (SOL) muscle at rest or during voluntary or neuromuscular electrical stimulation (NMES)-induced wrist flexion. The wrist flexion force was matched to 10% of the maximum voluntary contraction (MVC). We found that SOL MEPs were significantly increased during voluntary, but not NMES-induced, wrist flexion, compared to the rest (P < 0.001). In Experiment 2, we examined somatosensory evoked potentials (SEPs) following tibial nerve stimulation under the same conditions. The results showed that SEPs were unchanged during both voluntary and NMES-induced wrist flexion. In Experiment 3, we examined the modulation of SEPs during 10%, 20%, and 30% MVC voluntary wrist flexion. During 30% MVC voluntary wrist flexion, P50-N70 SEP component was significantly attenuated compared to the rest (P = 0.003). Our results propose that the somatosensory information generated by NMES-induced upper limb muscle contractions may have a limited effect on corticospinal excitability and somatosensory information processing of the lower limbs. However, voluntary wrist flexion modulated corticospinal excitability and somatosensory information processing of the lower limbs via motor areas.
Collapse
Affiliation(s)
- Tatsuya Kato
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Naotsugu Kaneko
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Atsushi Sasaki
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Nozomi Endo
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan.,Japan Society for the Promotion of Science, Tokyo, Japan
| | - Akiko Yuasa
- Department of rehabilitation medicine I, Fujita Health University School of Medicine, Aichi, Japan
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, Osaka, Japan
| | - Katsumi Watanabe
- Faculty of Science and Engineering, Waseda University, Tokyo, Japan.,Faculty of Arts, Design & Architecture, University of New South Wales, Sydney, NSW, Australia
| | - Kimitaka Nakazawa
- Graduate School of Arts and Sciences, Department of Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Merlet AN, Harnie J, Frigon A. Inhibition and Facilitation of the Spinal Locomotor Central Pattern Generator and Reflex Circuits by Somatosensory Feedback From the Lumbar and Perineal Regions After Spinal Cord Injury. Front Neurosci 2021; 15:720542. [PMID: 34393721 PMCID: PMC8355562 DOI: 10.3389/fnins.2021.720542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/08/2021] [Indexed: 02/03/2023] Open
Abstract
Somatosensory feedback from peripheral receptors dynamically interacts with networks located in the spinal cord and brain to control mammalian locomotion. Although somatosensory feedback from the limbs plays a major role in regulating locomotor output, those from other regions, such as lumbar and perineal areas also shape locomotor activity. In mammals with a complete spinal cord injury, inputs from the lumbar region powerfully inhibit hindlimb locomotion, while those from the perineal region facilitate it. Our recent work in cats with a complete spinal cord injury shows that they also have opposite effects on cutaneous reflexes from the foot. Lumbar inputs increase the gain of reflexes while those from the perineal region decrease it. The purpose of this review is to discuss how somatosensory feedback from the lumbar and perineal regions modulate the spinal locomotor central pattern generator and reflex circuits after spinal cord injury and the possible mechanisms involved. We also discuss how spinal cord injury can lead to a loss of functional specificity through the abnormal activation of functions by somatosensory feedback, such as the concurrent activation of locomotion and micturition. Lastly, we discuss the potential functions of somatosensory feedback from the lumbar and perineal regions and their potential for promoting motor recovery after spinal cord injury.
Collapse
Affiliation(s)
- Angèle N Merlet
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jonathan Harnie
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alain Frigon
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Centre de Recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
9
|
Suzuki S, Nakajima T, Irie S, Ariyasu R, Ohtsuka H, Komiyama T, Ohki Y. Subcortical Contribution of Corticospinal Transmission during Visually Guided Switching Movements of the Arm. Cereb Cortex 2021; 32:380-396. [PMID: 34231853 DOI: 10.1093/cercor/bhab214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/12/2022] Open
Abstract
In animal experiments, the indirect corticospinal tract (CST) system via cervical interneurons has been shown to mediate motor commands for online adjustment of visuomotor behaviors, such as target-reaching. However, it is still unclear whether the similar CST system functions to perform similar motor behaviors in humans. To clarify this, we investigated changes in motor-evoked potentials (MEPs) in the elbow muscles following transcranial magnetic stimulation, transcranial electrical stimulation, or cervicomedullary stimulation while participants executed target-reaching and switching movements. We found that the MEP, whether elicited cortically or subcortically, was modulated depending on the direction of the switching movements. MEP facilitation began around the onset of the switching activities in an agonist muscle. Furthermore, ulnar nerve-induced MEP facilitation, which could be mediated by presumed cervical interneuronal systems, also increased at the onset of MEP facilitation. In a patient with cortical hemianopsia who showed switching movements in the scotoma, the MEPs were facilitated just before the switching activities. Our findings suggested that CST excitation was flexibly tuned with the switching movement initiation, which could partly take place in the subcortical networks, including the presumed cervical interneuronal systems.
Collapse
Affiliation(s)
- Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan.,School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Shun Irie
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Ryohei Ariyasu
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Hiroyuki Ohtsuka
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan.,Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Di Russo A, Stanev D, Armand S, Ijspeert A. Sensory modulation of gait characteristics in human locomotion: A neuromusculoskeletal modeling study. PLoS Comput Biol 2021; 17:e1008594. [PMID: 34010288 PMCID: PMC8168850 DOI: 10.1371/journal.pcbi.1008594] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 06/01/2021] [Accepted: 04/16/2021] [Indexed: 11/18/2022] Open
Abstract
The central nervous system of humans and other animals modulates spinal cord activity to achieve several locomotion behaviors. Previous neuromechanical models investigated the modulation of human gait changing selected parameters belonging to CPGs (Central Pattern Generators) feedforward oscillatory structures or to feedback reflex circuits. CPG-based models could replicate slow and fast walking by changing only the oscillation’s properties. On the other hand, reflex-based models could achieve different behaviors through optimizations of large dimensional parameter spaces. However, they could not effectively identify individual key reflex parameters responsible for gait characteristics’ modulation. This study investigates which reflex parameters modulate the gait characteristics through neuromechanical simulations. A recently developed reflex-based model is used to perform optimizations with different target behaviors on speed, step length, and step duration to analyze the correlation between reflex parameters and their influence on these gait characteristics. We identified nine key parameters that may affect the target speed ranging from slow to fast walking (0.48 and 1.71 m/s) as well as a large range of step lengths (0.43 and 0.88 m) and step duration (0.51, 0.98 s). The findings show that specific reflexes during stance significantly affect step length regulation, mainly given by positive force feedback of the ankle plantarflexors’ group. On the other hand, stretch reflexes active during swing of iliopsoas and gluteus maximus regulate all the gait characteristics under analysis. Additionally, the results show that the hamstrings’ group’s stretch reflex during the landing phase is responsible for modulating the step length and step duration. Additional validation studies in simulations demonstrated that the modulation of identified reflexes is sufficient to regulate the investigated gait characteristics. Thus, this study provides an overview of possible reflexes involved in modulating speed, step length, and step duration of human gaits. This study investigates the possible reflex parameters that the central nervous system could use to modulate human locomotion. Specifically, we target the modulation of three gait characteristics: speed, step length, and step duration. We utilize human locomotion simulations with a previously developed reflex-based model and perform multiple optimizations ranging targeting low to high values of the three gait characteristics investigated. From the data acquired in optimizations, we investigate which reflex parameter correlates most with the gait characteristics changes. We identified nine key reflex parameters affecting gait modulation, performed validation experiments, and verified that the optimization of key reflex parameters alone could generate modulation in the studied locomotion behaviors. Kinematics, ground reaction forces, and muscle activity obtained in simulations show similarities with past experimental studies on gait modulation. Therefore, the identified parameters could potentially be used by the nervous system to regulate locomotion behaviors in a task-dependent manner. Other circuits not modeled in this study could play a crucial role in gait modulation, and further investigations should be done in the co-optimization of feedforward and feedback circuits.
Collapse
Affiliation(s)
- Andrea Di Russo
- Biorobotics Laboratory, École polytechnique fédérale de Lausanne, School of Engineering, Institute of Bioengineering, Lausanne, Switzerland
- * E-mail:
| | - Dimitar Stanev
- Biorobotics Laboratory, École polytechnique fédérale de Lausanne, School of Engineering, Institute of Bioengineering, Lausanne, Switzerland
| | - Stéphane Armand
- Kinesiology Laboratory, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | - Auke Ijspeert
- Biorobotics Laboratory, École polytechnique fédérale de Lausanne, School of Engineering, Institute of Bioengineering, Lausanne, Switzerland
| |
Collapse
|
11
|
Barss TS, Collins DF, Miller D, Pujari AN. Indirect Vibration of the Upper Limbs Alters Transmission Along Spinal but Not Corticospinal Pathways. Front Hum Neurosci 2021; 15:617669. [PMID: 34079443 PMCID: PMC8165249 DOI: 10.3389/fnhum.2021.617669] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/19/2021] [Indexed: 01/15/2023] Open
Abstract
The use of upper limb vibration (ULV) during exercise and rehabilitation continues to gain popularity as a modality to improve function and performance. Currently, a lack of knowledge of the pathways being altered during ULV limits its effective implementation. Therefore, the aim of this study was to investigate whether indirect ULV modulates transmission along spinal and corticospinal pathways that control the human forearm. All measures were assessed under CONTROL (no vibration) and ULV (30 Hz; 0.4 mm displacement) conditions while participants maintained a small contraction of the right flexor carpi radialis (FCR) muscle. To assess spinal pathways, Hoffmann reflexes (H-reflexes) elicited by stimulation of the median nerve were recorded from FCR with motor response (M-wave) amplitudes matched between conditions. An H-reflex conditioning paradigm was also used to assess changes in presynaptic inhibition by stimulating the superficial radial (SR) nerve (5 pulses at 300Hz) 37 ms prior to median nerve stimulation. Cutaneous reflexes in FCR elicited by stimulation of the SR nerve at the wrist were also recorded. To assess corticospinal pathways, motor evoked potentials (MEPs) elicited by transcranial magnetic stimulation of the contralateral motor cortex were recorded from the right FCR and biceps brachii (BB). ULV significantly reduced H-reflex amplitude by 15.7% for both conditioned and unconditioned reflexes (24.0 ± 15.7 vs. 18.4 ± 11.2% M max ; p < 0.05). Middle latency cutaneous reflexes were also significantly reduced by 20.0% from CONTROL (-1.50 ± 2.1% Mmax) to ULV (-1.73 ± 2.2% Mmax; p < 0.05). There was no significant effect of ULV on MEP amplitude (p > 0.05). Therefore, ULV inhibits cutaneous and H-reflex transmission without influencing corticospinal excitability of the forearm flexors suggesting increased presynaptic inhibition of afferent transmission as a likely mechanism. A general increase in inhibition of spinal pathways with ULV may have important implications for improving rehabilitation for individuals with spasticity (SCI, stroke, MS, etc.).
Collapse
Affiliation(s)
- Trevor S. Barss
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - David F. Collins
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Dylan Miller
- Human Neurophysiology Laboratory, Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, AB, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Amit N. Pujari
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
- Biomedical Engineering Laboratory, School of Engineering, University of Aberdeen, Aberdeen, United Kingdom
| |
Collapse
|
12
|
Thompson AK, Wolpaw JR. H-reflex conditioning during locomotion in people with spinal cord injury. J Physiol 2021; 599:2453-2469. [PMID: 31215646 PMCID: PMC7241089 DOI: 10.1113/jp278173] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 06/17/2019] [Indexed: 12/25/2022] Open
Abstract
KEY POINTS In people or animals with incomplete spinal cord injury (SCI), changing a spinal reflex through an operant conditioning protocol can improve locomotion. All previous studies conditioned the reflex during steady-state maintenance of a specific posture. By contrast, the present study down-conditioned the reflex during the swing-phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The aim was to modify the functioning of the reflex in a specific phase of a dynamic movement. This novel swing-phase conditioning protocol decreased the reflex much faster and farther than did the steady-state protocol in people or animals with or without SCI, and it also improved locomotion. The reflex decrease persisted for at least 6 months after conditioning ended. The results suggest that conditioning reflex function in a specific phase of a dynamic movement offers a new approach to enhancing and/or accelerating recovery after SCI or in other disorders. ABSTRACT In animals and people with incomplete spinal cord injury, appropriate operant conditioning of a spinal reflex can improve impaired locomotion. In all previous conditioning studies, the reflex was conditioned during steady-state maintenance of a stable posture; this steady-state protocol aimed to change the excitability of the targeted reflex pathway; reflex size gradually changed over 8-10 weeks. The present study introduces a new protocol, comprising a dynamic protocol that aims to change the functioning of the reflex pathway during a specific phase of a complex movement. Specifically, we down-conditioned the soleus H-reflex during the swing-phase of locomotion in people with hyperreflexia as a result of chronic incomplete SCI. The swing-phase H-reflex, which is absent or very small in neurologically normal individuals, is abnormally large in this patient population. The results were clear. With swing-phase down-conditioning, the H-reflex decreased much faster and farther than did the H-reflex in all previous animal or human studies with the steady-state protocol, and the decrease persisted for at least 6 months after conditioning ended. The H-reflex decrease was accompanied by improvements in walking speed and in the modulation of locomotor electromyograph activity in proximal and distal muscles of both legs. These results provide new insight into the factors controlling spinal reflex conditioning; they suggest that the conditioning protocols targeting reflex function in a specific movement phase provide a promising new opportunity to enhance functional recovery after SCI or in other disorders.
Collapse
Affiliation(s)
- Aiko K. Thompson
- College of Health ProfessionsMedical University of South CarolinaCharlestonSCUSA
| | - Jonathan R. Wolpaw
- Wadsworth CenterNYS Department of HealthAlbanyNYUSA
- Department of NeurologyStratton VA Medical CenterAlbanyNYUSA
- Department of Biomedical SciencesState University of New YorkAlbanyNYUSA
| |
Collapse
|
13
|
Parhizi B, Barss TS, Mushahwar VK. Simultaneous Cervical and Lumbar Spinal Cord Stimulation Induces Facilitation of Both Spinal and Corticospinal Circuitry in Humans. Front Neurosci 2021; 15:615103. [PMID: 33958979 PMCID: PMC8093452 DOI: 10.3389/fnins.2021.615103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/16/2021] [Indexed: 12/25/2022] Open
Abstract
Coupling between cervical and lumbar spinal networks (cervico-lumbar coupling) is vital during human locomotion. Impaired cervico-lumbar coupling after neural injuries or diseases can be reengaged via simultaneous arm and leg cycling training. Sensorimotor circuitry including cervico-lumbar coupling may further be enhanced by non-invasive modulation of spinal circuity using transcutaneous spinal cord stimulation (tSCS). This project aimed to determine the effect of cervical, lumbar, or combined tSCS on spinal reflex (Hoffmann [H-]) and corticospinal (motor evoked potential [MEP]) excitability during a static or cycling cervico-lumbar coupling task. Fourteen neurologically intact study participants were seated in a recumbent leg cycling system. H-reflex and MEP amplitudes were assessed in the left flexor carpi radialis (FCR) muscle during two tasks (Static and Cycling) and four conditions: (1) No tSCS, (2) tSCS applied to the cervical enlargement (Cervical); (3) tSCS applied to the lumbar enlargement (Lumbar); (4) simultaneous cervical and lumbar tSCS (Combined). While cervical tSCS did not alter FCR H-reflex amplitude relative to No tSCS, lumbar tSCS significantly facilitated H-reflex amplitude by 11.1%, and combined cervical and lumbar tSCS significantly enhanced the facilitation to 19.6%. Neither cervical nor lumbar tSCS altered MEP amplitude alone (+4.9 and 1.8% relative to legs static, No tSCS); however, combined tSCS significantly increased MEP amplitude by 19.7% compared to No tSCS. Leg cycling alone significantly suppressed the FCR H-reflex relative to static, No tSCS by 13.6%, while facilitating MEP amplitude by 18.6%. When combined with leg cycling, tSCS was unable to alter excitability for any condition. This indicates that in neurologically intact individuals where interlimb coordination and corticospinal tract are intact, the effect of leg cycling on cervico-lumbar coupling and corticospinal drive was not impacted significantly with the tSCS intensity used. This study demonstrates, for the first time, that tonic activation of spinal cord networks through multiple sites of tSCS provides a facilitation of both spinal reflex and corticospinal pathways. It remains vital to determine if combined tSCS can influence interlimb coupling after neural injury or disease when cervico-lumbar connectivity is impaired.
Collapse
Affiliation(s)
- Behdad Parhizi
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada
| | - Trevor S Barss
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Vivian K Mushahwar
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada.,Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada.,Division of Physical Medicine and Rehabilitation, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Attenuation of sensory processing in the primary somatosensory cortex during rubber hand illusion. Sci Rep 2021; 11:7329. [PMID: 33795770 PMCID: PMC8016907 DOI: 10.1038/s41598-021-86828-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/22/2021] [Indexed: 12/03/2022] Open
Abstract
The neural representation of the body is easily altered by the integration of multiple sensory signals in the brain. The “rubber hand illusion” (RHI) is one of the most popular experimental paradigms to investigate this phenomenon. During this illusion, a feeling of ownership of the rubber hand is created. Some studies have shown that somatosensory processing in the brain is attenuated when RHI occurs. However, it is unknown where attenuation of somatosensory processing occurs. Here, we show that somatosensory processing is attenuated in the primary somatosensory cortex. We found that the earliest response of somatosensory evoked potentials, which is thought to originate from the primary somatosensory cortex, was attenuated during RHI. Furthermore, this attenuation was observed before the occurrence of the illusion. Our results suggest that attenuation of sensory processing in the primary somatosensory cortex is one of the factors influencing the occurrence of the RHI.
Collapse
|
15
|
Different Gymnastic Balls Affect Postural Balance Rather Than Core-Muscle Activation: A Preliminary Study. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11031337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background: In proprioceptive training, unstable devices produce multidirectional perturbations that must be counterbalanced by the postural control systems and core-muscle activation. We investigated whether different sizes and shapes of three gymnastic balls could affect core-muscle activation and postural balance when performing the same exercise. Methods: Eleven young healthy subjects were assessed on the balls, assuming two body postures (bipedal seated and unipedal seated) and performing a dynamic exercise. Two balls were spherical with different diameters, and one was ovoid. Postural balance and muscle activation were assessed through center of pressure (CoP)-related parameters and surface electromyography. Results: Statistical analysis showed a significant effect of the gymnastic balls (p < 0.001) and the body postures (p < 0.001) for the CoP-related parameters, with the ovoid shape and the bipedal sitting representing the easiest conditions. Core-muscle activation was affected only by body postures, with a higher activation in the unipedal sitting (p < 0.01). In the dynamic exercise, significant differences were only detected for the CoP-related parameters (p < 0.001). Conclusions: The shapes and sizes of the gymnastic balls produced different degrees of destabilization under the same body posture but left the core-muscle activation unaltered. In the dynamic exercise, the conformation of the balls did not represent the main determinant in producing destabilizing effects.
Collapse
|
16
|
Batcir S, Livne Y, Lev Lehman R, Edelman S, Schiller L, Lubovsky O, Shani G, Shapiro A, Melzer I. Development and piloting of a perturbation stationary bicycle robotic system that provides unexpected lateral perturbations during bicycling (the PerStBiRo system). BMC Geriatr 2021; 21:71. [PMID: 33478400 PMCID: PMC7818783 DOI: 10.1186/s12877-021-02015-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 01/10/2021] [Indexed: 11/13/2022] Open
Abstract
Background Balance control, and specifically balance reactive responses that contribute to maintaining balance when balance is lost unexpectedly, is impaired in older people. This leads to an increased fall risk and injurious falls. Improving balance reactive responses is one of the goals in fall-prevention training programs. Perturbation training during standing or treadmill walking that specifically challenges the balance reactive responses has shown very promising results; however, only older people who are able to perform treadmill walking can participate in these training regimes. Thus, we aimed to develop, build, and pilot a mechatronic Perturbation Stationary Bicycle Robotic system (i.e., PerStBiRo) that can challenge balance while sitting on a stationary bicycle, with the aim of improving balance proactive and reactive control. Methods This paper describes the development, and building of the PerStBiRo using stationary bicycles. In addition, we conducted a pilot randomized control trial (RCT) with 13 older people who were allocated to PerStBiRo training (N = 7) versus a control group, riding stationary bicycles (N = 6). The Postural Sway Test, Berg Balance Test (BBS), and 6-min Walk Test were measured before and after 3 months i.e., 20 training sessions. Results The PerStBiRo System provides programmed controlled unannounced lateral balance perturbations during stationary bicycling. Its software is able to identify a trainee’s proactive and reactive balance responses using the Microsoft Kinect™ system. After a perturbation, when identifying a trainee’s trunk and arm reactive balance response, the software controls the motor of the PerStBiRo system to stop the perturbation. The pilot RCT shows that, older people who participated in the PerStBiRo training significantly improved the BBS (54 to 56, p = 0.026) and Postural Sway velocity (20.3 m/s to 18.3 m/s, p = 0.018), while control group subject did not (51.0 vs. 50.5, p = 0.581 and 15 m/s vs. 13.8 m/s, p = 0.893, respectively), 6MWT tended to improve in both groups. Conclusions Our participants were able to perform correct balance proactive and reactive responses, indicating that older people are able to learn balance trunk and arm reactive responses during stationary bicycling. The pilot study shows that these improvements in balance proactive and reactive responses are generalized to performance-based measures of balance (BBS and Postural Sway measures). Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02015-1.
Collapse
Affiliation(s)
- Shani Batcir
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Yaakov Livne
- Department of Mechanical Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Rotem Lev Lehman
- Department of Software and Information Systems Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Shmil Edelman
- Department of Mechanical Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Lavi Schiller
- Department of Mechanical Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel
| | - Omri Lubovsky
- Department of Orthopedic Surgery, Barzilai Medical Center, Ashkelon, Israel
| | - Guy Shani
- Department of Software and Information Systems Engineering, Faculty of Engineering Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Amir Shapiro
- Department of Mechanical Engineering, Faculty of Engineering, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel.
| | - Itshak Melzer
- Department of Physical Therapy, Recanati School for Community Health Professions, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer-Sheva, Israel.
| |
Collapse
|
17
|
Chiou SY, Morris L, Gou W, Alexander E, Gay E. Motor cortical circuits contribute to crossed facilitation of trunk muscles induced by rhythmic arm movement. Sci Rep 2020; 10:17067. [PMID: 33051482 PMCID: PMC7555543 DOI: 10.1038/s41598-020-74005-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Training of one limb improves performance of the contralateral, untrained limb, a phenomenon known as cross transfer. It has been used for rehabilitation interventions, i.e. mirror therapy, in people with neurologic disorders. However, it remains unknown whether training of the upper limb can induce the cross-transfer effect to the trunk muscles. Using transcranial magnetic stimulation over the primary motor cortex (M1) we examined motor evoked potentials (MEPs) in the contralateral erector spinae (ES) muscle before and after 30 min of unilateral arm cycling in healthy volunteers. ES MEPs were increased after the arm cycling. To understand the origin of this facilitatory effect, we examined short-interval intracrotical inhibition (SICI) and cervicomedullary MEPs (CMEPs) in neural populations controlling in the ES muscle. Notably, SICI reduced after the arm cycling, while CMEPs remained the same. Using bilateral transcranial direct current stimulation (tDCS) in conjunction with 20 min of the arm cycling, the amplitude of ES MEPs increased to a similar extent as with 30 min of the arm cycling alone. These findings demonstrate that a single session of unilateral arm cycling induces short-term plasticity in corticospinal projections to the trunk muscle in healthy humans. The changes are likely driven by cortical mechanisms.
Collapse
Affiliation(s)
- Shin-Yi Chiou
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK. .,Centre for Human Brain Health, University of Birmingham, Birmingham, UK.
| | - Laura Morris
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Weidong Gou
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Emma Alexander
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eliot Gay
- School of Sport, Exercise, Rehabilitation Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
18
|
Madsen LP, Kitano K, Koceja DM, Zehr EP, Docherty CL. Modulation of cutaneous reflexes during sidestepping in adult humans. Exp Brain Res 2020; 238:2229-2243. [PMID: 32710371 DOI: 10.1007/s00221-020-05877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/08/2020] [Indexed: 10/23/2022]
Abstract
A common neural control mechanism coordinates various types of rhythmic locomotion performed in the sagittal plane, but it is unclear whether frontal plane movements show similar neural patterning in adult humans. The purpose of this study was to compare cutaneous reflex modulation patterns evoked during sagittal and frontal plane rhythmic movements. Eight healthy, neurologically intact adults (three males, five females) walked and sidestepped on a treadmill at approximately 1 Hz. The sural nerve of the dominant (and lead) limb was stimulated randomly every 3-7 steps at eight phases of each gait cycle. Ipsilateral electromyographic recordings from four lower leg muscles and kinematic data from the ankle were collected continuously throughout both tasks. Data from unstimulated gait cycles were used as control trials to calculate middle-latency reflex responses (80-120 ms) and kinematic changes (140-220 ms) following electrical stimulation. Results show that the cutaneous reflex modulation patterns were similar across both tasks despite significant differences in background EMG activity. However, increased reflex amplitudes were observed during the late swing and early stance phases of sidestepping, which directly altered ankle kinematics. These results suggest that the neural control mechanisms responsible for coordinating sagittal locomotion are flexibly modified to coordinate frontal plane activities even with very different foot landing mechanics.
Collapse
Affiliation(s)
- Leif P Madsen
- Indiana University, 1025 E 7th St, Bloomington, IN, 47405, USA.
| | - Koichi Kitano
- Indiana University, 1025 E 7th St, Bloomington, IN, 47405, USA
| | - David M Koceja
- Indiana University, 1025 E 7th St, Bloomington, IN, 47405, USA
| | - E Paul Zehr
- University of Victoria, 3800 Finnerty Rd, Victoria, BC, V8P 5C2, Canada
| | | |
Collapse
|
19
|
Borzuola R, Labanca L, Macaluso A, Laudani L. Modulation of spinal excitability following neuromuscular electrical stimulation superimposed to voluntary contraction. Eur J Appl Physiol 2020; 120:2105-2113. [PMID: 32676751 PMCID: PMC7419370 DOI: 10.1007/s00421-020-04430-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 07/03/2020] [Indexed: 02/03/2023]
Abstract
Purpose Neuromuscular electrical stimulation (NMES) superimposed on voluntary muscle contraction has been recently shown as an innovative training modality within sport and rehabilitation, but its effects on the neuromuscular system are still unclear. The aim of this study was to investigate acute responses in spinal excitability, as measured by the Hoffmann (H) reflex, and in maximal voluntary contraction (MVIC) following NMES superimposed to voluntary isometric contractions (NMES + ISO) compared to passive NMES only and to voluntary isometric contractions only (ISO). Method Fifteen young adults were required to maintain an ankle plantar-flexor torque of 20% MVC for 20 repetitions during each experimental condition (NMES + ISO, NMES and ISO). Surface electromyography was used to record peak-to-peak H-reflex and motor waves following percutaneous stimulation of the posterior tibial nerve in the dominant limb. An isokinetic dynamometer was used to assess maximal voluntary contraction output of the ankle plantar flexor muscles. Results H-reflex amplitude was increased by 4.5% after the NMES + ISO condition (p < 0.05), while passive NMES and ISO conditions showed a decrease by 7.8% (p < 0.05) and no change in reflex responses, respectively. There was no change in amplitude of maximal motor wave and in MVIC torque during each experimental condition. Conclusion The reported facilitation of spinal excitability following NMES + ISO could be due to a combination of greater motor neuronal and corticospinal excitability, thus suggesting that NMES superimposed onto isometric voluntary contractions may provide a more effective neuromuscular stimulus and, hence, training modality compared to NMES alone.
Collapse
Affiliation(s)
- Riccardo Borzuola
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.,Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK
| | - Luciana Labanca
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Luca Laudani
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, UK.
| |
Collapse
|
20
|
Irie S, Nakajima T, Suzuki S, Ariyasu R, Komiyama T, Ohki Y. Motor imagery enhances corticospinal transmission mediated by cervical premotoneurons in humans. J Neurophysiol 2020; 124:86-101. [DOI: 10.1152/jn.00574.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Imaging movement has positive effects on the reacquisition of motor functions after damage to the central nervous system. This study shows that motor imagery facilitates oligosynaptic corticospinal excitation that is mediated via cervical premotoneurons, which may be important for motor recovery in monkeys and humans. Current findings highlight how this imagery might be a beneficial tool for movement disorders through effects on premotoneuron circuitry.
Collapse
Affiliation(s)
- Shun Irie
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Shinya Suzuki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
- Department of Physical Therapy, School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Tobetsu-cho, Hokkaido, Japan
| | - Ryohei Ariyasu
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| | - Tomoyoshi Komiyama
- Division of Health and Sports Education, The United Graduate School of Education, Tokyo Gakugei University, Koganei City, Tokyo, Japan
- Division of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba City, Chiba, Japan
| | - Yukari Ohki
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka City, Tokyo, Japan
| |
Collapse
|
21
|
Pearcey GEP, Sun Y, Zehr EP. Plantarflexion force is amplified with sensory stimulation during ramping submaximal isometric contractions. J Neurophysiol 2020; 123:1427-1438. [PMID: 32159422 DOI: 10.1152/jn.00650.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Stimulating cutaneous nerves, causing tactile sensations, reduces the perceived heaviness of an object, suggesting that either descending commands are facilitated or the perception of effort is reduced when tactile sensation is enhanced. Sensory stimulation can also mitigate decrements in motor output and spinal cord excitability that occur with fatigue. The effects of sensory stimulation applied with coincident timing of voluntary force output, however, are yet to be examined. Therefore, the purpose of this study was to examine effects of sensory enhancement to nerves innervating opposed skin areas of the foot (top or bottom) on force production during voluntary plantarflexion or dorsiflexion contractions. Stimulation trains were applied for 2 s at either a uniform 150 Hz or a modulated frequency that increased linearly from 50 to 150 Hz and were delivered at the initiation of the contraction. Participants were instructed to perform a ramp contraction [~10% maximal voluntary contraction (MVC)/s] to ~20% MVC and then to hold ~20% MVC for 2 s while receiving real-time visual feedback. Cutaneous reflexes were evoked 75 ms after initiating the hold (75 ms after sensory enhancement ended). Force output was greater for all sensory-enhanced conditions compared with control during plantarflexion; however, force output was not amplified during dorsiflexion. Cutaneous reflexes evoked after sensory enhancement were unaltered. These results indicate that sensory enhancement can amplify plantarflexion but not dorsiflexion, likely as a result of differences in neuroanatomical projections to the flexor and extensor motor pools. Further work is required to elucidate the mechanisms of enhanced force during cutaneous stimulation.NEW & NOTEWORTHY The efficacy of behaviorally timed sensory stimulation to enhance sensations and amplify force output has not been examined. Here we show cutaneous nerve sensory stimulation can amplify plantarflexion force output. This amplification in force occurs irrespective of whether the cutaneous field that is stimulated resides on the surface that is producing the force or the opposing surface. This information may provide insights for the development of technologies to improve performance and/or rehabilitation training.
Collapse
Affiliation(s)
- Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, British Columbia, Canada.,Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada.,Zanshin Consulting, Inc., Victoria, British Columbia, Canada
| |
Collapse
|
22
|
Barss TS, Klarner T, Sun Y, Inouye K, Zehr EP. Effects of enhanced cutaneous sensory input on interlimb strength transfer of the wrist extensors. Physiol Rep 2020; 8:e14406. [PMID: 32222042 PMCID: PMC7101283 DOI: 10.14814/phy2.14406] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/04/2020] [Indexed: 02/06/2023] Open
Abstract
The relative contribution of cutaneous sensory feedback to interlimb strength transfer remains unexplored. Therefore, this study aimed to determine the relative contribution of cutaneous afferent pathways as a substrate for cross-education by directly assessing how "enhanced" cutaneous stimulation alters ipsilateral and contralateral strength gains in the forearm. Twenty-seven right-handed participants were randomly assigned to 1-of-3 training groups and completed 6 sets of 8 repetitions 3x/week for 5 weeks. Voluntary training (TRAIN) included unilateral maximal voluntary contractions (MVCs) of the wrist extensors. Cutaneous stimulation (STIM), a sham training condition, included cutaneous stimulation (2x radiating threshold; 3sec; 50Hz) of the superficial radial (SR) nerve at the wrist. TRAIN + STIM training included MVCs of the wrist extensors with simultaneous SR stimulation. Two pre- and one posttraining session assessed the relative increase in force output during MVCs of isometric wrist extension, wrist flexion, and handgrip. Maximal voluntary muscle activation was simultaneously recorded from the flexor and extensor carpi radialis. Cutaneous reflex pathways were evaluated through stimulation of the SR nerve during graded ipsilateral contractions. Results indicate TRAIN increased force output compared with STIM in both trained (85.0 ± 6.2 Nm vs. 59.8 ± 6.1 Nm) and untrained wrist extensors (73.9 ± 3.5 Nm vs. 58.8 Nm). Providing 'enhanced' sensory input during training (TRAIN + STIM) also led to increases in strength in the trained limb compared with STIM (79.3 ± 6.3 Nm vs. 59.8 ± 6.1 Nm). However, in the untrained limb no difference occurred between TRAIN + STIM and STIM (63.0 ± 3.7 Nm vs. 58.8 Nm). This suggests when 'enhanced' input was provided independent of timing with active muscle contraction, interlimb strength transfer to the untrained wrist extensors was blocked. This indicates that the sensory volley may have interfered with the integration of appropriate sensorimotor cues required to facilitate an interlimb transfer, highlighting the importance of appropriately timed cutaneous feedback.
Collapse
Affiliation(s)
- Trevor S. Barss
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
| | - Taryn Klarner
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
- School of KinesiologyLakehead UniversityThunder BayONUSA
| | - Yao Sun
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
| | - Kristy Inouye
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
| | - E. Paul Zehr
- Rehabilitation Neuroscience LaboratoryUniversity of VictoriaVictoriaBCCanada
- Human Discovery ScienceInternational Collaboration on Repair Discoveries (ICORD)VancouverBCCanada
- Centre for Biomedical ResearchUniversity of VictoriaVictoriaBCCanada
- Division of Medical SciencesUniversity of VictoriaBCCanada
- Zanshin Consulting Inc.VictoriaBCCanada
| |
Collapse
|
23
|
Dutt-Mazumder A, Segal RL, Thompson AK. Effect of Ankle Angles on the Soleus H-Reflex Excitability During Standing. Motor Control 2020; 24:189-203. [PMID: 31899887 PMCID: PMC7329593 DOI: 10.1123/mc.2018-0118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/24/2019] [Accepted: 10/29/2019] [Indexed: 11/18/2022]
Abstract
This study investigated effects of ankle joint angle on the Hoffman's reflex (H-reflex) excitability during loaded (weight borne with both legs) and unloaded (full body weight borne with the contralateral leg) standing in people without neurological injuries. Soleus H-reflex/M-wave recruitment curves were examined during upright standing on three different slopes that imposed plantar flexion (-15°), dorsiflexion (+15°), and neutral (0°) angles at the ankle, with the test leg loaded and unloaded. With the leg loaded and unloaded, maximum H-reflex/maximum M-wave ratio of -15° was significantly larger than those of 0° and +15° conditions. The maximum H-reflex/maximum M-wave ratios were 51%, 43%, and 41% with loaded and 56%, 46%, and 44% with unloaded for -15°, 0°, and +15° slope conditions, respectively. Thus, limb loading/unloading had limited impact on the extent of influence that ankle angles exert on the H-reflex excitability. This suggests that task-dependent central nervous system control of reflex excitability may regulate the influence of sensory input on the spinal reflex during standing.
Collapse
|
24
|
Noble S, Pearcey GEP, Quartly C, Zehr EP. Robot controlled, continuous passive movement of the ankle reduces spinal cord excitability in participants with spasticity: a pilot study. Exp Brain Res 2019; 237:3207-3220. [PMID: 31599345 PMCID: PMC6882765 DOI: 10.1007/s00221-019-05662-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023]
Abstract
Spasticity of the ankle reduces quality of life by impeding walking and other activities of daily living. Robot-driven continuous passive movement (CPM) is a strategy for lower limb spasticity management but effects on spasticity, walking ability and spinal cord excitability (SCE) are unknown. The objectives of this experiment were to evaluate (1) acute changes in SCE induced by 30 min of CPM at the ankle joint, in individuals without neurological impairment and those with lower limb spasticity; and, (2) the effects of 6 weeks of CPM training on SCE, spasticity and walking ability in those with lower limb spasticity. SCE was assessed using soleus Hoffmann (H-) reflexes, collected prior to and immediately after CPM for acute assessments, whereas a multiple baseline repeated measures design assessed changes following 18 CPM sessions. Spasticity and walking ability were assessed using the Modified Ashworth Scale, the 10 m Walk test, and the Timed Up and Go test. Twenty-one neurologically intact and nine participants with spasticity (various neurological conditions) were recruited. In the neurologically intact group, CPM caused bi-directional modulation of H-reflexes creating 'facilitation' and 'suppression' groups. In contrast, amongst participants with spasticity, acute CPM facilitated H-reflexes. After CPM training, H-reflex excitability on both the more-affected and less-affected sides was reduced; on the more affected side H@Thres, H@50 and H@100 all significantly decreased following CPM training by 96.5 ± 7.7%, 90.9 ± 9.2%, and 62.9 ± 21.1%, respectively. After training there were modest improvements in walking and clinical measures of spasticity for some participants. We conclude that CPM of the ankle can significantly alter SCE. The use of CPM in those with spasticity can provide a temporary period of improved walking, but efficacy of treatment remains unknown.
Collapse
Affiliation(s)
- Steven Noble
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Caroline Quartly
- Collaborative Spasticity Program, Queen Alexandra Hospital, Vancouver Island Health Authority, Victoria, BC, Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, PO Box 3010 STN CSC, Victoria, BC, V8W 3P1, Canada. .,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada. .,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada. .,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada. .,Zanshin Consulting Inc., Victoria, BC, Canada.
| |
Collapse
|
25
|
Kato T, Sasaki A, Yokoyama H, Milosevic M, Nakazawa K. Effects of neuromuscular electrical stimulation and voluntary commands on the spinal reflex excitability of remote limb muscles. Exp Brain Res 2019; 237:3195-3205. [PMID: 31602493 PMCID: PMC6882749 DOI: 10.1007/s00221-019-05660-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 09/21/2019] [Indexed: 12/25/2022]
Abstract
It is well known that contracting the upper limbs can affect spinal reflexes of the lower limb muscle, via intraneuronal networks within the central nervous system. However, it remains unknown whether neuromuscular electrical stimulation (NMES), which can generate muscle contractions without central commands from the cortex, can also play a role in such inter-limb facilitation. Therefore, the objective of this study was to compare the effects of unilateral upper limb contractions using NMES and voluntary unilateral upper limb contractions on the inter-limb spinal reflex facilitation in the lower limb muscles. Spinal reflex excitability was assessed using transcutaneous spinal cord stimulation (tSCS) to elicit responses bilaterally in multiple lower limb muscles, including ankle and thigh muscles. Five interventions were applied on the right wrist flexors for 70 s: (1) sensory-level NMES; (2) motor-level NMES; (3) voluntary contraction; (4) voluntary contraction and sensory-level NMES; (5) voluntary contraction and motor-level NMES. Results showed that spinal reflex excitability of ankle muscles was facilitated bilaterally during voluntary contraction of the upper limb unilaterally and that voluntary contraction with motor-level NMES had similar effects as just contracting voluntarily. Meanwhile, motor-level NMES facilitated contralateral thigh muscles, and sensory-level NMES had no effect. Overall, our results suggest that inter-limb facilitation effect of spinal reflex excitability in lower limb muscles depends, to a larger extent, on the presence of the central commands from the cortex during voluntary contractions. However, peripheral input generated by muscle contractions using NMES might have effects on the spinal reflex excitability of inter-limb muscles via spinal intraneuronal networks.
Collapse
Affiliation(s)
- Tatsuya Kato
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Atsushi Sasaki
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.,Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Hikaru Yokoyama
- Japan Society for the Promotion of Science, 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, 102-0083, Japan.,Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei-shi, Tokyo, 184-8588, Japan.,Rehabilitation Engineering Laboratory, Lyndhurst Centre, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, M4G 3V9, Canada
| | - Matija Milosevic
- Graduate School of Engineering Science, Department of Mechanical Science and Bioengineering, Osaka University, 1-3 Machikaneyama, Toyonaka, 560-8531, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan.
| |
Collapse
|
26
|
Exploiting cervicolumbar connections enhances short-term spinal cord plasticity induced by rhythmic movement. Exp Brain Res 2019; 237:2319-2329. [PMID: 31286172 DOI: 10.1007/s00221-019-05598-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/04/2019] [Indexed: 01/08/2023]
Abstract
Arm cycling causes suppression of soleus (SOL) Hoffmann (H-) reflex that outlasts the activity period. Arm cycling presumably activates propriospinal networks that modulate Ia presynaptic inhibition. Interlimb pathways are thought to relate to the control of quadrupedal locomotion, allowing for smooth, coordinated movement of the arms and legs. We examined whether the number of active limb pairs affects the amount and duration of activity-dependent plasticity of the SOL H-reflex. On separate days, 14 participants completed 4 randomly ordered 30 min experimental sessions: (1) quiet sitting (CTRL); (2) arm cycling (ARM); (3) leg cycling (LEG); and (4) arm and leg cycling (A&L) on an ergometer. SOL H-reflex and M-wave were evoked via electrical stimulation of the tibial nerve. M-wave and H-reflex recruitment curves were recorded, while the participants sat quietly prior to, 10 and 20 min into, immediately after, and at 2.5, 5, 7.5, 10, 15, 20, 25, and 30 min after each experimental session. Normalized maximal H-reflexes were unchanged in CTRL, but were suppressed by > 30% during the ARM, LEG, and A&L. H-reflex suppression outlasted activity duration for ARM (≤ 2.5 mins), LEG (≤ 5 mins), and A&L (≤ 30 mins). The duration of reflex suppression after A&L was greater than the algebraic summation of ARM and LEG. This non-linear summation suggests that using the arms and legs simultaneously-as in typical locomotor synergies-amplifies networks responsible for the short-term plasticity of lumbar spinal cord excitability. Enhanced activity of spinal networks may have important implications for the implementation of locomotor training for targeted rehabilitation.
Collapse
|
27
|
Zhou R, Parhizi B, Assh J, Alvarado L, Ogilvie R, Chong SL, Mushahwar VK. Effect of cervicolumbar coupling on spinal reflexes during cycling after incomplete spinal cord injury. J Neurophysiol 2018; 120:3172-3186. [DOI: 10.1152/jn.00509.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal networks in the cervical and lumbar cord are actively coupled during locomotion to coordinate arm and leg activity. The goals of this project were to investigate the intersegmental cervicolumbar connectivity during cycling after incomplete spinal cord injury (iSCI) and to assess the effect of rehabilitation training on improving reflex modulation mediated by cervicolumbar pathways. Two studies were conducted. In the first, 22 neurologically intact (NI) people and 10 people with chronic iSCI were recruited. The change in H-reflex amplitude in flexor carpi radialis (FCR) during leg cycling and H-reflex amplitude in soleus (SOL) during arm cycling were investigated. In the second study, two groups of participants with chronic iSCI underwent 12 wk of cycling training: one performed combined arm and leg cycling (A&L) and the other legs only cycling (Leg). The effect of training paradigm on the amplitude of the SOL H-reflex was assessed. Significant reduction in the amplitude of both FCR and SOL H-reflexes during dynamic cycling of the opposite limbs was found in NI participants but not in participants with iSCI. Nonetheless, there was a significant reduction in the SOL H-reflex during dynamic arm cycling in iSCI participants after training. Substantial improvements in SOL H-reflex properties were found in the A&L group after training. The results demonstrate that cervicolumbar modulation during rhythmic movements is disrupted in people with chronic iSCI; however, this modulation is restored after cycling training. Furthermore, involvement of the arms simultaneously with the legs during training may better regulate the leg spinal reflexes.NEW & NOTEWORTHY This work systematically demonstrates the disruptive effect of incomplete spinal cord injury on cervicolumbar coupling during rhythmic locomotor movements. It also shows that the impaired cervicolumbar coupling could be significantly restored after cycling training. Actively engaging the arms in rehabilitation paradigms for the improvement of walking substantially regulates the excitability of the lumbar spinal networks. The resulting regulation may be better than that obtained by interventions that focus on training of the legs only.
Collapse
Affiliation(s)
- R. Zhou
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - B. Parhizi
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - J. Assh
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - L. Alvarado
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - R. Ogilvie
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - S. L. Chong
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| | - V. K. Mushahwar
- Neuroscience and Mental Health Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
28
|
Golkar MA, Jalaleddini K, Kearney RE. EMG-Torque Dynamics Change With Contraction Bandwidth. IEEE Trans Neural Syst Rehabil Eng 2018; 26:807-816. [PMID: 29641385 DOI: 10.1109/tnsre.2018.2805472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
An accurate model for ElectroMyoGram (EMG)-torque dynamics has many uses. One of its applications which has gained high attention among researchers is its use, in estimating the muscle contraction level for the efficient control of prosthesis. In this paper, the dynamic relationship between the surface EMG and torque during isometric contractions at the human ankle was studied using system identification techniques. Subjects voluntarily modulated their ankle torque in dorsiflexion direction, by activating their tibialis anterior muscle, while tracking a pseudo-random binary sequence in a torque matching task. The effects of contraction bandwidth, described by torque spectrum, on EMG-torque dynamics were evaluated by varying the visual command switching time. Nonparametric impulse response functions (IRF) were estimated between the processed surface EMG and torque. It was demonstrated that: 1) at low contraction bandwidths, the identified IRFs had unphysiological anticipatory (i.e., non-causal) components, whose amplitude decreased as the contraction bandwidth increased. We hypothesized that this non-causal behavior arose, because the EMG input contained a component due to feedback from the output torque, i.e., it was recorded from within a closed-loop. Vision was not the feedback source since the non-causal behavior persisted when visual feedback was removed. Repeating the identification using a nonparametric closed-loop identification algorithm yielded causal IRFs at all bandwidths, supporting this hypothesis. 2) EMG-torque dynamics became faster and the bandwidth of system increased as contraction modulation rate increased. Thus, accurate prediction of torque from EMG signals must take into account the contraction bandwidth sensitivity of this system.
Collapse
|
29
|
Garland SJ, Gallina A, Pollock CL, Ivanova TD. Effect of standing posture on inhibitory postsynaptic potentials in gastrocnemius motoneurons. J Neurophysiol 2018; 120:263-271. [PMID: 29617216 DOI: 10.1152/jn.00555.2017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This study examined the task dependence of sensory inputs on motoneuron excitability by comparing the inhibitory postsynaptic potential (IPSP) evoked by stimulation of the sural nerve between a standing postural task (Free Standing) and a comparable voluntary isometric contraction performed in a supine position (Lying Supine). We hypothesized that there would be a smaller IPSP in standing than in the supine position, based on the task dependence of the ankle plantarflexor activity on the standing task. Ten healthy participants participated in a total of 15 experiments. Single motor unit (MU) firings were recorded with both intramuscular fine-wire electrodes and high-density surface electromyography. Participants maintained the MU discharge at 6-8 Hz in Free Standing or Lying Supine while the right sural nerve was stimulated at random intervals between 1 and 3 s. To evaluate the reflex response, the firing times of the discriminated MUs were used to construct peristimulus time histograms and peristimulus frequencygrams. The sural nerve stimulation resulted in weaker inhibition in Free Standing than in Lying Supine. This finding is discussed in relation to the putative activation of persistent inward currents in standing posture and the task-dependent advantages of overriding inhibitory synaptic inputs to the plantarflexors to maintain the standing posture. NEW & NOTEWORTHY The task-dependent modulation of sensory inputs on motoneuron excitability in standing is not well understood. Evoking an inhibitory postsynaptic potential (IPSP) resulted in a smaller IPSP in gastrocnemius motoneurons in standing than in the supine position. Mildly painful sensory inputs produced weaker motoneuron inhibition in standing, suggesting an imperative to maintain ankle plantarflexion activity for the task of upright stance.
Collapse
Affiliation(s)
- S J Garland
- Department of Physical Therapy, University of British Columbia , Vancouver, British Columbia , Canada
| | - A Gallina
- Graduate Program in Rehabilitation Sciences, University of British Columbia , Vancouver, British Columbia , Canada
| | - C L Pollock
- Graduate Program in Rehabilitation Sciences, University of British Columbia , Vancouver, British Columbia , Canada
| | - T D Ivanova
- Department of Physical Therapy, University of British Columbia , Vancouver, British Columbia , Canada
| |
Collapse
|
30
|
Klarner T, Zehr EP. Sherlock Holmes and the curious case of the human locomotor central pattern generator. J Neurophysiol 2018. [PMID: 29537920 DOI: 10.1152/jn.00554.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Evidence first described in reduced animal models over 100 years ago led to deductions about the control of locomotion through spinal locomotor central pattern-generating (CPG) networks. These discoveries in nature were contemporaneous with another form of deductive reasoning found in popular culture, that of Arthur Conan Doyle's detective, Sherlock Holmes. Because the invasive methods used in reduced nonhuman animal preparations are not amenable to study in humans, we are left instead with deducing from other measures and observations. Using the deductive reasoning approach of Sherlock Holmes as a metaphor for framing research into human CPGs, we speculate and weigh the evidence that should be observable in humans based on knowledge from other species. This review summarizes indirect inference to assess "observable evidence" of pattern-generating activity that leads to the logical deduction of CPG contributions to arm and leg activity during locomotion in humans. The question of where a CPG may be housed in the human nervous system remains incompletely resolved at this time. Ongoing understanding, elaboration, and application of functioning locomotor CPGs in humans is important for gait rehabilitation strategies in those with neurological injuries.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria, British Columbia, Canada
| |
Collapse
|
31
|
Piazza S, Torricelli D, Gómez-Soriano J, Serrano-Muñoz D, Ávila-Martín G, Galán-Arriero I, Pons JL, Taylor J. Assessing sensorimotor excitability after spinal cord injury: a reflex testing method based on cycling with afferent stimulation. Med Biol Eng Comput 2018; 56:1425-1434. [PMID: 29340899 DOI: 10.1007/s11517-018-1787-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/01/2018] [Indexed: 10/18/2022]
Abstract
Several studies have examined spinal reflex modulation during leg cycling in healthy and spinal cord injury (SCI) subjects. However, the effect of cutaneous plantar afferent input on spinal excitability during leg cycling after SCI has not been characterised. The aim of the study was to test the feasibility of using controlled leg cycling in combination with plantar cutaneous electrical stimulation (ES) cycling to assess lower limb spinal sensorimotor excitability in subjects with motor complete or incomplete SCI. Spinal sensorimotor excitability was estimated by measuring cutaneomuscular-conditioned soleus H-reflex activity. Reflex excitability was tested before and after a 10-min ES cycling session in 13 non-injured subjects, 6 subjects with motor incomplete SCI (iSCI) who had moderately impaired gait function, 4 subjects with motor iSCI who had severely impaired gait function, and 5 subjects with motor complete SCI (cSCI). No modulation of soleus H-reflex with plantar cutaneous stimuli was observed after either iSCI or cSCI when compared to non-injured subjects. However, after ES cycling, reflex excitability significantly increased in subjects with iSCI and moderately impaired gait function. ES cycling facilitated spinal sensorimotor excitability only in subjects with motor iSCI with residual gait function. Increased spinal excitability induced with a combination of exercise and afferent stimulation could be adopted with diagnostic and prognostic purposes to reveal the activity-based neurorehabilitation profile of individual subjects with motor iSCI. TRIAL REGISTRATION ISRCTN 26172500 ; retrospectively registered on 15 July 2016 Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Stefano Piazza
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain
| | - Julio Gómez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain. .,Toledo Physiotherapy Research Group (GIFTO), Nursing and Physiotherapy School, University of Castilla-La Mancha, 45072, Toledo, Spain.
| | - Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - Gerardo Ávila-Martín
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - Iriana Galán-Arriero
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain
| | - José Luis Pons
- Neural Rehabilitation Group, Cajal Institute, CSIC, 28002, Madrid, Spain.,Tecnológico de Monterrey, Monterrey, Mexico
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, 45072, Toledo, Spain.,Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Aylesbury, HP21 8AL, UK.,Harris Manchester College, University of Oxford, Oxford, OX1 3TD, UK
| |
Collapse
|
32
|
Pearcey GEP, Noble SA, Munro B, Zehr EP. Spinal Cord Excitability and Sprint Performance Are Enhanced by Sensory Stimulation During Cycling. Front Hum Neurosci 2017; 11:612. [PMID: 29326570 PMCID: PMC5741677 DOI: 10.3389/fnhum.2017.00612] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/04/2017] [Indexed: 12/18/2022] Open
Abstract
Spinal cord excitability, as assessed by modulation of Hoffmann (H-) reflexes, is reduced with fatiguing isometric contractions. Furthermore, spinal cord excitability is reduced during non-fatiguing arm and leg cycling. Presynaptic inhibition of Ia terminals is believed to contribute to this suppression of spinal cord excitability. Electrical stimulation to cutaneous nerves reduces Ia presynaptic inhibition, which facilitates spinal cord excitability, and this facilitation is present during arm cycling. Although it has been suggested that reducing presynaptic inhibition may prolong fatiguing contractions, it is unknown whether sensory stimulation can alter the effects of fatiguing exercise on performance or spinal cord excitability. Thus, the aim of this experiment was to determine if sensory stimulation can interfere with fatigue-related suppression of spinal cord excitability, and alter fatigue rates during cycling sprints. Thirteen participants randomly performed three experimental sessions that included: unloaded cycling with sensory stimulation (CONTROL + STIM), sprints with sensory stimulation (SPRINT + STIM) and sprints without stimulation (SPRINT). Seven participants also performed a fourth session (CONTROL), which consisted of unloaded cycling. During SPRINT and SPRINT + STIM, participants performed seven, 10 s cycling sprints interleaved with 3 min rest. For CONTROL and CONTROL + STIM, participants performed unloaded cycling for ~30 min. During SPRINT + STIM and CONTROL + STIM, participants received patterned sensory stimulation to nerves of the right foot. H-reflexes and M-waves of the right soleus were evoked by stimulation of the tibial nerve at multiple time points throughout exercise. Sensory stimulation facilitated soleus H-reflexes during unloaded cycling, whereas sprints suppressed soleus H-reflexes. While receiving sensory stimulation, there was less suppression of soleus H-reflexes and slowed reduction in average power output, compared to sprints without stimulation. These results demonstrate that sensory stimulation can substantially mitigate the fatiguing effects of sprints.
Collapse
Affiliation(s)
- Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Steven A Noble
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada
| | - Bridget Munro
- Nike Exploration Team Sport Research Laboratory, Nike Inc., Beaverton, OR, United States
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC, Canada.,Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada.,Centre for Biomedical Research, University of Victoria, Victoria, BC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
33
|
Piazza S, Serrano-Muñoz D, Gómez-Soriano J, Torricelli D, Segura-Fragosa A, Pons JL, Taylor J. Afferent electrical stimulation during cycling improves spinal processing of sensorimotor function after incomplete spinal cord injury. NeuroRehabilitation 2017; 40:429-437. [DOI: 10.3233/nre-161430] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Stefano Piazza
- Neural Rehabilitation Group, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Diego Serrano-Muñoz
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo, Spain
| | - Julio Gómez-Soriano
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo, Spain
- Toledo Physiotherapy Research Group, Nursing and Physiotherapy School, Castilla La Mancha University, Toledo, Spain
| | - Diego Torricelli
- Neural Rehabilitation Group, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - José Luis Pons
- Neural Rehabilitation Group, Cajal Institute, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Tecnológico de Monterrey, Mexico
| | - Julian Taylor
- Sensorimotor Function Group, Hospital Nacional de Parapléjicos, Toledo, Spain
- Stoke Mandeville Spinal Research, National Spinal Injuries Centre, Aylesbury, UK
- Harris Manchester College, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Spence AJ, Alcock LR, Lockyer EJ, Button DC, Power KE. Phase- and Workload-Dependent Changes in Corticospinal Excitability to the Biceps and Triceps Brachii during Arm Cycling. Brain Sci 2016; 6:brainsci6040060. [PMID: 27983685 PMCID: PMC5187574 DOI: 10.3390/brainsci6040060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/10/2016] [Accepted: 12/12/2016] [Indexed: 11/16/2022] Open
Abstract
This is the first study to examine corticospinal excitability (CSE) to antagonistic muscle groups during arm cycling. Transcranial magnetic stimulation (TMS) of the motor cortex and transmastoid electrical stimulation (TMES) of the corticospinal tract were used to assess changes in supraspinal and spinal excitability, respectively. TMS induced motor evoked potentials (MEPs) and TMES induced cervicomedullary evoked potentials (CMEPs) were recorded from the biceps and triceps brachii at two positions, mid-elbow flexion and extension, while cycling at 5% and 15% of peak power output. While phase-dependent modulation of MEP and CMEP amplitudes occurred in the biceps brachii, there was no difference between flexion and extension for MEP amplitudes in the triceps brachii and CMEP amplitudes were higher during flexion than extension. Furthermore, MEP amplitudes in both biceps and triceps brachii increased with increased workload. CMEP amplitudes increased with higher workloads in the triceps brachii, but not biceps brachii, though the pattern of change in CMEPs was similar to MEPs. Differences between changes in CSE between the biceps and triceps brachii suggest that these antagonistic muscles may be under different neural control during arm cycling. Putative mechanisms are discussed.
Collapse
Affiliation(s)
- Alyssa-Joy Spence
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Lynsey R Alcock
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Evan J Lockyer
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Duane C Button
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Kevin E Power
- School of Human Kinetics and Recreation Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
35
|
Nakajima T, Wasaka T, Kida T, Nishimura Y, Fumoto M, Sakamoto M, Takashi E. Changes in Somatosensory Evoked Potentials and Hoffmann Reflexes during Fast Isometric Contraction of Foot Plantarflexor in Humans. Percept Mot Skills 2016; 103:847-60. [PMID: 17326514 DOI: 10.2466/pms.103.3.847-860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In the present study, the extent to which the early component of somatosensory evoked potentials (SEPs) and the Hoffmann (H-) reflex induced by stimulation of the posterior tibial nerve are altered during the ascending and descending phases of fast plantarflexion was investigated. SEPSs and H-reflex of the soleus following tibial nerve stimulation were examined during fast plantarflexion when performed by nine normal subjects. The analyses focused on differences in amplitude modulation of the P30-P40 component of SEP and the H-reflex between the ascending and descending phases of full-wave rectified and averaged soleus electromyographic (EMG) activity. The H-reflex amplitude was significantly increased and decreased during the ascending and descending phases more than under resting control conditions, respectively. The reduction of SEP amplitude was 49% for the ascending phase and 83% for the descending phases with respect to the resting situation. Modulation of SEP during the ascending and descending phases was robustly retained even during ischemic nerve blockade of large diameter afferent fibers. These findings suggest that the transmission of afferent inputs from muscle spindles to motoneurons and to the somatosensory cortex during fast isometric contraction of the plantar flexor is regulated in a time-dependent fashion by descending commands.
Collapse
|
36
|
Klarner T, Barss TS, Sun Y, Kaupp C, Loadman PM, Zehr EP. Long-Term Plasticity in Reflex Excitability Induced by Five Weeks of Arm and Leg Cycling Training after Stroke. Brain Sci 2016; 6:brainsci6040054. [PMID: 27827888 PMCID: PMC5187568 DOI: 10.3390/brainsci6040054] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/22/2016] [Accepted: 10/28/2016] [Indexed: 12/21/2022] Open
Abstract
Neural connections remain partially viable after stroke, and access to these residual connections provides a substrate for training-induced plasticity. The objective of this project was to test if reflex excitability could be modified with arm and leg (A & L) cycling training. Nineteen individuals with chronic stroke (more than six months postlesion) performed 30 min of A & L cycling training three times a week for five weeks. Changes in reflex excitability were inferred from modulation of cutaneous and stretch reflexes. A multiple baseline (three pretests) within-subject control design was used. Plasticity in reflex excitability was determined as an increase in the conditioning effect of arm cycling on soleus stretch reflex amplitude on the more affected side, by the index of modulation, and by the modulation ratio between sides for cutaneous reflexes. In general, A & L cycling training induces plasticity and modifies reflex excitability after stroke.
Collapse
Affiliation(s)
- Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Chelsea Kaupp
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
| | - Pamela M Loadman
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, BC V8W 3P1, Canada.
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, BC V5Z 1M9, Canada.
- Centre for Biomedical Research, University of Victoria, Victoria, BC V8W 2Y2, Canada.
- Division of Medical Sciences, University of Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
37
|
Patikas DA, Mersmann F, Bohm S, Schroll A, Marzilger R, Arampatzis A. Soleus H-reflex modulation during balance recovery after forward falling. Muscle Nerve 2016; 54:952-958. [PMID: 27065438 DOI: 10.1002/mus.25142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 04/01/2016] [Accepted: 04/07/2016] [Indexed: 11/10/2022]
Abstract
INTRODUCTION Our purpose was to examine the Hoffmann reflex (H-reflex) during balance recovery after a simulated forward fall from 2 different inclination angles. METHODS The soleus H-reflex of 15 healthy adults was measured in 2 different leaning positions (exerting a horizontal force at 15% and 30% of body weight, respectively), with no release (Int0) and at 2 different intervals (Int1, Int2) after the release (∼45 and ∼65 ms, respectively). RESULTS During Int2, the H-reflex, which was evoked before the onset of the soleus electromyography, was significantly higher than the H-reflex induced 20 ms earlier (Int1). No significant difference was observed between Int0 and Int1 and between the 2 leaning positions. CONCLUSIONS These findings indicate that Ia afferent input is facilitated before muscle activation during forward falling. This could be important for the timely activation and increased rate of force development required during this task. Muscle Nerve 54: 952-958, 2016.
Collapse
Affiliation(s)
- Dimitrios A Patikas
- Department of Physical Education and Sport Science at Serres, Aristotle University of Thessaloniki, Ag. Ioannis, 62110, Serres, Greece.
| | - Falk Mersmann
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sebastian Bohm
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Arno Schroll
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Robert Marzilger
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Adamantios Arampatzis
- Department of Training and Movement Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
38
|
Benazet M, Thénault F, Whittingstall K, Bernier PM. Attenuation of visual reafferent signals in the parietal cortex during voluntary movement. J Neurophysiol 2016; 116:1831-1839. [PMID: 27466131 PMCID: PMC5144698 DOI: 10.1152/jn.00231.2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/24/2016] [Indexed: 11/22/2022] Open
Abstract
It is well established that the cortical processing of somatosensory and auditory signals is attenuated when they result from self-generated actions compared with external events. This phenomenon is thought to result from an efference copy of motor commands used to predict the sensory consequences of an action through a forward model. The present work examined whether attenuation also takes place for visual reafferent signals from the moving limb during voluntary reaching movements. To address this issue, EEG activity was recorded in a condition in which visual feedback of the hand was provided in real time and compared with a condition in which it was presented with a 150-ms delay, thus creating a mismatch between the predicted and actual visual consequences of the movement. Results revealed that the amplitude of the N1 component of the visual event-related potential evoked by hand visual feedback over the parietal cortex was significantly smaller when presented in real time compared with when it was delayed. These data suggest that the cortical processing of visual reafferent signals is attenuated when they are correctly predicted, likely as a result of a forward model.
Collapse
Affiliation(s)
- Marc Benazet
- Département de Kinanthropologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - François Thénault
- Département de Kinanthropologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Kevin Whittingstall
- Département de Médecine Nucléaire et de Radiobiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
- Département de Radiologie Diagnostique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Pierre-Michel Bernier
- Département de Kinanthropologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada;
| |
Collapse
|
39
|
Masugi Y, Kawashima N, Inoue D, Nakazawa K. Effects of movement-related afferent inputs on spinal reflexes evoked by transcutaneous spinal cord stimulation during robot-assisted passive stepping. Neurosci Lett 2016; 627:100-6. [PMID: 27235576 DOI: 10.1016/j.neulet.2016.05.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/12/2016] [Accepted: 05/24/2016] [Indexed: 11/18/2022]
Abstract
Studies of robot-assisted passive stepping paradigms have reported that movement-related afferent inputs strongly inhibit the excitability of the Hoffmann (H) reflex in the soleus (Sol) during walking. However, it is unknown if movement-related afferent inputs have the same effect on the excitability of spinal reflexes in the other lower-limb muscles that are involved in normal walking in healthy subjects. The aim of this study was to examine the effects of movement-related afferent inputs on the spinal reflexes in lower-limb muscles during walking. Spinal reflexes that were elicited by transcutaneous spinal cord stimulation (tSCS) were recorded during passive air standing and air stepping at three stepping velocities (stride frequencies: 14, 25, and 36 strides/min). The amplitude of the spinal reflexes was reduced in most of the recorded muscles during passive air stepping compared with air standing. Furthermore, in the Sol and lateral gastrocnemius, the amplitude of the reflexes during air stepping significantly decreased as stride frequency increased. These results demonstrate that movement-related afferent inputs inhibit spinal reflexes in the Sol and other lower-limb muscles during walking.
Collapse
Affiliation(s)
- Yohei Masugi
- Department of Rehabilitation for Movement Functions, Research Institute of the National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan.
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of the National Rehabilitation Center for Persons with Disabilities, 4-1 Namiki, Tokorozawa, Saitama 359-8555, Japan
| | - Daisuke Inoue
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Kimitaka Nakazawa
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
40
|
Kolářová B, Krobot A, Polehlová K, Hluštík P, Richards JD. Effect of Gait Imagery Tasks on Lower Limb Muscle Activity With Respect to Body Posture. Percept Mot Skills 2016; 122:411-31. [PMID: 27166324 DOI: 10.1177/0031512516640377] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective of this study was to evaluate the effect of gait imagery tasks on lower limb muscle activity with respect to body posture. The sitting and standing position and lower limb muscle activity were evaluated in 27 healthy female students (24.4 ± 1.3 years, 167.2 ± 5.2 cm, 60.10 ± 6.4 kg). Surface electromyography was assessed during rest and in three different experimental conditions using mental imagery. These included a rhythmic gait, rhythmic gait simultaneously with observation of a model, and rhythmic gait after performing rhythmic gait. The normalized root mean square EMG values with respect to corresponding rest position were compared using non-parametric statistics. Standing gait imagery tasks had facilitatory effect on proximal lower limb muscle activity. However, electromyography activity of distal leg muscles decreased for all gait imagery tasks in the sitting position, when the proprioceptive feedback was less appropriate. For subsequent gait motor imagery tasks, the muscle activity decreased, probably as result of habituation. In conclusion, the effect of motor imagery on muscle activity appears to depend on relative strength of facilitatory and inhibitory inputs.
Collapse
Affiliation(s)
- Barbora Kolářová
- Department of Physiotherapy, Faculty of Health Sciences, Palacky University Olomouc, Czech Republic; Department of Rehabilitation, University Hospital Olomouc, Czech Republic
| | - Alois Krobot
- Department of Physiotherapy, Faculty of Health Sciences, Palacky University Olomouc, Czech Republic; Department of Rehabilitation, University Hospital Olomouc, Czech Republic
| | - Kamila Polehlová
- Department of Physiotherapy, Faculty of Health Sciences, Palacky University Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of General Medicine and Dentistry, University Hospital Olomouc, Czech Republic
| | - Jim D Richards
- Allied Health Research Unit, University of Central Lancashire, Preston, UK
| |
Collapse
|
41
|
Germano AMC, Schlee G, Milani TL. Effect of cooling foot sole skin receptors on achilles tendon reflex. Muscle Nerve 2016; 53:965-71. [PMID: 27113729 DOI: 10.1002/mus.24994] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/11/2015] [Accepted: 11/20/2015] [Indexed: 11/06/2022]
Abstract
INTRODUCTION This study investigated whether a controlled reduction of foot sole temperature affects the Achilles tendon stretch reflex and plantar flexion. Methods Five stretch reflexes in 52 healthy subjects were evoked by Achilles tendon taps. Short latency responses of 3 muscles of the lower limb and maximal force of plantar flexion were analyzed. Foot sole hypothermia was induced by a thermal platform at various foot temperature conditions: Stage I (25°C), Stage II (12°C), Stage IIIa (0°C), and Stage IIIb (0°C). Results Reduction of plantar cutaneous inputs resulted in a decrease in amplitude of medial gastrocnemius and soleus as well as delays in time to maximal force of plantar flexion. Medial gastrocnemius, lateral gastrocnemius, and soleus were affected differently by induced cooling. No inhibition effects in reflexes were observed at 12°C. Conclusions The results suggest that input on the plantar foot sole participates complementarily in the Achilles stretch reflex Muscle Nerve, 2015. Muscle Nerve 53: 965-971, 2016.
Collapse
Affiliation(s)
- Andresa M C Germano
- Technische Universitaet Chemnitz/Department of Human Locomotion, Thueringer Weg, 5 Raum 08, 09126, Chemnitz, Germany
| | - Günther Schlee
- Technische Universitaet Chemnitz/Department of Human Locomotion, Thueringer Weg, 5 Raum 08, 09126, Chemnitz, Germany
| | - Thomas L Milani
- Technische Universitaet Chemnitz/Department of Human Locomotion, Thueringer Weg, 5 Raum 08, 09126, Chemnitz, Germany
| |
Collapse
|
42
|
Sasada S, Tazoe T, Nakajima T, Futatsubashi G, Ohtsuka H, Suzuki S, Zehr EP, Komiyama T. A common neural element receiving rhythmic arm and leg activity as assessed by reflex modulation in arm muscles. J Neurophysiol 2016; 115:2065-75. [PMID: 26961103 DOI: 10.1152/jn.00638.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 02/02/2016] [Indexed: 01/15/2023] Open
Abstract
Neural interactions between regulatory systems for rhythmic arm and leg movements are an intriguing issue in locomotor neuroscience. Amplitudes of early latency cutaneous reflexes (ELCRs) in stationary arm muscles are modulated during rhythmic leg or arm cycling but not during limb positioning or voluntary contraction. This suggests that interneurons mediating ELCRs to arm muscles integrate outputs from neural systems controlling rhythmic limb movements. Alternatively, outputs could be integrated at the motoneuron and/or supraspinal levels. We examined whether a separate effect on the ELCR pathways and cortico-motoneuronal excitability during arm and leg cycling is integrated by neural elements common to the lumbo-sacral and cervical spinal cord. The subjects performed bilateral leg cycling (LEG), contralateral arm cycling (ARM), and simultaneous contralateral arm and bilateral leg cycling (A&L), while ELCRs in the wrist flexor and shoulder flexor muscles were evoked by superficial radial (SR) nerve stimulation. ELCR amplitudes were facilitated by cycling tasks and were larger during A&L than during ARM and LEG. A low stimulus intensity during ARM or LEG generated a larger ELCR during A&L than the sum of ELCRs during ARM and LEG. We confirmed this nonlinear increase in single motor unit firing probability following SR nerve stimulation during A&L. Furthermore, motor-evoked potentials following transcranial magnetic and electrical stimulation did not show nonlinear potentiation during A&L. These findings suggest the existence of a common neural element of the ELCR reflex pathway that is active only during rhythmic arm and leg movement and receives convergent input from contralateral arms and legs.
Collapse
Affiliation(s)
- Syusaku Sasada
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Food and Nutrition Science, Sagami Women's University, Kanagawa, Japan;
| | - Toshiki Tazoe
- The Miami Project to Cure Paralysis, Miller School of Medicine, University of Miami, Miami, Florida
| | - Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - Genki Futatsubashi
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Management and Information Sciences, Jobu University, Gunma, Japan
| | - Hiroyuki Ohtsuka
- School of Rehabilitation Sciences, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Shinya Suzuki
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Integrative Physiology, Kyorin University School of Medicine, Tokyo, Japan
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, British Columbia, Canada; and
| | - Tomoyoshi Komiyama
- Division of Health and Sport Education, The United Graduate School of Education, Tokyo Gakugei University, Tokyo, Japan; Department of Health and Sports Sciences, Faculty of Education, Chiba University, Chiba, Japan
| |
Collapse
|
43
|
Gossard JP, Delivet-Mongrain H, Martinez M, Kundu A, Escalona M, Rossignol S. Plastic Changes in Lumbar Locomotor Networks after a Partial Spinal Cord Injury in Cats. J Neurosci 2015; 35:9446-55. [PMID: 26109667 PMCID: PMC6605194 DOI: 10.1523/jneurosci.4502-14.2015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 04/02/2015] [Accepted: 05/12/2015] [Indexed: 01/17/2023] Open
Abstract
After an incomplete spinal cord injury (SCI), we know that plastic reorganization occurs in supraspinal structures with residual descending tracts. However, our knowledge about spinal plasticity is rather limited. Our recent studies point to changes within the spinal cord below the lesion. After a lateral left hemisection (T10), cats recovered stepping with both hindlimbs within 3 weeks. After a complete section (T13) in these cats, bilateral stepping was seen on the next day, a skill usually acquired after several weeks of treadmill training. This indicates that durable plastic changes occurred below the lesion. However, because sensory feedback entrains the stepping rhythm, it is difficult to reveal central pattern generator (CPG) adaptation. Here, we investigated whether lumbar segments of cats with a chronic hemisection were able to generate fictive locomotion-that is, without phasic sensory feedback as monitored by five muscle nerves in each hindlimb. With a chronic left hemisection, the number of muscle nerves displaying locomotor bursts was larger on the left than on the right. In addition, transmission of cutaneous reflexes was relatively facilitated on the left. Later during the acute experiment, a complete spinalization (T13) was performed and clonidine was injected to induce rhythmic activities. There were still more muscle nerves displaying locomotor bursts on the left. The results demonstrate that spinal networks were indeed modified after a hemisection with a clear asymmetry between left and right in the capacity to generate locomotion. Plastic changes in CPG and reflex transmission below the lesion are thus involved in the stepping recovery after an incomplete SCI.
Collapse
Affiliation(s)
- Jean-Pierre Gossard
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| | - Hugo Delivet-Mongrain
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| | - Marina Martinez
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Aritra Kundu
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| | - Manuel Escalona
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| | - Serge Rossignol
- Groupe de Recherche sur le Système Nerveux Central, Department of Neurosciences, Université de Montréal, Montréal, Québec H3C3J7, Canada, and
| |
Collapse
|
44
|
Chang YJ, Chou CC, Huang WT, Lu CS, Wong AM, Hsu MJ. Cycling Regimen Induces Spinal Circuitry Plasticity and Improves Leg Muscle Coordination in Individuals With Spinocerebellar Ataxia. Arch Phys Med Rehabil 2015; 96:1006-13. [DOI: 10.1016/j.apmr.2015.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 01/12/2015] [Accepted: 01/26/2015] [Indexed: 10/24/2022]
|
45
|
Abstract
A fundamental challenge for the nervous system is to encode signals spanning many orders of magnitude with neurons of limited bandwidth. To meet this challenge, perceptual systems use gain control. However, whether the motor system uses an analogous mechanism is essentially unknown. Neuromodulators, such as serotonin, are prime candidates for gain control signals during force production. Serotonergic neurons project diffusely to motor pools, and, therefore, force production by one muscle should change the gain of others. Here we present behavioral and pharmaceutical evidence that serotonin modulates the input-output gain of motoneurons in humans. By selectively changing the efficacy of serotonin with drugs, we systematically modulated the amplitude of spinal reflexes. More importantly, force production in different limbs interacts systematically, as predicted by a spinal gain control mechanism. Psychophysics and pharmacology suggest that the motor system adopts gain control mechanisms, and serotonin is a primary driver for their implementation in force production.
Collapse
|
46
|
Makihara Y, Segal RL, Wolpaw JR, Thompson AK. Operant conditioning of the soleus H-reflex does not induce long-term changes in the gastrocnemius H-reflexes and does not disturb normal locomotion in humans. J Neurophysiol 2014; 112:1439-46. [PMID: 24944216 DOI: 10.1152/jn.00225.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In normal animals, operant conditioning of the spinal stretch reflex or the H-reflex has lesser effects on synergist muscle reflexes. In rats and people with incomplete spinal cord injury (SCI), soleus H-reflex operant conditioning can improve locomotion. We studied in normal humans the impact of soleus H-reflex down-conditioning on medial (MG) and lateral gastrocnemius (LG) H-reflexes and on locomotion. Subjects completed 6 baseline and 30 conditioning sessions. During conditioning trials, the subject was encouraged to decrease soleus H-reflex size with the aid of visual feedback. Every sixth session, MG and LG H-reflexes were measured. Locomotion was assessed before and after conditioning. In successfully conditioned subjects, the soleus H-reflex decreased 27.2%. This was the sum of within-session (task dependent) adaptation (13.2%) and across-session (long term) change (14%). The MG H-reflex decreased 14.5%, due mainly to task-dependent adaptation (13.4%). The LG H-reflex showed no task-dependent adaptation or long-term change. No consistent changes were detected across subjects in locomotor H-reflexes, EMG activity, joint angles, or step symmetry. Thus, in normal humans, soleus H-reflex down-conditioning does not induce long-term changes in MG/LG H-reflexes and does not change locomotion. In these subjects, task-dependent adaptation of the soleus H-reflex is greater than it is in people with SCI, whereas long-term change is less. This difference from results in people with SCI is consistent with the fact that long-term change is beneficial in people with SCI, since it improves locomotion. In contrast, in normal subjects, long-term change is not beneficial and may necessitate compensatory plasticity to preserve satisfactory locomotion.
Collapse
Affiliation(s)
- Yukiko Makihara
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Program in Human Movement Science, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Richard L Segal
- Program in Human Movement Science, Department of Allied Health Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Health Professions, Medical University of South Carolina, Charleston, South Carolina
| | - Jonathan R Wolpaw
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Neurology, Neurological Institute, Columbia University, New York, New York; and Department of Biomedical Sciences, State University of New York, Albany, New York
| | - Aiko K Thompson
- Helen Hayes Hospital, New York State Department of Health, West Haverstraw, New York; Wadsworth Center, New York State Department of Health, Albany, New York; Department of Neurology, Neurological Institute, Columbia University, New York, New York; and Department of Biomedical Sciences, State University of New York, Albany, New York
| |
Collapse
|
47
|
Nair PM, Phadke CP, Behrman AL. Phase dependent modulation of soleus H-reflex in healthy, non-injured individuals while walking with an ankle foot orthosis. Gait Posture 2014; 39:1086-91. [PMID: 24598077 DOI: 10.1016/j.gaitpost.2014.01.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/11/2014] [Accepted: 01/22/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To examine the dynamic modulation of the soleus H-reflex while walking with a posterior leaf spring ankle foot orthosis (PAFO). METHODS Soleus H-reflexes were evoked on randomly chosen lower limb of fourteen healthy individuals (age range of 22-36 years, 7 women) while walking on a treadmill with and without a PAFO. In order to capture excitability across the duration of the gait cycle, H-reflexes were evoked at heel strike (HS), HS+100ms, HS+200ms, HS+300ms, HS+400ms in the stance phase and at toe-off (TO), TO+100ms, TO+200ms, TO+300ms, TO+400ms in the swing phase respectively. RESULTS H-reflex excitability was significantly higher in the form of greater slope of the rise in H-reflex amplitude across the swing phase (p=0.024) and greater mean H-reflex amplitude (p=0.014) in the swing phase of walking with a PAFO. There was no change in the slope (p=0.25) or the mean amplitude of H-reflexes (p=0.22) in the stance phase of walking with a PAFO. Mean background EMG activity between the two walking conditions was not significantly different for both the tibialis anterior (p=0.69) and soleus muscles (p=0.59). CONCLUSION PAFO increased reflex excitability in the swing phase of walking in healthy individuals. Altered sensory input originating from joint, muscle and cutaneous receptors may be the underlying mechanism for greater reflex excitability. The neurophysiological effect of PAFOs on reflex modulation during walking needs to be tested in persons with neurological injury. The relationship between the sensory input and the reflex output during walking may assist in determining if there exists a neurological disadvantage of using a compensatory device such as a PAFO.
Collapse
Affiliation(s)
- Preeti M Nair
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, Gainesville, FL, USA; School of Health and Medical Sciences, Seton Hall University, South Orange, NJ, USA.
| | - Chetan P Phadke
- Upper Motorneuron Disorder Spasticity Program, West Park Healthcare Centre, Toronto, ON, Canada; Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Andrea L Behrman
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA; Brain Rehabilitation Research Center, Malcolm Randall VA Medical Center, Gainesville, FL, USA
| |
Collapse
|
48
|
Domingo A, Klimstra M, Nakajima T, Lam T, Hundza SR. Walking phase modulates H-reflex amplitude in flexor carpi radialis. J Mot Behav 2013; 46:49-57. [PMID: 24313749 DOI: 10.1080/00222895.2013.854731] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
It is well established that remote whole-limb rhythmic movement (e.g., cycling or stepping) induces suppression of the Hoffman (H-) reflex evoked in stationary limbs. However, the dependence of reflex amplitude on the phase of the movement cycle (i.e., phase-dependence) has not been consistent across this previous research. The authors investigated the phase-dependence of flexor carpi radialis (FCR) H-reflex amplitudes during active walking and in kinematically matched static postures across the gait cycle. FCR H-reflexes were elicited in the stationary forearm with electrical stimulation to the median nerve. Significant phase-dependent modulation occurred during walking when the gait cycle was examined with adequate phase resolution. The suppression was greatest during midstance and midswing, suggesting increased ascending communication during these phases. There was no phase-dependent modulation in static standing postures and no correlation between lower limb background electromyography levels and H-reflex amplitude during active walking. This evidence, along with previous research demonstrating no phase modulation during passive walking, suggests that afferent feedback associated with joint position and leg muscle activation levels are not the sole source of the phase modulation seen during active walking. Possible sources of phase modulation include combinations of afferent feedback related to active movement or central motor commands or both.
Collapse
Affiliation(s)
- Antoinette Domingo
- a School of Kinesiology, University of British Columbia , Vancouver , Canada
| | | | | | | | | |
Collapse
|
49
|
Nakajima T, Mezzarane RA, Klarner T, Barss TS, Hundza SR, Komiyama T, Zehr EP. Neural mechanisms influencing interlimb coordination during locomotion in humans: presynaptic modulation of forearm H-reflexes during leg cycling. PLoS One 2013; 8:e76313. [PMID: 24204611 PMCID: PMC3799938 DOI: 10.1371/journal.pone.0076313] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/23/2013] [Indexed: 11/19/2022] Open
Abstract
Presynaptic inhibition of transmission between Ia afferent terminals and alpha motoneurons (Ia PSI) is a major control mechanism associated with soleus H-reflex modulation during human locomotion. Rhythmic arm cycling suppresses soleus H-reflex amplitude by increasing segmental Ia PSI. There is a reciprocal organization in the human nervous system such that arm cycling modulates H-reflexes in leg muscles and leg cycling modulates H-reflexes in forearm muscles. However, comparatively little is known about mechanisms subserving the effects from leg to arm. Using a conditioning-test (C-T) stimulation paradigm, the purpose of this study was to test the hypothesis that changes in Ia PSI underlie the modulation of H-reflexes in forearm flexor muscles during leg cycling. Subjects performed leg cycling and static activation while H-reflexes were evoked in forearm flexor muscles. H-reflexes were conditioned with either electrical stimuli to the radial nerve (to increase Ia PSI; C-T interval = 20 ms) or to the superficial radial (SR) nerve (to reduce Ia PSI; C-T interval = 37-47 ms). While stationary, H-reflex amplitudes were significantly suppressed by radial nerve conditioning and facilitated by SR nerve conditioning. Leg cycling suppressed H-reflex amplitudes and the amount of this suppression was increased with radial nerve conditioning. SR conditioning stimulation removed the suppression of H-reflex amplitude resulting from leg cycling. Interestingly, these effects and interactions on H-reflex amplitudes were observed with subthreshold conditioning stimulus intensities (radial n., ∼0.6×MT; SR n., ∼ perceptual threshold) that did not have clear post synaptic effects. That is, did not evoke reflexes in the surface EMG of forearm flexor muscles. We conclude that the interaction between leg cycling and somatosensory conditioning of forearm H-reflex amplitudes is mediated by modulation of Ia PSI pathways. Overall our results support a conservation of neural control mechanisms between the arms and legs during locomotor behaviors in humans.
Collapse
Affiliation(s)
- Tsuyoshi Nakajima
- Department of Integrative Physiology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
| | - Rinaldo A. Mezzarane
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Laboratory of Signal Processing and Motor Control, College of Physical Education, University of Brasília, Brasília, Brazil
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Trevor S. Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
| | - Sandra R. Hundza
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
- Motion and Mobility Laboratory, University of Victoria, Victoria, Canada
| | | | - E. Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria, Victoria, Canada
- Human Discovery Science, International Collaboration on Repair Discoveries (ICORD), Vancouver, Canada
- Centre for Biomedical Research, University of Victoria, Victoria, Canada
- Division of Medical Sciences, University of Victoria, Victoria, Canada
| |
Collapse
|
50
|
Bent LR, Lowrey CR. Single low-threshold afferents innervating the skin of the human foot modulate ongoing muscle activity in the upper limbs. J Neurophysiol 2012; 109:1614-25. [PMID: 23274312 DOI: 10.1152/jn.00608.2012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have shown for the first time that single cutaneous afferents in the foot dorsum have significant reflex coupling to motoneurons supplying muscles in the upper limb, particularly posterior deltoid and triceps brachii. These observations strengthen what we know from whole nerve stimulation, that skin on the foot and ankle can contribute to the modulation of interlimb muscles in distant innervation territories. The current work provides evidence of the mechanism behind the reflex, where one single skin afferent can evoke a reflex response, rather than a population. Nineteen of forty-one (46%) single cutaneous afferents isolated in the dorsum or plantar surface of the foot elicited a significant modulation of muscle activity in the upper limb. Identification of single afferents in this reflex indicates the strength of the connection and, ultimately, the importance of foot skin in interlimb coordination. The median response magnitude was 2.29% of background EMG, and the size of the evoked response did not significantly differ among the four mechanoreceptor classes (P > 0.1). Interestingly, although the distribution of afferents types did not differ across the foot dorsum, there was a significantly greater coupling response from receptors located on the medial aspect of the foot dorsum (P < 0.01). Furthermore, the most consistent coupling with upper limb muscles was demonstrated by type I afferents (fast and slowly adapting). This work contributes to the current literature on receptor specificity, supporting the view that individual classes of cutaneous afferents may subserve specific roles in kinesthesia, reflexes, and tactile perception.
Collapse
Affiliation(s)
- Leah R Bent
- Dept. Human Health and Nutritional Sciences, Univ. of Guelph, Guelph, ON, Canada N1G 2W1.
| | | |
Collapse
|