• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4637602)   Today's Articles (3008)   Subscriber (50136)
For: Kutzelnigg W. Relativistic one-electron Hamiltonians `for electrons only' and the variational treatment of the Dirac equation. Chem Phys 1997. [DOI: 10.1016/s0301-0104(97)00240-1] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Number Cited by Other Article(s)
1
Majumder R, Sokolov AY. Consistent Second-Order Treatment of Spin-Orbit Coupling and Dynamic Correlation in Quasidegenerate N-Electron Valence Perturbation Theory. J Chem Theory Comput 2024;20:4676-4688. [PMID: 38795071 DOI: 10.1021/acs.jctc.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
2
Ikabata Y, Nakai H. Picture-change correction in relativistic density functional theory. Phys Chem Chem Phys 2021;23:15458-15474. [PMID: 34278401 DOI: 10.1039/d1cp01773j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
3
Nakashima H, Nakatsuji H. Inverse Hamiltonian method assisted by the complex scaling technique for solving the Dirac-Coulomb equation: Helium isoelectronic atoms. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
4
Smith DGA, Burns LA, Simmonett AC, Parrish RM, Schieber MC, Galvelis R, Kraus P, Kruse H, Di Remigio R, Alenaizan A, James AM, Lehtola S, Misiewicz JP, Scheurer M, Shaw RA, Schriber JB, Xie Y, Glick ZL, Sirianni DA, O’Brien JS, Waldrop JM, Kumar A, Hohenstein EG, Pritchard BP, Brooks BR, Schaefer HF, Sokolov AY, Patkowski K, DePrince AE, Bozkaya U, King RA, Evangelista FA, Turney JM, Crawford TD, Sherrill CD. Psi4 1.4: Open-source software for high-throughput quantum chemistry. J Chem Phys 2020;152:184108. [PMID: 32414239 PMCID: PMC7228781 DOI: 10.1063/5.0006002] [Citation(s) in RCA: 403] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/12/2020] [Indexed: 12/13/2022]  Open
5
Souissi H, Mejrissi L, Habli H, Alsahhaf M, Oujia B, Xavier Gadéa EF. Ab initio diabatic and adiabatic calculations for francium hydride FrH. NEW J CHEM 2020. [DOI: 10.1039/c9nj06391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
6
Kirsch T, Engel F, Gauss J. Analytic evaluation of first-order properties within the mean-field variant of spin-free exact two-component theory. J Chem Phys 2019;150:204115. [DOI: 10.1063/1.5095698] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]  Open
7
Koseki S, Matsunaga N, Asada T, Schmidt MW, Gordon MS. Spin–Orbit Coupling Constants in Atoms and Ions of Transition Elements: Comparison of Effective Core Potentials, Model Core Potentials, and All-Electron Methods. J Phys Chem A 2019;123:2325-2339. [DOI: 10.1021/acs.jpca.8b09218] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
8
Franzke YJ, Middendorf N, Weigend F. Efficient implementation of one- and two-component analytical energy gradients in exact two-component theory. J Chem Phys 2018;148:104110. [DOI: 10.1063/1.5022153] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
9
Parrish RM, Burns LA, Smith DGA, Simmonett AC, DePrince AE, Hohenstein EG, Bozkaya U, Sokolov AY, Di Remigio R, Richard RM, Gonthier JF, James AM, McAlexander HR, Kumar A, Saitow M, Wang X, Pritchard BP, Verma P, Schaefer HF, Patkowski K, King RA, Valeev EF, Evangelista FA, Turney JM, Crawford TD, Sherrill CD. Psi4 1.1: An Open-Source Electronic Structure Program Emphasizing Automation, Advanced Libraries, and Interoperability. J Chem Theory Comput 2017;13:3185-3197. [PMID: 28489372 PMCID: PMC7495355 DOI: 10.1021/acs.jctc.7b00174] [Citation(s) in RCA: 782] [Impact Index Per Article: 111.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
10
Bučinský L, Jayatilaka D, Grabowsky S. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth. J Phys Chem A 2016;120:6650-69. [PMID: 27434184 DOI: 10.1021/acs.jpca.6b05769] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
11
Insights into the value of statistical models and relativistic effects for the investigation of halogenated derivatives of fluorescent probes. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1862-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
12
Cheng L, Gauss J. Perturbative treatment of spin-orbit coupling within spin-free exact two-component theory. J Chem Phys 2014;141:164107. [DOI: 10.1063/1.4897254] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
13
Autschbach J. Relativistic calculations of magnetic resonance parameters: background and some recent developments. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014;372:20120489. [PMID: 24516182 DOI: 10.1098/rsta.2012.0489] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
14
Aucar GA. Toward a QFT-based theory of atomic and molecular properties. Phys Chem Chem Phys 2014;16:4420-38. [DOI: 10.1039/c3cp52685b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
15
Peng D, Middendorf N, Weigend F, Reiher M. An efficient implementation of two-component relativistic exact-decoupling methods for large molecules. J Chem Phys 2013;138:184105. [PMID: 23676027 DOI: 10.1063/1.4803693] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]  Open
16
Kelley MS, Shiozaki T. Large-scale Dirac–Fock–Breit method using density fitting and 2-spinor basis functions. J Chem Phys 2013;138:204113. [DOI: 10.1063/1.4807612] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]  Open
17
Autschbach J, Peng D, Reiher M. Two-Component Relativistic Calculations of Electric-Field Gradients Using Exact Decoupling Methods: Spin–orbit and Picture-Change Effects. J Chem Theory Comput 2012;8:4239-48. [DOI: 10.1021/ct300623j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
18
Ishikawa A, Nakashima H, Nakatsuji H. Accurate solutions of the Schrödinger and Dirac equations of , HD+, and HT+: With and without Born–Oppenheimer approximation and under magnetic field. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.09.013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
19
Solved and unsolved problems in relativistic quantum chemistry. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
20
Theoretical modelling of the adsorption of thallium and element 113 atoms on gold using two-component density functional methods with effective core potentials. Chem Phys 2012. [DOI: 10.1016/j.chemphys.2011.04.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
21
Negative energy states in relativistic quantum chemistry. Theor Chem Acc 2012. [DOI: 10.1007/s00214-011-1082-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
22
Peng D, Reiher M. Exact decoupling of the relativistic Fock operator. Theor Chem Acc 2012. [DOI: 10.1007/s00214-011-1081-y] [Citation(s) in RCA: 193] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
23
Cheng L, Gauss J. Analytic second derivatives for the spin-free exact two-component theory. J Chem Phys 2011;135:244104. [DOI: 10.1063/1.3667202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]  Open
24
Szalay PG, Müller T, Gidofalvi G, Lischka H, Shepard R. Multiconfiguration Self-Consistent Field and Multireference Configuration Interaction Methods and Applications. Chem Rev 2011;112:108-81. [DOI: 10.1021/cr200137a] [Citation(s) in RCA: 470] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
25
Liu W, Wang F, Li L. The Beijing Density Functional (BDF) Program Package: Methodologies and Applications. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2011. [DOI: 10.1142/s0219633603000471] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
26
Cheng L, Gauss J. Analytic energy gradients for the spin-free exact two-component theory using an exact block diagonalization for the one-electron Dirac Hamiltonian. J Chem Phys 2011;135:084114. [DOI: 10.1063/1.3624397] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]  Open
27
Reiher M. Relativistic Douglas–Kroll–Hess theory. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2011. [DOI: 10.1002/wcms.67] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
28
Mizukami W, Nakajima T, Hirao K, Yanai T. A dual-level approach to four-component relativistic density-functional theory. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
29
Comparison of restricted, unrestricted, inverse, and dual kinetic balances for four-component relativistic calculations. Theor Chem Acc 2011. [DOI: 10.1007/s00214-010-0876-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
30
Liu W. Ideas of relativistic quantum chemistry. Mol Phys 2010. [DOI: 10.1080/00268971003781571] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
31
Four-Component Electronic Structure Methods. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9975-5_7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
32
van Wüllen C. Relativistic Density Functional Theory. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9975-5_5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
33
FILATOV MICHAEL, CREMER DIETER. On the physical meaning of the ZORA Hamiltonian. Mol Phys 2009. [DOI: 10.1080/0026897031000137670] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
34
Sikkema J, Visscher L, Saue T, Iliaš M. The molecular mean-field approach for correlated relativistic calculations. J Chem Phys 2009;131:124116. [DOI: 10.1063/1.3239505] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
35
Liu W, Peng D. Exact two-component Hamiltonians revisited. J Chem Phys 2009;131:031104. [DOI: 10.1063/1.3159445] [Citation(s) in RCA: 240] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
36
van Wüllen C, Klopper W, Mukherjee D. Electron correlation, molecular properties and relativity – A tribute to Werner Kutzelnigg. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2009.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
37
van Wüllen C. On the eigenfunctions of the Douglas–Kroll operator. Chem Phys 2009. [DOI: 10.1016/j.chemphys.2008.10.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
38
Peng D, Hirao K. An arbitrary order Douglas–Kroll method with polynomial cost. J Chem Phys 2009;130:044102. [DOI: 10.1063/1.3068310] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
39
de Macedo LGM, Angelotti WFD, Sambrano JR, de Souza AR. Fully relativistic prolapse-free Gaussian basis sets: the actinides and 81Tl-88Ra. J Chem Phys 2008;129:106101. [PMID: 19044942 DOI: 10.1063/1.2976155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
40
Matveev AV, Rösch N. Atomic approximation to the projection on electronic states in the Douglas-Kroll-Hess approach to the relativistic Kohn-Sham method. J Chem Phys 2008;128:244102. [DOI: 10.1063/1.2940352] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
41
Matrix formulation of direct perturbation theory of relativistic effects in a kinetically balanced basis. Chem Phys 2008. [DOI: 10.1016/j.chemphys.2008.01.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
42
Ishikawa A, Nakashima H, Nakatsuji H. Solving the Schrödinger and Dirac equations of hydrogen molecular ion accurately by the free iterative complement interaction method. J Chem Phys 2008;128:124103. [DOI: 10.1063/1.2842068] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
43
Peng D, Liu W, Xiao Y, Cheng L. Making four- and two-component relativistic density functional methods fully equivalent based on the idea of “from atoms to molecule”. J Chem Phys 2007;127:104106. [PMID: 17867736 DOI: 10.1063/1.2772856] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
44
Sadlej AJ. Explaining the derivation and functioning of the exact infinite-order two-component Dirac theory in terms of the Hückel model. Struct Chem 2007. [DOI: 10.1007/s11224-007-9228-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
45
Ke¸dziera D, Barysz M. Non-iterative approach to the infinite-order two-component (IOTC) relativistic theory and the non-symmetric algebraic Riccati equation. Chem Phys Lett 2007. [DOI: 10.1016/j.cplett.2007.08.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
46
Baranowska A, Siedlecka M, Sadlej AJ. Reduced-size polarized basis sets for calculations of molecular electric properties. IV. First-row transition metals. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0379-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
47
Barysz M, Leszczyński J. Relativistic two-component infinite order method for atomic core ionization potentials. J Chem Phys 2007;126:154106. [PMID: 17461613 DOI: 10.1063/1.2711194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
48
van Wüllen C, Langermann N. Gradients for two-component quasirelativistic methods. Application to dihalogenides of element 116. J Chem Phys 2007;126:114106. [PMID: 17381195 DOI: 10.1063/1.2711197] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]  Open
49
Liu W, Kutzelnigg W. Quasirelativistic theory. II. Theory at matrix level. J Chem Phys 2007;126:114107. [PMID: 17381196 DOI: 10.1063/1.2710258] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]  Open
50
Ilias M, Saue T. An infinite-order two-component relativistic Hamiltonian by a simple one-step transformation. J Chem Phys 2007;126:064102. [PMID: 17313208 DOI: 10.1063/1.2436882] [Citation(s) in RCA: 379] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]  Open
PrevPage 1 of 2 12Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA