1
|
Adriana M, Aleksandra M, Denise B, Kinga G, Joanna W, Aleksandra H, Robert W, Agnieszka MW, Magdalena RŻ. Zn(II) and Cu(II) Coordination Enhances the Antimicrobial Activity of Piscidin 3, but Not That of Piscidins 1 and 2. Inorg Chem 2024; 63:12958-12968. [PMID: 38946498 PMCID: PMC11256756 DOI: 10.1021/acs.inorgchem.4c01659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
Piscidins, antimicrobial peptides isolated from fish, are potent against a variety of human pathogens; they show minimum inhibitory concentration values comparable to those of commercially used antimicrobials. Piscidins 1 and 2 are generally more effective than piscidin 3 when applied alone; the contrary is observed for their metal complexes: Zn(II) and Cu(II) coordination does not enhance the efficacy of piscidins 1 and 2, while a moderate enhancement is observed for piscidin 3. All three piscidins bind Cu(II) in a so-called albumin-like binding mode, while for Zn(II) complexes, two coordination modes are observed: piscidins 1 and 2 bind Zn(II) by imidazole nitrogens from His4, His11, and His17 side chains; piscidin 3 coordinates Zn(II) by His3, His4, and His11 imidazole nitrogens and additionally supports the interaction, formed by carbonyl oxygen from His4. Most likely, the high antimicrobial activity of piscidin complexes is due to neither the stability of their complexes nor the change in their secondary structure. Copper(II) complexes with piscidins 1 and 2 can form hydroxyl radicals, which could be responsible for the antimicrobial membrane damaging activity of these complexes. Clearly, a different mechanism (most likely an intercellular targeted one) is observed for piscidin 3 metal complexes; in most cases, the coordination of Cu(II) and Zn(II) enhances the antimicrobial potency of piscidin 3, showing that not only piscidin 3 alone but also its metal complexes have a different mode of action than piscidins 1 and 2.
Collapse
Affiliation(s)
- Miller Adriana
- Faculty
of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Mikołajczyk Aleksandra
- Screening
of Biological Activity Assays and Collection of Biological Material
Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wroclaw, Poland
| | - Bellotti Denise
- Department
of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy
| | - Garstka Kinga
- Faculty
of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Wątły Joanna
- Faculty
of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Hecel Aleksandra
- Faculty
of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Wieczorek Robert
- Faculty
of Chemistry, University of Wroclaw, ul. F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Matera-Witkiewicz Agnieszka
- Screening
of Biological Activity Assays and Collection of Biological Material
Laboratory, Wroclaw Medical University Biobank, Faculty of Pharmacy, Wroclaw Medical University, ul. Borowska 211a, 50-556 Wroclaw, Poland
| | | |
Collapse
|
2
|
Szarszoń K, Mikołajczyk A, Grelich-Mucha M, Wieczorek R, Matera-Witkiewicz A, Olesiak-Bańska J, Rowińska-Żyrek M, Wątły J. Bioinorganic chemistry of shepherin II complexes helps to fight Candida albicans? J Inorg Biochem 2024; 253:112476. [PMID: 38171045 DOI: 10.1016/j.jinorgbio.2023.112476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
The fungal cell wall and cell membrane are an important target for antifungal therapies, and a needle-like cell wall or membrane disruption may be an entirely novel antifungal mode of action. In this work, we show how the coordination of Zn(II) triggers the antifungal properties of shepherin II, a glycine- and histidine-rich antimicrobial peptide from the root of Capsella bursa-pastoris. We analyze Cu(II) and Zn(II) complexes of this peptide using experimental and theoretical methods, such as: mass spectrometry, potentiometry, UV-Vis and CD spectroscopies, AFM imaging, biological activity tests and DFT calculations in order to understand the correlation between their metal binding mode, structure, morphology and biological activity. We observe that Zn(II) coordinates to Shep II and causes a structural change, resulting in fibril formation, what has a pronounced biological consequence - a strong anticandidal activity. This phenomenon was observed neither for the peptide itself, nor for its copper(II) complex. The Zn(II) - shepherin II complex can be considered as a starting point for further anticandidal drug discovery, which is extremely important in the era of increasing antifungal drug resistance.
Collapse
Affiliation(s)
- Klaudia Szarszoń
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Aleksandra Mikołajczyk
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wrocław Medical University Biobank, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Manuela Grelich-Mucha
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Agnieszka Matera-Witkiewicz
- Screening of Biological Activity Assays and Collection of Biological Material Laboratory, Wrocław Medical University Biobank, Faculty of Pharmacy, Wrocław Medical University, 50-556 Wrocław, Poland
| | - Joanna Olesiak-Bańska
- Faculty of Chemistry, Wrocław University of Science and Technology, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | | - Joanna Wątły
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| |
Collapse
|
3
|
Stokowa-Sołtys K, Kierpiec K, Szczerba K, Wieczorek R. Can bacteria F. nucleatum be actively involved in colon cancer progression via a radical mediated mechanism? J Inorg Biochem 2023; 246:112307. [PMID: 37406386 DOI: 10.1016/j.jinorgbio.2023.112307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Outer membrane proteins of Fusobacterium nucleatum, a cancer‑leading bacteria, are considered as the factors responsible for its pathogenicity. Among them, homotrimeric autotransporter protein YadA (Yersinia adhesin A) is an important virulence factor also found in the outer membrane of pathogenic Yersinia species. In this paper, the structure and stability of certain Cu(II) complexes with YadA fragments were investigated using both, experimental and theoretical methods. Potentiometry, UV-Vis, CD, EPR, and calculations at the density functional theory (DFT) level were applied to determine the metal ion coordination sphere. Moreover, the complexes ability to DNA cleavage and reactive oxygen species (ROS) production was studied. We have shown that copper(II) complexes can cleave DNA by 1O2, O2•- and •OH, which are formed in the studied systems. However, the results of electrophoretic experiments revealed that complexes cleave DNA less effectively than free copper(II) ions. Therefore, the presence of studied peptides may prevent DNA from a Cu(II)-induced damage to some extent.
Collapse
Affiliation(s)
- Kamila Stokowa-Sołtys
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | - Karolina Kierpiec
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Klaudia Szczerba
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| | - Robert Wieczorek
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, 50-383 Wroclaw, Poland
| |
Collapse
|
4
|
Stokowa-Soltys K, Kierpiec K, Wieczorek R. May Cu(II) binding, DNA cleavage and radicals production by YadA fragments be involved in the promotion of F. nucleatum related cancers? Dalton Trans 2022; 51:7040-7052. [DOI: 10.1039/d2dt00328g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In many cases, human microbiota is associated with cancer progression. It was concluded that Fusobacterium nucleatum increases neoplastic changes. This bacterium is naturally present in the human dental plaque. However,...
Collapse
|
5
|
Stokowa-Soltys K, Szczerba K, Pacewicz M, Wieczorek R, Wezynfeld NE, Bal W. Interactions of neurokinin B with copper(II) ions and their potential biological consequences. Dalton Trans 2022; 51:14267-14276. [DOI: 10.1039/d2dt02033e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Preeclampsia is a blood pressure disorder associated with significant proteinuria. Hypertensive women have increased levels of neurokinin B (NKB) and Cu(II) ions in blood plasma during pregnancy. NKB bears the...
Collapse
|
6
|
Towards an unified chemical model of secondary bonding. J Mol Model 2020; 26:62. [DOI: 10.1007/s00894-019-4283-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/19/2019] [Indexed: 11/27/2022]
|
7
|
Pradhan E, Brown A. A ground state potential energy surface for HONO based on a neural network with exponential fitting functions. Phys Chem Chem Phys 2017; 19:22272-22281. [DOI: 10.1039/c7cp04010e] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using CCSD(T)-F12/cc-pVTZ-F12 and CCSD(T)/CBS ab initio energies, two different six-dimensional ground state potential energy surfaces for HONO have been fit in sum-of-products form using neural network exponential fitting functions and tested by computing vibrational energies with MCTDH.
Collapse
Affiliation(s)
| | - Alex Brown
- Department of Chemistry
- University of Alberta
- Edmonton
- Canada
| |
Collapse
|
8
|
Bil A, Grzechnik K, Sałdyka M, Mielke Z. The OH-Initiated Oxidation of CS2 in the Presence of NO: FTIR Matrix-Isolation and Theoretical Studies. J Phys Chem A 2016; 120:6753-60. [PMID: 27491274 DOI: 10.1021/acs.jpca.6b06412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We studied the photochemistry of the carbon disulfide-nitrous acid system with the help of Fourier transform infrared (FTIR) matrix isolation spectroscopy and theoretical methods. The irradiation of the CS2···HONO complexes, isolated in solid argon, with the filtered output of the mercury lamp (λ > 345 nm) was found to produce OCS, SO2, and HNCS; HSCN was also tentatively identified. The (13)C, (15)N, and (2)H isotopic shifts as well as literature data were used for product identifications. The evolution of the measured FTIR spectra with irradiation time and the changes in the spectra after matrix annealing indicated that the identified molecules are the products of different reaction channels: OCS being a product of another reaction path than SO2 and HNCS or HSCN. The possible reaction channels between SC(OH)S/SCS(OH) radicals and NO were studied using DFT/B3LYP/aug-cc-pVTZ method. The SC(OH)S and/or SCS(OH) intermediates are formed when HONO attached to CS2 photodissociates into OH and NO. The calculations indicated that SC(OH)S radical can form with NO two stable adducts. The more stable SC(OH)S···NO structure is a reactant for a simple one-step process leading to OCS and HONS molecules. An alternative, less-stable complex formed between SC(OH)S and NO leads to formation of OCS and HSNO. The calculations predict only one stable complex between SCS(OH) radical and NO, which can dissociate along two channels leading to HNCS and SO2 or HSCN and SO2 as the end products. The identified photoproducts indicate that both SC(OH)S and SCS(OH) adducts are intermediates in the CS2 + OH + NO reaction leading to different reaction products.
Collapse
Affiliation(s)
- A Bil
- Institute of Chemistry, University of Wrocław , Joliot-Curie 14, 50-383 Wrocław, Poland
| | - K Grzechnik
- Institute of Chemistry, University of Wrocław , Joliot-Curie 14, 50-383 Wrocław, Poland
| | - M Sałdyka
- Institute of Chemistry, University of Wrocław , Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Z Mielke
- Institute of Chemistry, University of Wrocław , Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Lee SM, Sung EM. Theoretical Study of Acetic Acid-Sulfur Dioxide Complexes. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2015. [DOI: 10.5012/jkcs.2015.59.3.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Bulychev VP, Buturlimova MV, Tokhadze KG. Anharmonic calculation of the structure, vibrational frequencies and intensities of the NH3···trans-HONO complex. J Phys Chem A 2013; 117:9093-8. [PMID: 23944642 DOI: 10.1021/jp406569y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The equilibrium geometry of the NH3···trans-HONO complex and the harmonic vibrational frequencies and intensities are calculated in the MP2/aug-cc-pVTZ approximation with the basis set superposition error taken into account. Effects of anharmonic interactions on spectroscopic parameters are studied by solving vibrational Schrödinger equations in 1-4 dimensions using the variational method. Anharmonic vibrational equations are formulated in the space of normal coordinates of the complex. Detailed analysis is performed for the H-bond stretching vibration and internal vibrations of the trans-HONO isomer in the complex. The intermode anharmonicity and anharmonic coupling between two, three, and four vibrational modes are studied on the basis of correct ab initio potential energy surfaces calculated in the above approximation. The combinations of normal modes of the complex most strongly coupled to one another are examined. The calculated frequencies and intensities of vibrational bands are compared with the experimental data on the NH3···trans-HONO complex in an argon matrix and results of earlier calculations of monomeric HONO. In this calculation the strong resonance between the first excited state of the OH stretching vibration and the doubly excited state of the NOH bending vibration of trans-HONO isomer in the complex is thoroughly studied by solving vibrational equations in two and four dimensions.
Collapse
Affiliation(s)
- Valentin P Bulychev
- Physical Faculty, St. Petersburg State University , Peterhof, St. Petersburg, 198504 Russian Federation
| | | | | |
Collapse
|
11
|
Young NA. Main group coordination chemistry at low temperatures: A review of matrix isolated Group 12 to Group 18 complexes. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2012.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Keller JW, Harrod BL, Chowdhury SA. Theoretical study of formic acid-sulfur dioxide dimers. J Phys Chem A 2010; 114:13182-8. [PMID: 21117658 DOI: 10.1021/jp1076214] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the first theoretical study of noncovalent and covalent interactions in formic acid (FA)-SO(2) complexes. Using ab initio and DFT model chemistries, five stable noncovalent complexes were identified, as well as a covalent adduct, formic sulfurous anhydride HOSO(2)CHO. syn-FA is predicted to form two nonplanar bidentate complexes with SO(2): the more stable one contains a normal hydrogen bond donated by OH, and the less stable one contains a blue-shifted hydrogen bond donated by CH. Both are stabilized by charge transfer from FA to SO(2). anti-FA forms three planar complexes of nearly equal energy containing OH-to-SO(2) hydrogen bonds. Formic sulfurous anhydride forms via an endothermic concerted cycloaddition. Natural bond orbital analysis showed that the bidentate SO(2)-FA complexes are stabilized by n → π* donation from FA to SO(2), and back-donation from SO(2) n and π* orbitals into FA σ(OH)* or σ(CH)* orbitals. The bidentate formic acid-SO(2) complex that contains an O-H···O hydrogen bond is more stable than the similar nitric acid-SO(2) complex. The latter contains a stronger hydrogen bond but shows no O→S charge transfer interaction.
Collapse
Affiliation(s)
- John W Keller
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks, 900 Yukon Drive, Fairbanks, Alaska 99775-6160, United States.
| | | | | |
Collapse
|
13
|
Wierzejewska M, Olbert-Majkut A. Theoretical Studies of the Reaction Channels on the SO2/OH/NO Singlet Potential Energy Surface. J Phys Chem A 2007; 111:2790-6. [PMID: 17388382 DOI: 10.1021/jp067438r] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Ab initio MP2/6-311++G(2d,2p) investigation of the SO2/OH/NO singlet potential energy surface (PES) has been performed with the aim to localize and describe the existing minima and transition states linking them. The systematic studies have revealed seven minima, with the trans-HONO-SO2 complex (1t) being the global minimum. Eight transition states between minima or between minima and the relevant reactant species have been described. Several available izomerization and dissociation routes have been identified and discussed. The most favorable association of HOSO2 and NO was found to be a barrierless process forming nitrososulfonic acids. Isomerizations between trans-, cis-, and gauche- nitrososulfonic acids (2t, 2c, and 2g) are possible with low-energy barriers. The HOSO2 and NO species can also react via another channels involving high-energy transition states to produce the HOSO-NO2 (3) and HNO-SO3 (4) complexes.
Collapse
Affiliation(s)
- Maria Wierzejewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland.
| | | |
Collapse
|
14
|
Krajewska M, Latajka Z, Mielke Z, Mierzwicki K, Olbert-Majkut A, Sałdyka M. Hydrogen Bonding in Allene Complexes with Nitric and Nitrous Acids: Theoretical and Infrared Matrix Isolation Study. J Phys Chem B 2004. [DOI: 10.1021/jp0484682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Magdalena Krajewska
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Zdzisław Latajka
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Zofia Mielke
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Krzysztof Mierzwicki
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Adriana Olbert-Majkut
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | - Magdalena Sałdyka
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
15
|
Richter F, Hochlaf M, Rosmus P, Gatti F, Meyer HD. A study of the mode-selective trans–cis isomerization in HONO using ab initio methodology. J Chem Phys 2004; 120:1306-17. [PMID: 15268256 DOI: 10.1063/1.1632471] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ab initio calculations on the six-dimensional cis--trans double minimum potential energy surface of the electronic ground state of the HONO molecule were performed using a coupled cluster approach. An analytic fit to the data points was established. The interconversion barrier was calculated to be 4105 cm(-1). The nuclear motion problem was solved variationally using a full six-dimensional Hamiltonian in internal coordinates. The eigenstates up to about 3650 cm(-1) were tentatively assigned by harmonic quantum numbers. The assignment was based on the mean values of the internal coordinates of the six-dimensional eigenfunctions and on a comparison of the eigenenergies with those calculated by second-order perturbation theory from a full quartic force field in dimensionless normal coordinates. In cold matrices the trans- and the cis-OH nu(1) stretching modes and the first trans- and cis-NO 2nu(2) stretching overtones lead to isomerization. In the isolated molecule these modes (J=0) were found to be entirely localized. However, several overtones of the nu(4) ONO bending and nu(5) N-O stretching, which are close in energy to the OH stretch and combined with the torsional mode, were found to be strongly cis-trans delocalized.
Collapse
Affiliation(s)
- Falk Richter
- Laboratoire de Chimie Theorique, Universite de Marne la Vallee, F 77454-Champs sur Marne, France
| | | | | | | | | |
Collapse
|
16
|
Wierzejewska M, Olbert-Majkut A. Photolysis of Matrix Isolated HONO/SO2 System. Identification and Infrared Spectra of Nitrososulfonic Acid HO(NO)SO2 and Hydroxysulfonyl HOSO2 Radical. J Phys Chem A 2003. [DOI: 10.1021/jp036073x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- M. Wierzejewska
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383 Wrocław, Poland
| | - A. Olbert-Majkut
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50383 Wrocław, Poland
| |
Collapse
|
17
|
|
18
|
Wierzejewska M. Infrared matrix isolation studies of complexes formed between dimethylsulfide, dimethyldisulfide and nitrous acid. J Mol Struct 2000. [DOI: 10.1016/s0022-2860(99)00342-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Mielke Z, Tokhadze KG. Infrared matrix isolation studies of nitrous acid complexes with methane, silane and germane. Chem Phys Lett 2000. [DOI: 10.1016/s0009-2614(99)01246-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
20
|
Wierzejewska M, Dziadosz M. Infrared matrix isolation studies of carbon disulfide and carbon dioxide complexes with nitrous and nitric acids. J Mol Struct 1999. [DOI: 10.1016/s0022-2860(99)00127-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Wieczorek R, Latajka Z, Lundell J. Quantum Chemical Study of the Bimolecular Complex of HONO. J Phys Chem A 1999. [DOI: 10.1021/jp990610p] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|