1
|
Martins FBV, Zhelyazkova V, Merkt F. Cold reactions of He + with OCS and CO 2: competitive kinetics and the effects of the molecular multipole moments. Phys Chem Chem Phys 2024; 26:24799-24808. [PMID: 39297210 PMCID: PMC11413858 DOI: 10.1039/d4cp02871f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024]
Abstract
The reactions of He+ with OCS and CO2 have been studied at collision energies between ∼kB ⋅ 200 mK and ∼kB ⋅ 30 K by merging a beam of Rydberg He atoms with rotationally cold (∼3.5 K) seeded supersonic expansions containing either OCS or 13CO2 or a mixture of OCS (mole fraction 23.2%) and 13CO2 (76.8%). The observed product ions of the He+ + 13CO2 and He+ + OCS reactions are 13CO+, and CS+ and CO+, respectively. The He+ + OCS capture rate coefficient increases by ∼75% with decreasing collision energy over the investigated range, whereas that of He+ + 13CO2 decreases by ∼40%. The analysis of the experimental results using an adiabatic-channel capture model indicates that these opposite collision-energy dependences of the rate coefficients arise from the interaction between the charge of the ion and the electric multipole moments of OCS and 13CO2. From the relative product-ion yields observed when using the mixture of OCS and 13CO2, the He+ + OCS collisions are inferred to be ∼20% more reactive than those between He+ and 13CO2. The comparison of the calculated thermal rate coefficients with earlier experiments suggests that about half of the He+ + 13CO2 collisions are reactive.
Collapse
Affiliation(s)
- Fernanda B V Martins
- ETH Zürich, Institute of Molecular Physical Science, CH-8093 Zürich, Switzerland.
| | | | - Frédéric Merkt
- ETH Zürich, Institute of Molecular Physical Science, CH-8093 Zürich, Switzerland.
| |
Collapse
|
2
|
Bugarin L, Suarez Orduz HA, Glatzel P. Area normalization of HERFD-XANES spectra. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:1118-1125. [PMID: 39105530 PMCID: PMC11371039 DOI: 10.1107/s1600577524005307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/05/2024] [Indexed: 08/07/2024]
Abstract
The normalization of X-ray absorption near-edge structure (XANES) spectra is required for comparing spectral features and extracting quantitative information in analytical techniques such as linear combination analysis, principal component analysis and multivariate curve resolution. Most published data are normalized to the edge-jump, but normalization to the spectral area has also been applied. The latter is particularly attractive if only a small energy range around the absorption can be recorded reliably. Here, the two normalization methods are compared at the L3-edge of Pt, Pd and Rh, and at the Ni K-edge using experimental and calculated spectra. Normalization to the spectral area is found to be a viable approach if the range for the area normalization is sufficiently large.
Collapse
Affiliation(s)
- Luca Bugarin
- ESRF – The European Synchrotron, 71 Avenue des Martyers, 38000Grenoble, France
- Ecole Doctorale de PhysiqueGrenoble Alpes University38400Saint-Martin-d’HèresFrance
| | - Hugo Alexander Suarez Orduz
- ESRF – The European Synchrotron, 71 Avenue des Martyers, 38000Grenoble, France
- Institute for Chemical Technology and Polymer Chemistry (ITCP)Karlsruhe Institute of TechnologyEngesserstrasse18/2076131KarlsruheGermany
| | - Pieter Glatzel
- ESRF – The European Synchrotron, 71 Avenue des Martyers, 38000Grenoble, France
| |
Collapse
|
3
|
Clarke CJ, Burrow EM, Verlet JRR. The valence electron affinity of uracil determined by anion cluster photoelectron spectroscopy. Phys Chem Chem Phys 2024; 26:20037-20045. [PMID: 39007196 DOI: 10.1039/d4cp02146k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The unoccupied π* orbitals of the nucleobases are considered to play important roles in low-energy electron attachment to DNA, inducing damage. While the lowest anionic valence state is vertically unbound in all neutral nucleobases, it remains unclear even for the simplest nucleobase, uracil (U), whether its valence anion (U-) is adiabatically bound, which has important implications on the efficacy of damage processes. Using anion photoelectron spectroscopy, we demonstrate that the valence electron affinity (EAV) of U can be accurately measured within weakly solvating clusters, U-(Ar)n and U-(N2)n. Through extrapolation to the isolated U limit, we show that EAV = -2 ± 18 meV. We discuss these findings in the context of electron attachment to U and its reorganization energy, and more generally establish guidance for the determination of molecular electron affinities from the photoelectron spectroscopy of anion clusters.
Collapse
Affiliation(s)
- Connor J Clarke
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - E Michi Burrow
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
| | - Jan R R Verlet
- Department of Chemistry, Durham University, Durham DH1 3LE, UK.
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
4
|
Wu B, Zhang S, Huang M, Zhang S, Liu B, Zhang B. Theoretical insight into H 2O impact on V 2O 5/TiO 2 catalysts for selective catalytic reduction of NO x. Phys Chem Chem Phys 2024; 26:14651-14663. [PMID: 38743154 DOI: 10.1039/d4cp00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
H2O in flue gas causes the deactivation of V2O5/TiO2 catalysts for selective catalytic reduction (SCR) of NOx with NH3 at low temperatures. Developing water resistance requires understanding the theoretical mechanism of H2O impact on the catalysts. The aim of this work was to clarify the adsorption process of H2O and the deactivation mechanism induced by H2O through density functional theory (DFT). The process of H2O adsorption was studied based on a modeled V2O5/TiO2 catalyst surface. It was found that H2O had a strong interaction with exposed titanium atoms. Water adsorption on the catalyst surface significantly alters the electronic structure of VOx sites, transforming Lewis acid sites into Brønsted acid sites. Exposed titanium sites contribute to the decrease of Lewis acidity via adsorbed water. Ab initio thermodynamic calculations show that H2O adsorption on V2O5/TiO2 is stable at low coverage but less favorable at high coverage. Adsorption of NH3 is the most critical step for the SCR of NOx, and the adsorption of H2O can hinder this process. The H2O coverage below 15% of adsorption sites could enhance the NH3 adsorption rate and have a limited effect on the acidity, while higher coverage impeded the adsorption ability of VOx sites. This work provided electron-scale insight into the adsorption impact of H2O on the surface of V2O5/TiO2 catalysts, presented thermodynamic analysis of the adsorption of H2O and NH3, paving the way for the exploration of V2O5/TiO2 catalysts with improved water resistance.
Collapse
Affiliation(s)
- Boyu Wu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shengen Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Mingtian Huang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Shengyang Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Bo Liu
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| | - Bolin Zhang
- Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
5
|
Vila FD, Rehr JJ, Kowalski K, Peng B. RT-EOM-CCSD Calculations of Inner and Outer Valence Ionization Energies and Spectral Functions. J Chem Theory Comput 2024; 20:1796-1801. [PMID: 38422509 DOI: 10.1021/acs.jctc.3c01371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Photoelectron spectroscopy (PES) is a standard experimental method for material characterization, but its interpretation can be hampered by its reliance on standard materials. To facilitate the study of unknown systems, theoretical methods are desirable. Here, we present a real-time equation-of-motion coupled cluster (RT-EOM-CC) approach for valence PES, extending our core-level development. We demonstrate that RT-EOM-CC yields ionization energies and spectral functions in good agreement with experimental and CI-based results, even for some more correlated cases.
Collapse
Affiliation(s)
- Fernando D Vila
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - John J Rehr
- Department of Physics, University of Washington, Seattle, Washington 98195, United States
| | - Karol Kowalski
- William R. Wiley Environmental Molecular Sciences Laboratory, Battelle, Pacific Northwest National Laboratory, K8-91, P.O. Box 999, Richland, Washington 99352, United States
| | - Bo Peng
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| |
Collapse
|
6
|
Cappelletti D, Falcinelli S, Pirani F. The dawn of hydrogen and halogen bonds and their crucial role in collisional processes probing long-range intermolecular interactions. Phys Chem Chem Phys 2024; 26:7971-7987. [PMID: 38411471 DOI: 10.1039/d3cp05871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
This perspective review focuses on the results of an internally consistent study developed in the Perugia laboratory, centered on the fundamental interaction components that, at large intermolecular distances, determine the formation of weak intermolecular hydrogen (HB) and halogen (XB) bonds. This investigation exploits old and novel molecular beam scattering experiments involving several gaseous prototypical systems. In particular, we focus on the kinetic energy dependence of the total (elastic + inelastic) integral cross-sections. Of particular interest is the measure of quantum interference patterns in the energy dependence of cross-sections of targeted systems and their shift compared to that of known reference systems. We interpreted these findings as interaction energy stabilization components, such as charge transfer, σ-hole, and polar flattening, that emerge at intermediate separation distance ranges and selectively manifest for specific geometries of collision complexes. Another significant observable we discuss is the absolute value of the cross-section and its dependence on permanent multipole moments of the collisional partners. Specifically, we show how the spontaneous orientation of rotationally cold and polar molecules, due to the electric field gradient associated with the interaction between permanent multipole moments, can significantly modify the magnitude of the total cross-section, even at high values of the impact parameter. We are confident that the present results can help extend the force field formulation to various interacting systems and carry out molecular dynamics simulations under conditions of application interest.
Collapse
Affiliation(s)
- David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
| | - Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06215 Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università degli Studi di Perugia, via Elce di Sotto 8, 06123 Perugia, Italy.
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06215 Perugia, Italy
| |
Collapse
|
7
|
Rutigliano M, Pirani F. The Sticking of N 2 on W(100) Surface: An Improvement in the Description of the Adsorption Dynamics Further Reconciling Theory and Experiment. Molecules 2023; 28:7546. [PMID: 38005267 PMCID: PMC10673241 DOI: 10.3390/molecules28227546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
The adsorption of nitrogen molecules on a (100) tungsten surface has been studied using a new potential energy surface in which long-range interactions are suitably characterized and represented by the Improved Lennard-Jones function. The new potential energy surface is used to carry out molecular dynamics simulations by adopting a semiclassical collisional method that explicitly includes the interaction with the surface phonons. The results of the sticking probability, evaluated as a function of the collision energy, are in good agreement with those obtained in the experiments and improve the already good comparison recently obtained with calculations performed using interactions from the Density Functional Theory method and corrected for long-range van der Waals contributions. The dependence of trapping probability on the surface temperature for a well-defined collision energy has also been investigated.
Collapse
Affiliation(s)
- Maria Rutigliano
- Istituto per la Scienza e Tecnologia dei Plasmi (ISTP), Consiglio Nazionale delle Ricerche (CNR), Via Amendola 122/D, 70126 Bari, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
- Dipartimento di Ingegneria Civile ed Ambientale, Università di Perugia, Via G. Duranti 93, 06125 Perugia, Italy
| |
Collapse
|
8
|
Zhang XL, Yang SB, Hou D, Li H. An intramolecular vibrationally excited intermolecular potential energy surface and predicted 2OH overtone spectroscopy of H 2O-Kr. Phys Chem Chem Phys 2023; 25:29940-29950. [PMID: 37902029 DOI: 10.1039/d3cp04126c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A new five-dimensional potential energy surface (PES) for H2O-Kr which explicitly includes the intramolecular 2OH overtone state of the H2O monomer is presented. The intermolecular potential energies were evaluated using explicitly correlated coupled cluster theory [CCSD(T)-F12] with a large basis set. Four vibrationally averaged analytical intermolecular PESs for H2O-Kr with H2O molecules in its |00+〉, |02+〉, |02-〉, and |11+〉 states are obtained by fitting to the multi-dimensional Morse/Long-Range potential function form. Each vibrationally averaged PES fitted to 578 points has root-mean-square (RMS) deviations smaller than 0.14 cm-1 and requires only 58 parameters. The combined radial discrete variable representation/angular finite basis representation method and the Lanczos algorithm were employed to calculate the rovibrational energy levels for |00+〉, |02+〉, |02-〉, and |11+〉 states of the H2O-Kr complexes. The calculated |02-〉Πf/e(101) ← |00+〉Σe(000) and |02+〉Πf/e(110) ← |00+〉Σe(101) infrared transitions are in excellent agreement with the experimental values with RMS discrepancies being only 0.007 and 0.016 cm-1, respectively. These analytical PESs can be used to provide reliable theoretical guidance for future infrared overtone spectroscopy of H2O-Kr.
Collapse
Affiliation(s)
- Xiao-Long Zhang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Shu-Bin Yang
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, P. R. China
| | - Dan Hou
- Key Laboratory of Chemical Utilization of Plant Resources of Nanchang, College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, P. R. China.
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, P. R. China.
| |
Collapse
|
9
|
Rajkovic M, Benter T, Wißdorf W. Molecular Dynamics-Based Modeling of Ion-Neutral Collisions in an Open Ion Trajectory Simulation Framework. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:2156-2165. [PMID: 37703916 DOI: 10.1021/jasms.3c00139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Ion mobility spectrometry (IMS) and ion mobility mass spectrometry (IMS-MS) methods have become increasingly popular and are important analytical techniques to determine information about the structural parameters of gas-phase analytes. The accurate description of the interaction between molecular ions and neutral background gas particles is an essential part of high-quality simulations of such modern mass- and ion-mobility-spectrometric systems. Established ion-neutral collision models (Hard-sphere collision modeling and statistical diffusion simulations) in common ion-trajectory simulation systems like SIMION use strongly simplified assumptions and are thus limited in their predictive ability. In contrast, collision cross-section (CCS) modeling programs (e.g., MOBCAL, IMoS, and Colloidoscope) allow high-quality ion mobility predictions for low-field equilibrium conditions using explicit scattering processes with a molecular dynamics-based trajectory method but cannot be used for nonequilibrium collision modeling in an ion trajectory simulation. This work presents an extension to the open-source Ion Dynamics Simulation Framework (IDSimF), which allows the simulation of ion dynamics under arbitrary and even nonequilibrium conditions. It was extended by an advanced collision model employing the molecular dynamics trajectory method for a detailed microscopic description of ion-neutral collisions within ion-trajectory simulations. We used drift tube ion mobility spectrometry (DT-IMS) to validate the predictive abilities of the model and to estimate the runtime requirements for productive simulations. Simulated high-field ion mobilities for small ion systems in a drift tube IMS are compared to experimental values from the literature and an implementation of a hard-sphere model in IDSimF for helium and argon as background gas particles. Significant improvements in ion mobility predictions using the molecular dynamics trajectory approach are obtained with deviations of only a few percent from experimental values. Therefore, the established and publicly available MD collision model will serve as foundation for nonequilibrium ion dynamics simulations and the development of improved ion dynamics modeling methods.
Collapse
Affiliation(s)
- Michelle Rajkovic
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gaussstraße 20, 42119 Wuppertal, Germany
| | - Thorsten Benter
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gaussstraße 20, 42119 Wuppertal, Germany
| | - Walter Wißdorf
- Department of Physical and Theoretical Chemistry, University of Wuppertal, Gaussstraße 20, 42119 Wuppertal, Germany
| |
Collapse
|
10
|
Gao D, Liu N, Wang D. Enhanced CO adsorption on α-graphyne-supported and defective graphene-supported Cu 19 clusters and a modified induction energy model. Phys Chem Chem Phys 2023; 25:26103-26111. [PMID: 37740316 DOI: 10.1039/d3cp03164k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Ab initio molecular dynamics calculations were carried out to study the adsorption of CO on Cu19, α-graphyne-supported Cu19 and defective graphene-supported Cu19 clusters. The average adsorption energies on the three clusters are significantly increased by 68%, 104%, and 123% compared to the experimental value on the pristine Cu(110) surface. Furthermore, the α-graphyne-supported and defective graphene-supported Cu19 clusters exhibit greater adsorption strength than the pure Cu19 cluster, with 22% and 33% higher adsorption energies, respectively. The crystal orbital Hamilton population analysis shows that for the same type of adsorption site, the adsorption energy is linearly related to the bond interaction strength between the adsorbate and the substrate. We propose a modified induction energy model to predict the increase of chemisorption energy on α-graphyne-supported and defective graphene-supported Cu19 clusters based on the bare Cu19 cluster. The chemisorption energy enhancement predicted by the improved induction energy model has very good agreement with that calculated based on the ab initio molecular dynamics method and is more accurate than that predicted by the original induction energy model.
Collapse
Affiliation(s)
- Delu Gao
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Naigui Liu
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, Shandong, China.
| | - Dunyou Wang
- College of Physics and Electronics, Shandong Normal University, Jinan 250014, Shandong, China.
| |
Collapse
|
11
|
Gill WA, Janjua MRSA. Ab Initio Calculations of the Interaction Potential of the N 2O-N 2O Dimer: Strength of the Intermolecular Interactions and Physical Insights. J Phys Chem A 2023. [PMID: 37478471 DOI: 10.1021/acs.jpca.3c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
N2O, or nitrous oxide, is an important greenhouse gas with a significant impact on global warming and climate change. To accurately model the behavior of N2O in the atmosphere, precise representations of its intermolecular force fields are required. First principles quantum mechanical calculations followed by appropriate fitting are commonly used to establish such force fields. However, fitting such force fields is challenging due to the complex mathematical functions that describe the molecular interactions of N2O. As such, ongoing research is focused on improving our understanding of N2O and developing more accurate models for use in climate modeling and other applications. In this study, we investigated the strength of the intermolecular interactions in the N2O-N2O dimer using the coupled-cluster theory with single, double, and perturbative triple excitation [CCSD(T)] method with the def2-QZVPP basis set. Our calculations provided a detailed understanding of the intermolecular forces that govern the stability and structure of the N2O dimer. We found that the N2O-N2O dimer is stabilized by a combination of van der Waals forces and dipole-dipole interactions. The calculated interaction energy between the two N2O molecules in the dimer was found to be -5.09 kcal/mol, which is in good agreement with previous theoretical and experimental results. Additionally, we analyzed the molecular properties of the N2O-N2O dimer, including its geometry and charge distribution. Our calculations provide a comprehensive understanding of the intermolecular interactions in the N2O-N2O dimer using the CCSD(T) method with the def2-QZVPP basis set by using the improved Lennard-Jones interaction potential method. These results can be used to improve our understanding of atmospheric chemistry and climate modeling, as well as to aid in the interpretation of experimental data.
Collapse
Affiliation(s)
- Waqas Amber Gill
- Departamento de Química Física, Universidad de Valencia, Avda Dr. Moliner, 50, Burjassot E-46100, Valencia, Spain
| | | |
Collapse
|
12
|
Marcum JC, Metz RB. Vibrational Spectroscopy and Structural Analysis of V +(C 2H 6) n Clusters ( n = 1-4). J Phys Chem A 2023. [PMID: 37307201 DOI: 10.1021/acs.jpca.3c00301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The vibrational structure and binding motifs of vanadium cation-ethane clusters, V+(C2H6)n, for n = 1-4 are probed using infrared photodissociation spectroscopy in the C-H stretching region (2550-3100 cm-1). Comparison of spectra to scaled harmonic frequency spectra obtained using density functional theory suggests that ethane exhibits two primary binding motifs when interacting with the vanadium cation: an end-on η2 configuration and a side-on configuration. Determining the denticity of the side on isomer is complicated by the rotational motion of ethane, implying that structural analysis based solely on Born-Oppenheimer potential energy surface minimizations is insufficient and that a more sophisticated vibrationally adiabatic approach is necessary to interpret spectra. The lower-energy side-on configuration predominates in smaller clusters, but the end-on configuration becomes important for larger clusters as it helps to maintain a roughly square-planar geometry about the central vanadium. Proximate C-H bonds exhibit elongation and large red-shifts when compared to bare ethane, particularly in the case of the side-on isomer, demonstrating initial effects of C-H bond activation, which are underestimated by scaled harmonic frequency calculations. Tagging several of the clusters with argon and nitrogen results in nontrivial effects. The high binding energy of N2 can lead to the displacement of ethane from a side-on configuration into an end-on configuration. The presence of either one or two Ar or N2 can impact the overall symmetry of the cluster, which can alter the potential energy surface for ethane rotation in the side-on isomer and may affect the accessibility of low-lying electronic excited states of V+.
Collapse
Affiliation(s)
- Jesse C Marcum
- Department of Chemistry, Keene State College, Keene, New Hampshire 03435, United States
| | - Ricardo B Metz
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
13
|
Morera-Boado C, Bernal-Uruchurtu MI. Interaction energy of Cl 2 and Br 2 with H 2 O: Exchange, dispersion and density the crucial ingredients. J Comput Chem 2023; 44:1073-1087. [PMID: 36578228 DOI: 10.1002/jcc.27066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/10/2022] [Accepted: 12/18/2022] [Indexed: 12/30/2022]
Abstract
Modern Density Functional Theory models are now suitable for many molecular and condensed phase studies. The study of noncovalent interactions, a well-known drawback, is no longer an insurmountable obstacle through design and empirical corrections. However, using empirical corrections as in the DFT-D methods might not be an all-in-one solution. This work uses a simple system, X2 -H2 O with X = Cl or Br, with two different interactions, halogen-bonded (XB) and hydrogen-halogen (HX), to investigate the capability of current density functional approximations (DFA) in predicting interaction energies with eight different exchange-correlation functionals. SAPT(DFT) provides, for all the studied cases, better predictions than the widely used supermolecular approach. In addition, the components of the interaction energy suggest where some of the shortcomings originate in each DFA. The analysis of the functionals used confirms that PBE0 and ω-B97X-D have a physically correct behavior. Using SAPT(DFT) and PBE0, and ω-B97X-D, we obtained the interaction energy of Cl2 and Br2 inside different clathrate cages and satisfactorily compared with wavefunction results; hence, the lower and upper limits of this value are defined: Cl2 @512 , -5.3 ± 0.3 kcal/mol; Cl2 @512 62 , -5.5 ± 0.1 kcal/mol; Br2 @512 62 , -7.6 ± 1.0 kcal/mol; Br2 @512 63 , -10.6 ± 1.0 kcal/mol; Br2 @512 64 , -10.9 ± 0.8 kcal/mol.
Collapse
Affiliation(s)
- Cercis Morera-Boado
- CONACYT - Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico.,Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | | |
Collapse
|
14
|
Zhelyazkova V, Martins FBV, Schilling S, Merkt F. Reaction of an Ion and a Free Radical near 0 K: He + + NO → He + N + + O. J Phys Chem A 2023; 127:1458-1468. [PMID: 36752385 PMCID: PMC9940198 DOI: 10.1021/acs.jpca.2c08221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Indexed: 02/09/2023]
Abstract
The reactions between ions and free radicals are among the fastest chemical reactions. They are predicted to proceed with large rates, even near 0 K, but so far, this prediction has not been verified experimentally. We report on measurements of the rate coefficient of the reaction between the ion He+ and the free radical NO at collision energies in the range between 0 and ∼ kB·10 K. To avoid heating of the ions by stray electric fields, the reaction is observed within the large orbit of a Rydberg electron of principal quantum number n ≥ 30, which shields the ion from external electric fields without affecting the reaction. Low collision energies are reached by merging a supersonic beam of He Rydberg atoms with a supersonic beam of NO molecules and adjusting their relative velocity using a chip-based Rydberg-Stark decelerator and deflector. We observe a strong enhancement of the reaction rate at collision energies below ∼kB·2 K. This enhancement is interpreted on the basis of adiabatic-channel capture-rate calculations as arising from the near-degenerate rotational levels of opposite parity resulting from the Λ-doubling in the X 2Π1/2 ground state of NO. With these new results, we examine the reliability of broadly used approximate analytic expressions for the thermal rate constants of ion-molecule reactions at low temperatures.
Collapse
Affiliation(s)
| | | | - Serena Schilling
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Frédéric Merkt
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
15
|
Thürlemann M, Böselt L, Riniker S. Regularized by Physics: Graph Neural Network Parametrized Potentials for the Description of Intermolecular Interactions. J Chem Theory Comput 2023; 19:562-579. [PMID: 36633918 PMCID: PMC9878731 DOI: 10.1021/acs.jctc.2c00661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Indexed: 01/13/2023]
Abstract
Simulations of molecular systems using electronic structure methods are still not feasible for many systems of biological importance. As a result, empirical methods such as force fields (FF) have become an established tool for the simulation of large and complex molecular systems. The parametrization of FF is, however, time-consuming and has traditionally been based on experimental data. Recent years have therefore seen increasing efforts to automatize FF parametrization or to replace FF with machine-learning (ML) based potentials. Here, we propose an alternative strategy to parametrize FF, which makes use of ML and gradient-descent based optimization while retaining a functional form founded in physics. Using a predefined functional form is shown to enable interpretability, robustness, and efficient simulations of large systems over long time scales. To demonstrate the strength of the proposed method, a fixed-charge and a polarizable model are trained on ab initio potential-energy surfaces. Given only information about the constituting elements, the molecular topology, and reference potential energies, the models successfully learn to assign atom types and corresponding FF parameters from scratch. The resulting models and parameters are validated on a wide range of experimentally and computationally derived properties of systems including dimers, pure liquids, and molecular crystals.
Collapse
Affiliation(s)
- Moritz Thürlemann
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Lennard Böselt
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Sereina Riniker
- Laboratory of Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| |
Collapse
|
16
|
Kollotzek S, Campos-Martínez J, Bartolomei M, Pirani F, Tiefenthaler L, Hernández MI, Lázaro T, Zunzunegui-Bru E, González-Lezana T, Bretón J, Hernández-Rojas J, Echt O, Scheier P. Helium nanodroplets as an efficient tool to investigate hydrogen attachment to alkali cations. Phys Chem Chem Phys 2022; 25:462-470. [PMID: 36477158 PMCID: PMC9768848 DOI: 10.1039/d2cp03841b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/16/2022] [Indexed: 11/18/2022]
Abstract
We report a novel method to reversibly attach and detach hydrogen molecules to positively charged sodium clusters formed inside a helium nanodroplet host matrix. It is based on the controlled production of multiply charged helium droplets which, after picking up sodium atoms and exposure to H2 vapor, lead to the formation of Nam+(H2)n clusters, whose population was accurately measured using a time-of-flight mass spectrometer. The mass spectra reveal particularly favorable Na+(H2)n and Na2+(H2)n clusters for specific "magic" numbers of attached hydrogen molecules. The energies and structures of these clusters have been investigated by means of quantum-mechanical calculations employing analytical interaction potentials based on ab initio electronic structure calculations. A good agreement is found between the experimental and the theoretical magic numbers.
Collapse
Affiliation(s)
- Siegfried Kollotzek
- University of Innsbruck, Institute for Ion Physics and Applied Physics, Innsbruck, Austria.
| | | | | | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Perugia, Italy
| | - Lukas Tiefenthaler
- University of Innsbruck, Institute for Ion Physics and Applied Physics, Innsbruck, Austria.
| | | | - Teresa Lázaro
- Instituto de Física Fundamental, C.S.I.C., Madrid, Spain.
| | | | | | - José Bretón
- Departamento de Física and IUdEA, Universidad de La Laguna, La Laguna, Tenerife, Spain
| | | | - Olof Echt
- University of Innsbruck, Institute for Ion Physics and Applied Physics, Innsbruck, Austria.
- Department of Physics, University of New Hampshire, Durham, NH 03824, USA
| | - Paul Scheier
- University of Innsbruck, Institute for Ion Physics and Applied Physics, Innsbruck, Austria.
| |
Collapse
|
17
|
Pereira MV, de Oliveira LH, do Nascimento JF, Arroyo PA. Simulation of high-pressure sour natural gas adsorption equilibrium on NaX and NaY zeolites using the multicomponent potential theory of adsorption. ADSORPTION 2022. [DOI: 10.1007/s10450-022-00373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Uddin N, Tomer H, Antony B. Electron scattering and ionization of astrophysical molecules. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
Ashirov T, Siena JS, Zhang M, Ozgur Yazaydin A, Antonietti M, Coskun A. Fast light-switchable polymeric carbon nitride membranes for tunable gas separation. Nat Commun 2022; 13:7299. [DOI: 10.1038/s41467-022-35013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/14/2022] [Indexed: 11/28/2022] Open
Abstract
AbstractSwitchable gas separation membranes are intriguing systems for regulating the transport properties of gases. However, existing stimuli-responsive gas separation membranes suffer from either very slow response times or require high energy input for switching to occur. Accordingly, herein, we introduced light-switchable polymeric carbon nitride (pCN) gas separation membranes with fast response times prepared from melamine precursor through in-situ formation and deposition of pCN onto a porous support using chemical vapor deposition. Our systematic analysis revealed that the gas transport behavior upon light irradiation is fully governed by the polarizability of the permeating gas and its interaction with the charged pCN surface, and can be easily tuned either by controlling the power of the light and/or the duration of irradiation. We also demonstrated that gases with higher polarizabilities such as CO2 can be separated from gases with lower polarizability like H2 and He effectively with more than 22% increase in the gas/CO2 selectivity upon light irradiation. The membranes also exhibited fast response times (<1 s) and can be turned “on” and “off” using a single light source at 550 nm.
Collapse
|
20
|
Ashirov T, Siena JS, Zhang M, Ozgur Yazaydin A, Antonietti M, Coskun A. Fast light-switchable polymeric carbon nitride membranes for tunable gas separation. Nat Commun 2022; 13:7299. [DOI: https:/doi.org/10.1038/s41467-022-35013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/14/2022] [Indexed: 07/03/2024] Open
Abstract
AbstractSwitchable gas separation membranes are intriguing systems for regulating the transport properties of gases. However, existing stimuli-responsive gas separation membranes suffer from either very slow response times or require high energy input for switching to occur. Accordingly, herein, we introduced light-switchable polymeric carbon nitride (pCN) gas separation membranes with fast response times prepared from melamine precursor through in-situ formation and deposition of pCN onto a porous support using chemical vapor deposition. Our systematic analysis revealed that the gas transport behavior upon light irradiation is fully governed by the polarizability of the permeating gas and its interaction with the charged pCN surface, and can be easily tuned either by controlling the power of the light and/or the duration of irradiation. We also demonstrated that gases with higher polarizabilities such as CO2 can be separated from gases with lower polarizability like H2 and He effectively with more than 22% increase in the gas/CO2 selectivity upon light irradiation. The membranes also exhibited fast response times (<1 s) and can be turned “on” and “off” using a single light source at 550 nm.
Collapse
|
21
|
Heravi T, Arslanian AJ, Johnson SD, Dearden DV. Ion Mobility and Fourier Transform Ion Cyclotron Resonance Collision Cross Section Techniques Yield Long-Range and Hard-Sphere Results, Respectively. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1644-1652. [PMID: 35960880 DOI: 10.1021/jasms.2c00112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We determined collision cross section (CCS) values for singly and doubly charged cucurbit[n]uril (n = 5-7), decamethylcucurbit[5]uril, and cyclohexanocucurbit[5]uril complexes of alkali metal cations (Li+-Cs+). These hosts are relatively rigid. CCS values calculated using the projection approximation (PA) for computationally modeled structures of a given host are nearly identical for +1 and +2 complexes, with weak metal ion dependence, whereas trajectory method (TM) calculations of CCS for the same structures consistently yield values 7-10% larger for the +2 complexes than for the corresponding +1 complexes and little metal ion dependence. Experimentally, we measured relative CCS values in SF6 for pairs of +1 and +2 complexes of the cucurbituril hosts using the cross-sectional areas by Fourier transform ion cyclotron resonance ("CRAFTI") method. At center-of-mass collision energies <∼30 eV, CRAFTI CCS values are sensitive to the relative binding energies in the +1 and +2 complexes, but at collision energies >∼40 eV (sufficient that ion decoherence occurs on essentially every collision) that dependence is not evident. Consistent with the PA calculations, these experiments found that the +2 complex ions have CCS values ranging between 94 and 105% of those of their +1 counterparts (increasing with metal ion size). In contrast, but consistent with the TM CCS calculations, ion mobility measurements of the same complexes at close to thermal energies in much less polarizable N2 find the CCS of +2 complexes to be in all cases 9-12% larger than those of the corresponding +1 complexes, with little metal ion dependence.
Collapse
Affiliation(s)
- Tina Heravi
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Andrew J Arslanian
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - Spencer D Johnson
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| | - David V Dearden
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602-1030, United States
| |
Collapse
|
22
|
Schleif T, Prado Merini M, Henkel S, Sander W. Solvation Effects on Quantum Tunneling Reactions. Acc Chem Res 2022; 55:2180-2190. [PMID: 35730754 DOI: 10.1021/acs.accounts.2c00151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A decisive factor for obtaining high yields and selectivities in organic synthesis is the choice of the proper solvent. Solvent selection is often guided by the intuitive understanding of transition state-solvent interactions. However, quantum-mechanical tunneling can significantly contribute to chemical reactions, circumventing the transition state and thus depriving chemists of their intuitive handle on the reaction kinetics. In this Account, we aim to provide rationales for the effects of solvation on tunneling reactions derived from experiments performed in cryogenic matrices.The tunneling reactions analyzed here cover a broad range of prototypical organic transformations that are subject to strong solvation effects. Examples are the hydrogen tunneling probability for the cis-trans isomerization of formic acid which is strongly reduced upon formation of hydrogen-bonded complexes and the [1,2]H-shift in methylhydroxycarbene where a change in product selectivity is predicted upon interaction with hydrogen bond acceptors.Not only hydrogen but also heavy atom tunneling can exhibit strong solvent effects. The direction of the nearly degenerate valence tautomerization between benzene oxide and oxepin was found to reverse upon formation of a halogen or hydrogen bond with ICF3 or H2O. But even in the absence of strong noncovalent interactions such as hydrogen or halogen bonding, solvation can have a decisive effect on tunneling as evidenced by the Cope rearrangement of semibullvalenes via heavy-atom tunneling. Can quantum tunneling be catalyzed? The acceleration of the ring expansion of 1H-bicyclo[3.1.0.]-hexa-3,5-dien-2-one by complexation with Lewis acids provides a proof-of-concept for tunneling catalysis.Two concepts are central for the explanation and prediction of solvation effects on tunneling phenomena: a simple approach expands the Born-Oppenheimer approximation by separating nuclear degrees of freedom into intra- and intermolecular degrees. Intermolecular movements represent the slowest motions within molecular aggregates, thus effectively freezing the position of the solvent in relation to the reactant during the tunneling process. Another useful approach is to treat reactants and products by separate single-well potentials, where the intersection represents the transition state. Thus, stabilization of the reactants via solvation should result in an increase in barrier heights and widths which in turn lowers tunneling probabilities. These simple models can predict trends in tunneling kinetics and provide a rational basis for controlling tunneling reactions via solvation.
Collapse
Affiliation(s)
- Tim Schleif
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Melania Prado Merini
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Stefan Henkel
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| | - Wolfram Sander
- Lehrstuhl für Organische Chemie II, Ruhr-Universität Bochum, 44801 Bochum, Germany
| |
Collapse
|
23
|
Majumdar S, Roy AK. Recent Advances in Cartesian-Grid DFT in Atoms and Molecules. Front Chem 2022; 10:926916. [PMID: 35936092 PMCID: PMC9354079 DOI: 10.3389/fchem.2022.926916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
In the past several decades, density functional theory (DFT) has evolved as a leading player across a dazzling variety of fields, from organic chemistry to condensed matter physics. The simple conceptual framework and computational elegance are the underlying driver for this. This article reviews some of the recent developments that have taken place in our laboratory in the past 5 years. Efforts are made to validate a viable alternative for DFT calculations for small to medium systems through a Cartesian coordinate grid- (CCG-) based pseudopotential Kohn-Sham (KS) DFT framework using LCAO-MO ansatz. In order to legitimize its suitability and efficacy, at first, electric response properties, such as dipole moment ( μ ), static dipole polarizability ( α ), and first hyperpolarizability ( β ), are calculated. Next, we present a purely numerical approach in CCG for proficient computation of exact exchange density contribution in certain types of orbital-dependent density functionals. A Fourier convolution theorem combined with a range-separated Coulomb interaction kernel is invoked. This takes motivation from a semi-numerical algorithm, where the rate-deciding factor is the evaluation of electrostatic potential. Its success further leads to a systematic self-consistent approach from first principles, which is desirable in the development of optimally tuned range-separated hybrid and hyper functionals. Next, we discuss a simple, alternative time-independent DFT procedure, for computation of single-particle excitation energies, by means of "adiabatic connection theorem" and virial theorem. Optical gaps in organic chromophores, dyes, linear/non-linear PAHs, and charge transfer complexes are faithfully reproduced. In short, CCG-DFT is shown to be a successful route for various practical applications in electronic systems.
Collapse
Affiliation(s)
| | - Amlan K. Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, India
| |
Collapse
|
24
|
Smucker JC, Montgomery JA, Bredice M, Rozman M, Cote R, Sadeghpour H, Vrinceanu D, Kharchenko VA. Model of Charge Transfer Collisions between C 60 and Slow Ions. J Chem Phys 2022; 157:054303. [DOI: 10.1063/5.0100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A semi-classical model describing the charge transfer collisions of C60 fullerene with different slow ions has been developed to explain available experimental data. This data reveals multiple Breit-Wigner like peaks in the cross sections, with subsequent peaks of reactive cross sections decreasing in magnitude. Calculations of charge transfer probabilities, quasi-resonant cross sections and cross sections for reactive collisions have been performed using semi-empirical interaction potentials between fullerenes and ion projectiles. All computations have been carried out with realistic wave functions for C60's valence electrons derived from the simplified jellium model. The quality of these electron wave functions have been successfully verified by comparing theoretical calculations and experimental data on the small angle cross sections of resonant C60+C60+ collisions. Using the semi-empirical potentials to describe resonant scattering phenomena in C60 collisions with ions and Landau-Zener charge transfer theory, we calculated theoretical cross sections for various C60 charge transfer and fragmentation reactions which agree with experiments.
Collapse
Affiliation(s)
| | - John A Montgomery
- Department of Physics, University of Connecticut, United States of America
| | | | | | - Robin Cote
- University of Massachusetts Boston, United States of America
| | - Hossein Sadeghpour
- Harvard-Smithsonian Center for Astrophysics Institute for Theoretical Atomic Molecular and Optical Physics, United States of America
| | | | | |
Collapse
|
25
|
Zhelyazkova V, Martins FBV, Merkt F. Multipole-moment effects in ion-molecule reactions at low temperatures: part III - the He + + CH 4 and He + + CD 4 reactions at low collision energies and the effect of the charge-octupole interaction. Phys Chem Chem Phys 2022; 24:16360-16373. [PMID: 35762649 PMCID: PMC9258730 DOI: 10.1039/d1cp05861d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
Abstract
We present experimental and theoretical studies of the He+ + CH4 and He+ + CD4 reactions at collision energies in the kB·(0-10) K range. Helium atoms in a supersonic beam are excited to a low-field-seeking Rydberg-Stark state and merged with a supersonic beam of CH4 or CD4 using a curved surface-electrode deflector. The ion-molecule reactions are studied within the orbit of the helium Rydberg [He(n)] electron, which suppresses stray-electric-fields-induced heating and makes it possible to reach very low collision energies. The collision energy is varied by adjusting the velocity of the He(n) atoms with the surface deflector, keeping the velocity of the methane beam constant. The reaction product ions (C(H/D)p+ with p∈ {1,2,3}) are collected in a time-of-flight mass spectrometer and monitored as a function of the collision energy. No significant energy-dependence of the total reaction yields of either reactions is observed. The measured relative reaction rate coefficient for the He+ + CH4 reaction is approximately twice higher than the one for the He+ + CD4 reaction. The CH+, CH2+ and CH3+ (CD+, CD2+ and CD3+) ions were detected in ratios 0.28(±0.04) : 1.00(±0.11) : 0.11(±0.04) [0.35(±0.07) : 1.00(±0.16):0.04+0.09-0.04]. We also present calculations of the capture rate coefficients for the two reactions, in which the interaction between the charge of the helium ion and the octupole moment of the methane molecule is included. The rotational-state-specific capture rate coefficients are calculated for states with J = (0-3) at collision energies below kB·15 K. After averaging over the rotational states of methane populated at the rotational temperature of the supersonic beam, the calculations only predict extremely weak enhancements (in the order of ∼0.4%) of the rate coefficients compared to the Langevin rate constant kL over the collision-energy range considered.
Collapse
|
26
|
Omodemi O, Kaledin M, Kaledin AL. Permutationally invariant polynomial representation of polarizability tensor surfaces for linear regression analysis. J Comput Chem 2022; 43:1495-1503. [PMID: 35737590 DOI: 10.1002/jcc.26952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/09/2022] [Indexed: 11/07/2022]
Abstract
A linearly parameterized functional form for a Cartesian representation of molecular dipole polarizability tensor surfaces (PTS) is described. The proposed expression for the PTS is a linearization of the recently reported power series ansatz of the original Applequist model, which by construction is non-linear in parameter space. This new approach possesses (i) a unique solution to the least-squares fitting problem; (ii) a low level of the computational complexity of the resulting linear regression procedure, comparable to those of the potential energy and dipole moment surfaces; and (iii) a competitive level of accuracy compared to the non-linear PTS model. Calculations of CH4 PTS, with polarizabilities fitted to 9000 training set points with the energies up to 14,000 cm-1 show an impressive level of accuracy of the linear PTS model obtained with ~1600 parameters: ~1% versus 0.3% RMSE for the non-linear vs. linear model on a test set of 1000 configurations.
Collapse
Affiliation(s)
- Oluwaseun Omodemi
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA
| | - Martina Kaledin
- Department of Chemistry & Biochemistry, Kennesaw State University, Kennesaw, Georgia, USA
| | - Alexey L Kaledin
- Cherry L. Emerson Center for Scientific Computation and Department of Chemistry, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
27
|
Akin-Ojo O. Contribution of the Induced-Dipole Interaction to Methane Aggregation in Water. J Phys Chem B 2022; 126:2552-2556. [PMID: 35333514 DOI: 10.1021/acs.jpcb.2c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Apolar molecules in the gas phase have no dipole moments. However, when placed in an aqueous environment, they acquire a dipole moment induced by the electric fields of the surrounding water molecules. Could these induced dipole moments, not present in the gas phase but present in solution, play an important role in the hydrophobic interaction between two apolar molecules? In particular, for two methane molecules, our results show that the interaction between the induced-dipole moments only very weakly plays a role in the aggregation of a pair of methane molecules in water. The induced-dipole-induced-dipole interaction has a magnitude as large as 1 kcal/mol for certain mutual orientations of the induced dipole moments, which is larger than the magnitude of the free energy of aggregation of the methane solutes in water. However, when averaged over all physically occurring conformations for a fixed intersolute separation, this interaction averages to an insignificant value (magnitude less than 0.01 kcal/mol) except, possibly, for some very short intermolecular separation.
Collapse
Affiliation(s)
- Omololu Akin-Ojo
- ICTP East African Institute for Fundamental Research (EAIFR), University of Rwanda, Kigali, Rwanda
| |
Collapse
|
28
|
Yusef Buey M, Mineva T, Rapacioli M. Coupling density functional based tight binding with class 1 force fields in a hybrid QM/MM scheme. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02878-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Potential Energy Surfaces for Noble Gas (Ar, Kr, Xe, Rn)–Propylene Oxide Systems: Analytical Formulation and Binding. Symmetry (Basel) 2022. [DOI: 10.3390/sym14020249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multidimensional potential energy surfaces for heavy noble gas–propylene oxide systems are obtained by applying the phenomenological method successfully used to describe homologous systems involving He and Ne atoms. Such potential energy surfaces, where the interaction exclusively arises from the anisotropic van der Waals interaction components, are given in an analytical form. Therefore, they can be easily used as force fields to carry out molecular simulations to evaluate spectroscopic features and the dynamical selectivity of weakly bound complexes formed by propylene oxide (a prototype chiral species) with a noble gas atom (a prototype isotropic partner) by two-body collisions under a variety of conditions. Several potential energy minima are identified on the surfaces, which are confirmed and characterized by high level ab initio calculations. The next step to further generalize this methodology is its extension to systems involving propylene oxide-diatomic molecules (as H2, O2 and N2), as well as to propylene oxide dimers.
Collapse
|
30
|
Palazzetti F, Cappelletti D, Coletti C, Falcinelli S, Pirani F. Molecular beam scattering experiments on noble gas-propylene oxide: Total integral cross sections and potential energy surfaces of He- and Ne-C 3H 6O. J Chem Phys 2021; 155:234301. [PMID: 34937350 DOI: 10.1063/5.0073737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The interactions of He and Ne with propylene oxide have been investigated with the molecular beam technique by measuring the total (elastic + inelastic) integral cross section as a function of collision velocity. Starting from the analysis of these experimental data, potential energy surfaces, formulated as a function of the separation distance and orientation of propylene oxide with respect to the interacting partners, have been built: The average depth of potential wells (located at intermediate separation distances) has been characterized by analyzing the observed "glory" quantum effects, and the strength of long-range attractions has been obtained from the magnitude and the velocity dependence of the smooth component of measured cross sections. The surfaces, tested and improved against new ab initio calculations of minima interaction energies at the complete basis set level of theory, are defined in the full space of relative configurations. This represents a crucial condition to provide force fields useful to carry out, in general, important molecular property simulations and to evaluate, in the present case, the spectroscopic features and the dynamical selectivity of weakly bound complexes formed by propylene oxide, a prototype chiral species, during collisions in interstellar clouds and winds, in the space and planetary atmospheres. The adopted formulation of the interaction can be readily extended to similar systems, involving heavier noble gases or diatomic molecules (H2, O2, and N2) as well as to propylene oxide dimers.
Collapse
Affiliation(s)
- Federico Palazzetti
- Dipartimento di Chimica, Biologia e Biotecnologie - Università degli Studi di Perugia, Perugia, Italy
| | - David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie - Università degli Studi di Perugia, Perugia, Italy
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università degli Studi "G. D'Annunzio" Chieti-Pescara, Chieti, Italy
| | - Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, Perugia, Italy
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie - Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
31
|
Study of Positron Impact Scattering from Methane and Silane Using an Analytically Obtained Static Potential with Correlation Polarization. ATOMS 2021. [DOI: 10.3390/atoms9040113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A detailed study of positron impact elastic scattering from methane and silane is carried out using a model potential consisting of static and polarization potentials. The static potential for the molecular target is obtained analytically by using accurate Gaussian molecular wavefunctions. The molecular orbitals are expressed as a linear combination of Gaussian atomic orbitals. Along with the analytically obtained static potential, a correlation polarization potential is also added to construct the model potential. Utilizing the model potential, the Schrödinger equation is solved using the partial wave phase shift analysis method, and the scattering amplitude is obtained in terms of the phase shifts. Thereafter, the differential, integrated and total cross sections are calculated. These cross-section results are compared with the previously reported measurements and theoretical calculations.
Collapse
|
32
|
Hong Q, Bartolomei M, Coletti C, Lombardi A, Sun Q, Pirani F. Vibrational Energy Transfer in CO+N 2 Collisions: A Database for V-V and V-T/R Quantum-Classical Rate Coefficients. Molecules 2021; 26:molecules26237152. [PMID: 34885730 PMCID: PMC8659027 DOI: 10.3390/molecules26237152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
Knowledge of energy exchange rate constants in inelastic collisions is critically required for accurate characterization and simulation of several processes in gaseous environments, including planetary atmospheres, plasma, combustion, etc. Determination of these rate constants requires accurate potential energy surfaces (PESs) that describe in detail the full interaction region space and the use of collision dynamics methods capable of including the most relevant quantum effects. In this work, we produce an extensive collection of vibration-to-vibration (V-V) and vibration-to-translation/rotation (V-T/R) energy transfer rate coefficients for collisions between CO and N2 molecules using a mixed quantum-classical method and a recently introduced (A. Lombardi, F. Pirani, M. Bartolomei, C. Coletti, and A. Laganà, Frontiers in chemistry, 7, 309 (2019)) analytical PES, critically revised to improve its performance against ab initio and experimental data of different sources. The present database gives a good agreement with available experimental values of V-V rate coefficients and covers an unprecedented number of transitions and a wide range of temperatures. Furthermore, this is the first database of V-T/R rate coefficients for the title collisions. These processes are shown to often be the most probable ones at high temperatures and/or for highly excited molecules, such conditions being relevant in the modeling of hypersonic flows, plasma, and aerospace applications.
Collapse
Affiliation(s)
- Qizhen Hong
- State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (Q.H.); (Q.S.)
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. d’Annunzio Chieti-Pescara, Via dei Vestini, I-66100 Chieti, Italy
- Correspondence:
| | - Andrea Lombardi
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, I-06183 Perugia, Italy; (A.L.); (F.P.)
| | - Quanhua Sun
- State Key Laboratory of High Temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China; (Q.H.); (Q.S.)
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto, I-06183 Perugia, Italy; (A.L.); (F.P.)
| |
Collapse
|
33
|
Siakavelas GI, Georgiadis AG, Charisiou ND, Yentekakis IV, Goula MA. Cost‐Effective Adsorption of Oxidative Coupling‐Derived Ethylene Using a Molecular Sieve. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202100147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Georgios I. Siakavelas
- University of Western Macedonia Department of Chemical Engineering Koila 50100 Kozani Greece
| | - Amvrosios G. Georgiadis
- University of Western Macedonia Department of Chemical Engineering Koila 50100 Kozani Greece
| | - Nikolaos D. Charisiou
- University of Western Macedonia Department of Chemical Engineering Koila 50100 Kozani Greece
| | - Ioannis V. Yentekakis
- Technical University of Crete School of Environmental Engineering 73100 Chania Greece
| | - Maria A. Goula
- University of Western Macedonia Department of Chemical Engineering Koila 50100 Kozani Greece
| |
Collapse
|
34
|
Elastic Scattering of Slow Electrons by Noble Gases—The Effective Range Theory and the Rigid Sphere Model. ATOMS 2021. [DOI: 10.3390/atoms9040091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
We report on an extensive semi-empirical analysis of scattering cross-sections for electron elastic collision with noble gases via the Markov Chain Monte Carlo-Modified Effective Range Theory (MCMC−MERT). In this approach, the contribution of the long-range polarization potential (∼r−4) to the scattering phase shifts is precisely expressed, while the effect of the complex short-range interaction is modeled by simple quadratic expression (the so-called effective range expansion with several adjustable parameters). Additionally, we test a simple potential model of a rigid sphere combined with r−4 interaction. Both models, the MERT and the rigid sphere are based on the analytical properties of Mathieu functions, i.e., the solutions of radial Schrödinger equation with pure polarization potential. However, in contrast to MERT, the rigid sphere model depends entirely upon one adjustable parameter—the radius of a hard-core. The model’s validity is assessed by a comparative study against numerous experimental cross-sections and theoretical phase shifts. We show that this simple approach can successfully describe the electron elastic collisions with helium and neon for energies below 1 eV. The purpose of the present analysis is to give insight into the relations between the parameters of both models (that translate into the cross-sections in the very low energy range) and some “macroscopic” features of atoms such as the polarizability and atomic “radii”.
Collapse
|
35
|
Mant B, Franz J, Wester R, Gianturco FA. Beyond the helium buffer: 12C −2 rotational cooling in cold traps with H 2 as a partner gas: interaction forces and quantum dynamics. Mol Phys 2021. [DOI: 10.1080/00268976.2021.1938267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Barry Mant
- Department of Chemistry, University College London, London, UK
| | - Jan Franz
- Faculty of Applied Physics and Mathematics, Institute of Physics and Computer Science, Gdańsk University of Technology, Gdańsk, Poland
| | - Roland Wester
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| | - F. A. Gianturco
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
36
|
Altundal OF, Haslak ZP, Keskin S. Combined GCMC, MD, and DFT Approach for Unlocking the Performances of COFs for Methane Purification. Ind Eng Chem Res 2021; 60:12999-13012. [PMID: 34526735 PMCID: PMC8431337 DOI: 10.1021/acs.iecr.1c01742] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
Covalent organic frameworks (COFs) are promising materials for gas storage and separation; however, the potential of COFs for separation of CH4 from industrially relevant gases such as H2, N2, and C2H6 is yet to be investigated. In this work, we followed a multiscale computational approach to unlock both the adsorption- and membrane-based CH4/H2, CH4/N2, and C2H6/CH4 separation potentials of 572 COFs by combining grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations and density functional theory (DFT) calculations. Adsorbent performance evaluation metrics of COFs, adsorption selectivity, working capacity, regenerability, and adsorbent performance score were calculated for separation of equimolar CH4/H2, CH4/N2, and C2H6/CH4 mixtures at vacuum swing adsorption (VSA) and pressure swing adsorption (PSA) conditions to identify the best-performing COFs for each mixture. Results showed that COFs could achieve selectivities of 2-85, 1-7, and 2-23 for PSA-based CH4/H2, CH4/N2, and C2H6/CH4 separations, respectively, outperforming conventional adsorbents such as zeolites and activated carbons for each mixture. Structure-performance relations revealed that COFs with pore sizes <10 Å are promising adsorbents for all mixtures. We identified the gas adsorption sites in the three top-performing COFs commonly identified for each mixture by DFT calculations and computed the binding strength of gases, which were found to be on the order of C2H6 > CH4 > N2 > H2, supporting the GCMC results. Nucleus-independent chemical shift (NICS) indexes of aromaticity for adsorption sites were calculated, and the results revealed that the degree of linker aromaticity could be a measure for the selection or design of highly alkane-selective COF adsorbents over N2 and H2. Finally, COF membranes were shown to achieve high H2 permeabilities, 4.57 × 103 -1.25 × 106 Barrer, and decent membrane selectivities, as high as 4.3, outperforming polymeric and MOF-based membranes for separation of H2 from CH4.
Collapse
Affiliation(s)
- Omer Faruk Altundal
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Zeynep Pinar Haslak
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| | - Seda Keskin
- Department of Chemical and Biological Engineering, Koc University, Rumelifeneri Yolu, Sariyer, 34450 Istanbul, Turkey
| |
Collapse
|
37
|
Falcinelli S, Vecchiocattivi F, Farrar JM, Brunetti BG, Cavalli S, Pirani F. Stereo-dynamical effects in chemi-ionization reactions of atmospheric O2 and N2 molecules promoted by collisions with Ne*(3P2,0) atoms. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Georgiadis A, Charisiou ND, Gaber S, Polychronopoulou K, Yentekakis IV, Goula MA. Adsorption of Hydrogen Sulfide at Low Temperatures Using an Industrial Molecular Sieve: An Experimental and Theoretical Study. ACS OMEGA 2021; 6:14774-14787. [PMID: 34151059 PMCID: PMC8209825 DOI: 10.1021/acsomega.0c06157] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 06/13/2023]
Abstract
In the work presented herein, a joint experimental and theoretical approach has been carried out to obtain an insight into the desulfurization performance of an industrial molecular sieve (IMS), resembling a zeolitic structure with a morphology of cubic crystallites and a high surface area of 590 m2 g-1, with a view to removing H2S from biogas. The impact of temperature, H2S inlet concentration, gas matrix, and regeneration cycles on the desulfurization performance of the IMS was thoroughly probed. The adsorption equilibrium, sorption kinetics, and thermodynamics were also examined. Experimental results showed that the relationship between H2S uptake and temperature increase was inversely proportional. Higher H2S initial concentrations led to lower breakpoints. The presence of CO2 negatively affected the desulfurization performance. The IMS was fully regenerated after 15 adsorption/desorption cycles. Theoretical studies revealed that the Langmuir isotherm better described the sorption behavior, pore diffusion was the controlling step of the process (Bangham model), and that the activation energy was 42.7 kJ mol-1 (physisorption). Finally, the thermodynamic studies confirmed that physisorption predominated.
Collapse
Affiliation(s)
- Amvrosios
G. Georgiadis
- Laboratory
of Alternative Fuels and Environmental Catalysis (LAFEC), Department
of Chemical Engineering, University of Western
Macedonia, GR-50100 Koila, Greece
| | - Nikolaos D. Charisiou
- Laboratory
of Alternative Fuels and Environmental Catalysis (LAFEC), Department
of Chemical Engineering, University of Western
Macedonia, GR-50100 Koila, Greece
| | - Safa Gaber
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE
| | - Kyriaki Polychronopoulou
- Department
of Mechanical Engineering, Khalifa University
of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi, P.O. Box 127788, UAE
| | - Ioannis V. Yentekakis
- Laboratory
of Physical Chemistry & Chemical Processes, School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece
| | - Maria A. Goula
- Laboratory
of Alternative Fuels and Environmental Catalysis (LAFEC), Department
of Chemical Engineering, University of Western
Macedonia, GR-50100 Koila, Greece
| |
Collapse
|
39
|
Lee SK, Ree J. Isotope Effects on the Energy Flow and Bond Dissociations of Excited α‐Chlorotoluene in Collisions with
H
2
/
D
2
. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sang Kwon Lee
- Department of Chemistry Education Chonnam National University Gwangju 61186 Korea
| | - Jongbaik Ree
- Department of Chemistry Education Chonnam National University Gwangju 61186 Korea
| |
Collapse
|
40
|
Jo JY, Tanimura Y. Full molecular dynamics simulations of molecular liquids for single-beam spectrally controlled two-dimensional Raman spectroscopy. J Chem Phys 2021; 154:124115. [PMID: 33810650 DOI: 10.1063/5.0044661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-beam spectrally controlled (SBSC) two-dimensional (2D) Raman spectroscopy is a unique 2D vibrational measurement technique utilizing trains of short pulses that are generated from a single broadband pulse by pulse shaping. This approach overcomes the difficulty of 2D Raman spectroscopy in dealing with small-signal extraction and avoids complicated low-order cascading effects, thus providing a new possibility for measuring the intramolecular and intermolecular modes of molecular liquids using fifth-order 2D Raman spectroscopy. Recently, for quantitatively investigating the mode-mode coupling mechanism, Hurwitz et al. [Opt. Express 28, 3803 (2020)] have developed a new pulse design for this measurement to separate the contributions of the fifth- and third-order polarizations, which are often overlapped in the original single-beam measurements. Here, we describe a method for simulating these original measurements and the new 2D Raman measurements on the basis of a second-order response function approach. We carry out full molecular dynamics simulations for carbon tetrachloride and liquid water using an equilibrium-nonequilibrium hybrid algorithm, with the aim of explaining the key features of the SBSC 2D Raman spectroscopic method from a theoretical point of view. The predicted signal profiles and intensities provide valuable information that can be applied to 2D spectroscopy experiments, allowing them to be carried out more efficiently.
Collapse
Affiliation(s)
- Ju-Yeon Jo
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Yoshitaka Tanimura
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
41
|
Graves V, Cooper B, Tennyson J. The efficient calculation of electron impact ionization cross sections with effective core potentials. J Chem Phys 2021; 154:114104. [DOI: 10.1063/5.0039465] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Vincent Graves
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Bridgette Cooper
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
42
|
Multicomponent Network Formation in Selective Layer of Composite Membrane for CO 2 Separation. MEMBRANES 2021; 11:membranes11030174. [PMID: 33671054 PMCID: PMC7997254 DOI: 10.3390/membranes11030174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022]
Abstract
As a promising material for CO2/N2 separation, PolyActiveTM can be used as a separation layer in thin-film composite membranes (TFCM). Prior studies focused on the modification of PolyActiveTM using low-molecular-weight additives. In this study, the effect of chemical crosslinking of reactive end-groups containing additives, forming networks within selective layers of the TFCM, has been studied. In order to understand the influence of a network embedded into a polymer matrix on the properties of the resulting materials, various characterization methods, including Fourier transform infrared spectroscopy (FTIR), gas transport measurements, differential scanning calorimetry (DSC) and atomic force microscopy (AFM), were used. The characterization of the resulting membrane regarding individual gas permeances by an in-house built “pressure increase” facility revealed a twofold increase in CO2 permeance, with insignificant losses in CO2/N2 selectivity.
Collapse
|
43
|
Zhelyazkova V, Martins FBV, Agner JA, Schmutz H, Merkt F. Ion-Molecule Reactions below 1 K: Strong Enhancement of the Reaction Rate of the Ion-Dipole Reaction He^{+}+CH_{3}F. PHYSICAL REVIEW LETTERS 2020; 125:263401. [PMID: 33449728 DOI: 10.1103/physrevlett.125.263401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/14/2020] [Accepted: 11/04/2020] [Indexed: 06/12/2023]
Abstract
The reaction between He^{+} and CH_{3}F forming predominantly CH_{2}^{+} and CHF^{+} has been studied at collision energies E_{coll} between 0 and k_{B}·10 K in a merged-beam apparatus. To avoid heating of the ions by stray electric fields, the reaction was observed within the orbit of a highly excited Rydberg electron. Supersonic beams of CH_{3}F and He(n) Rydberg atoms with principal quantum number n=30 and 35 were merged and their relative velocity tuned using a Rydberg-Stark decelerator and deflector, allowing an energy resolution of 150 mK. A strong enhancement of the reaction rate was observed below E_{coll}/k_{B}=1 K. The experimental results are interpreted with an adiabatic capture model that accounts for the state-dependent orientation of the polar CH_{3}F molecules by the Stark effect as they approach the He^{+} ion. The enhancement of the reaction rate at low collision energies is primarily attributed to para-CH_{3}F molecules in the J=1, KM=1 high-field-seeking states, which represent about 8% of the population at the 6 K rotational temperature of the supersonic beam.
Collapse
Affiliation(s)
| | | | - Josef A Agner
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Hansjürg Schmutz
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Frédéric Merkt
- Laboratory of Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
44
|
Study of Electron and Positron Elastic Scattering from Hydrogen Sulphide Using Analytically Obtained Static Potential. ATOMS 2020. [DOI: 10.3390/atoms8040083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A detailed study of elastic scattering of electrons and positrons from a hydrogen sulphide (H2S) molecule is presented using the method of partial wave phase shift analysis with suitably chosen complex optical potentials. The important aspect of our present work is that we uniquely obtain static potential in an analytical form and use it along with exchange (only for electron), polarization and purely imaginary absorption potentials to define the complex optical potential. The static potential is evaluated by obtaining charge density from the H2S molecule using the molecular wavefunction represented through an accurate analytical form of the Gaussian orbitals. The primary aim of our study is to test our present approach, as applied to the electron and positron scattering from H2S. Therefore, the results for electron and positron impact differential, integral, momentum-transfer, absorption and total cross sections are obtained for the incident energies in the range of 10–500 eV. Comparisons of these different types of cross section results with the available measurements and other calculations show good agreement, which suggests the applicability of our present approach.
Collapse
|
45
|
Cardona J, Jorge M, Lue L. Simple corrections for the static dielectric constant of liquid mixtures from model force fields. Phys Chem Chem Phys 2020; 22:21741-21749. [PMID: 32959821 DOI: 10.1039/d0cp04034g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pair-wise additive force fields provide fairly accurate predictions, through classical molecular simulations, for a wide range of structural, thermodynamic, and dynamical properties of many materials. However, one key property that has not been well captured is the static dielectric constant, which characterizes the response of a system to an applied electric field and is important in determining the screening of electrostatic interactions through a system. A simple correction has been found to provide a relatively robust method to improve the estimate of the static dielectric constant from molecular simulations for a broad range of compounds. This approach accounts for the electronic contribution to molecular polarizability and assumes that the charges that couple a molecule to an applied electric field are proportional to the effective force field charges. In this work, we examine how this correction performs for systems at different temperatures and for binary mixtures. Using a value for the electronic polarizability, based on the experimental index of refraction, and a charge scaling factor, determined at a single temperature, we find that the static dielectric constant can be predicted remarkably well, in comparison to the experimentally measured values. This provides good evidence that the effective charges that appear in pair-wise additive force fields developed to reproduce the potential energy surface of a system are not the same as those that determine the static dielectric constant; however, they can be captured in a relatively simple manner, which is dependent on the particular force field.
Collapse
Affiliation(s)
- Javier Cardona
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK. and Department of Electronic and Electrical Engineering, University of Strathclyde, Royal College Building, 204 George Street, Glasgow G1 1XW, UK
| | - Miguel Jorge
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK.
| | - Leo Lue
- Department of Chemical and Process Engineering, University of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, UK.
| |
Collapse
|
46
|
Thakkar AJ. Dipole oscillator strength distributions, sum rules, mean excitation energies, and isotropic van der Waals coefficients for benzene, pyridazine, pyrimidine, pyrazine, s-triazine, toluene, hexafluorobenzene, and nitrobenzene. J Chem Phys 2020; 153:124307. [PMID: 33003703 DOI: 10.1063/5.0025662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Experimental, theoretical, and additive-model photoabsorption cross sections combined with constraints provided by the Kuhn-Reiche-Thomas sum rule and the high-energy behavior of the dipole oscillator strength density are used to construct dipole oscillator strength distributions for benzene, pyridazine (1,2-diazine), pyrimidine (1,3-diazine), pyrazine (1,4-diazine), s-triazine (1,3,5-triazine), toluene (methylbenzene), hexafluorobenzene, and nitrobenzene. The distributions are used to predict dipole sum rules S(k) for -6 ≤ k ≤ 2, mean excitation energies I(k) for -2 ≤ k ≤ 2, and isotropic van der Waals C6 coefficients. A popular combination rule for estimating C6 coefficients for unlike interactions from the C6 coefficients of the like interactions is found to be accurate to better than 1% for 606 of 628 cases (96.4%) in the test set.
Collapse
Affiliation(s)
- Ajit J Thakkar
- Department of Chemistry, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
47
|
Hui WCH, Lemke KH. The ozone–water complex: CCSD(T)/CBS structures and anharmonic vibrational spectroscopy of O 3(H 2O) n, ( n = 1 − 2). J Chem Phys 2020; 153:084302. [DOI: 10.1063/5.0015597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Wallace C. H. Hui
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong, SAR
| | - Kono H. Lemke
- Department of Earth Sciences, University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong, SAR
| |
Collapse
|
48
|
Wang L, Zhang XL, Zhai Y, Nooijen M, Li H. Explicitly correlated ab initio potential energy surface and predicted rovibrational spectra for H 2O-N 2 and D 2O-N 2 complexes. J Chem Phys 2020; 153:054303. [PMID: 32770926 DOI: 10.1063/5.0009098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
An ab initio intermolecular potential energy surface (PES) for the van der Waals complex of H2O-N2 that explicitly incorporates the intramolecular Q2 bending normal mode of the H2O monomer is presented. The electronic structure computations have been carried out at the explicitly correlated coupled cluster theory [CCSD(T)-F12] with an augmented correlation-consistent triple zeta basis set and an additional bond function. Analytic five-dimensional intermolecular PESs for ν2(H2O) = 0 and 1 are obtained by fitting to the multi-dimensional Morse/long-range potential function form. These fits to 40 890 points have the root-mean-square (rms) discrepancy of 0.88 cm-1 for interaction energies less than 2000.0 cm-1. The resulting vibrationally averaged PESs provide good representations of the experimental microwave and infrared data: for microwave transitions of H2O-N2, the rms discrepancy is only 0.0003 cm-1, and for infrared transitions of the A1 symmetry of the H2O(ν2 = 1 ← 0)-N2, the rms discrepancy is 0.001 cm-1. The calculated infrared band origin shifts associated with the ν2 bending vibration of water are 2.210 cm-1 and 1.323 cm-1 for H2O-N2 and D2O-N2, respectively, in good agreement with the experimental values of 2.254 cm-1 and 1.266 cm-1. The benchmark tests and comparisons of the predicted spectral properties are carried out between CCSD(T)-F12a and CCSD(T)-F12b approaches.
Collapse
Affiliation(s)
- Lu Wang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Xiao-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| | - Marcel Nooijen
- Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, China
| |
Collapse
|
49
|
Hou D, Yang JT, Zhai Y, Zhang XL, Liu JM, Li H. Analytic intermolecular potential energy surface and first-principles prediction of the rotational profiles for a symmetric top ion-atom complex: A case study of H 3O +-Ar. J Chem Phys 2020; 152:214302. [PMID: 32505168 DOI: 10.1063/5.0007691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
We presented the first three-dimensional (3D) ab initio intermolecular potential energy surface (PES) for the H3O+-Ar complex. The electronic structure computations were carried out at the explicitly correlated coupled cluster theory-F12 with an augmented correlation-consistent triple zeta basis set. Analytic 3D PES was obtained by least-squares fitting the multi-dimensional Morse/Long-Range (mdMLR) potential model to interaction energies, where the mdMLR function form was applied to the nonlinear ion-atom case for the first time. The 3D PES fitting to 1708 points has root-mean-square deviations of 0.19 cm-1 with only 108 parameters for interaction energies less than 500 cm-1. With the 3D PES of the H3O+-Ar complex, we employed the combined radial discrete variable representation/angular finite basis representation method and Lanczos algorithm to calculate rovibrational energy levels. The rotational profiles of the O-H anti-stretching vibrational bands of v3 +(S)←0+ and v3 -(A)←0- for the H3O+-Ar complex were predicted and were in good agreement with the experimental results.
Collapse
Affiliation(s)
- Dan Hou
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Ji-Tai Yang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Yu Zhai
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Xiao-Long Zhang
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Jing-Min Liu
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| | - Hui Li
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 2519 Jiefang Road, Changchun 130023, Peoples Republic of China
| |
Collapse
|
50
|
Nunzi F, Pannacci G, Tarantelli F, Belpassi L, Cappelletti D, Falcinelli S, Pirani F. Leading Interaction Components in the Structure and Reactivity of Noble Gases Compounds. Molecules 2020; 25:molecules25102367. [PMID: 32443725 PMCID: PMC7287633 DOI: 10.3390/molecules25102367] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
The nature, strength, range and role of the bonds in adducts of noble gas atoms with both neutral and ionic partners have been investigated by exploiting a fine-tuned integrated phenomenological–theoretical approach. The identification of the leading interaction components in the noble gases adducts and their modeling allows the encompassing of the transitions from pure noncovalent to covalent bound aggregates and to rationalize the anomalous behavior (deviations from noncovalent type interaction) pointed out in peculiar cases. Selected adducts affected by a weak chemical bond, as those promoting the formation of the intermolecular halogen bond, are also properly rationalized. The behavior of noble gas atoms excited in their long-life metastable states, showing a strongly enhanced reactivity, has been also enclosed in the present investigation.
Collapse
Affiliation(s)
- Francesca Nunzi
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
- Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy;
- Correspondence: (F.N.); (F.P.)
| | - Giacomo Pannacci
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
| | - Francesco Tarantelli
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
- Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy;
| | - Leonardo Belpassi
- Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy;
| | - David Cappelletti
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
| | - Stefano Falcinelli
- Dipartimento di Ingegneria Civile ed Ambientale, Università degli Studi di Perugia, via G. Duranti 93, 06215 Perugia, Italy;
| | - Fernando Pirani
- Dipartimento di Chimica, Biologia e Biotecnologie, via Elce di Sotto 8, I-06123 Perugia, Italy; (G.P.); (F.T.); (D.C.)
- Istituto CNR di Scienze e Tecnologie Chimiche “Giulio Natta” (CNR-SCITEC), via Elce di Sotto, I-06123 Perugia, Italy;
- Correspondence: (F.N.); (F.P.)
| |
Collapse
|