1
|
Asmussen JD, Abid AR, Sundaralingam A, Bastian B, Sishodia K, De S, Ben Ltaief L, Krishnan S, Pedersen HB, Mudrich M. Secondary ionization of pyrimidine nucleobases and their microhydrated derivatives in helium nanodroplets. Phys Chem Chem Phys 2023; 25:24819-24828. [PMID: 37671772 DOI: 10.1039/d3cp02879h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Radiation damage in biological systems by ionizing radiation is predominantly caused by secondary processes such as charge and energy transfer leading to the breaking of bonds in DNA. Here, we study the fragmentation of cytosine (Cyt) and thymine (Thy) molecules, clusters and microhydrated derivatives induced by direct and indirect ionization initiated by extreme-ultraviolet (XUV) irradiation. Photofragmentation mass spectra and photoelectron spectra of free Cyt and Thy molecules are compared with mass and electron spectra of Cyt/Thy clusters and microhydrated Cyt/Thy molecules formed by aggregation in superfluid helium (He) nanodroplets. Penning ionization after resonant excitation of the He droplets is generally found to cause less fragmentation compared to direct photoionization and charge-transfer ionization after photoionization of the He droplets. When Cyt/Thy molecules and oligomers are complexed with water molecules, their fragmentation is efficiently suppressed. However, a similar suppression of fragmentation is observed when homogeneous Cyt/Thy clusters are formed in He nanodroplets, indicating a general trend. Penning ionization electron spectra (PIES) of Cyt/Thy are broad and nearly featureless but PIES of their microhydrated derivatives point at a sequential ionization process ending in unfragmented microsolvated Cyt/Thy cations.
Collapse
Affiliation(s)
- Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Abdul R Abid
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | | | - Björn Bastian
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Keshav Sishodia
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Subhendu De
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Ltaief Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Sivarama Krishnan
- Quantum Center of Excellence for Diamond and Emergent Materials and Department of Physics, Indian Institute of Technology Madras, Chennai 600036, India
| | - Henrik B Pedersen
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
2
|
Yan JW, Li H, Jiang W, Lu ZT, Ritterbusch F, Yang GM. A magnetically enhanced RF discharge source for metastable krypton production. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:033202. [PMID: 37012821 DOI: 10.1063/5.0142696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
We describe a high intensity metastable Kr source based on a helical resonator RF discharge. By adding an external B-field to the discharge source, the metastable Kr flux is enhanced. The effect of geometric configuration and magnetic field strength has been studied and optimized experimentally. Compared to the helical resonator discharge source without an external B-field, the new source showed an enhancement factor of 4-5 in producing metastable Kr beams. This improvement has a direct impact on the radio-krypton dating applications as it can increase the atom count rate, resulting in a higher analytical precision.
Collapse
Affiliation(s)
- Jing-Wen Yan
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Hao Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Wei Jiang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Zheng-Tian Lu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Florian Ritterbusch
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| | - Guo-Min Yang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, 96 Jinzhai Road, Hefei 230026, China
| |
Collapse
|
3
|
Hansen K. Single photon transient hot electron ionization of C 60. Phys Chem Chem Phys 2017; 19:19699-19706. [DOI: 10.1039/c7cp01705g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Survival probability vs. time of hot electron-excited C60 at energies 10 through 70 eV.
Collapse
Affiliation(s)
- K. Hansen
- Tianjin International Center of Nanoparticles and Nanosystems
- Tianjin University
- Tianjin 300072
- P. R. China
- Department of Physics
| |
Collapse
|
4
|
Johansson JO, Campbell EEB. Probing excited electronic states and ionisation mechanisms of fullerenes. Chem Soc Rev 2013; 42:5661-71. [DOI: 10.1039/c3cs60047e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Goto M, Hansen K. Competitive ionization processes of anthracene excited with a femtosecond pulse in the multi-photon ionization regime. J Chem Phys 2011; 135:214310. [DOI: 10.1063/1.3663618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
6
|
Kjellberg M, Bulgakov AV, Goto M, Johansson O, Hansen K. Femtosecond electron spectroscopy of coronene, benzo[GHI]perylene, and anthracene. J Chem Phys 2010; 133:074308. [DOI: 10.1063/1.3466925] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
7
|
|
8
|
Abstract
Ultrafast, subfemtosecond charge migration in small peptides is discussed on the basis of computational studies and compared with the selective bond dissociation after ionization as observed by Schlag and Weinkauf. The reported relaxation could be probed in real time if the removal of an electron could be achieved on the attosecond time scale. Then the mean field seen by an electron would be changing rapidly enough to initiate the migration. Tyrosine-terminated tetrapeptides have a particularly fast charge migration where in <1 fs the charge arrives at the other end. A femtosecond pulse can be used to observe the somewhat slower relaxation induced by correlation between electrons of different spins. A slower relaxation also is indicated when removing a deeper-lying valence electron. When a chromophoric amino acid is at one end of the peptide, the charge can migrate all along the peptide backbone up to the N end, but site-selective ionization is probably easier to detect for tryptophan than for tyrosine.
Collapse
Affiliation(s)
- F. Remacle
- *The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Département de Chimie, B6c, Université de Liège, B4000 Liège, Belgium; and
| | - R. D. Levine
- *The Fritz Haber Research Center for Molecular Dynamics, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569
| |
Collapse
|
9
|
Campbell EEB, Hansen K, Hedén M, Kjellberg M, Bulgakov AV. Ionisation of fullerenes and fullerene clusters using ultrashort laser pulses. Photochem Photobiol Sci 2006; 5:1183-9. [PMID: 17136286 DOI: 10.1039/b612749e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We give a brief review of the literature concerning the ultra-short pulse ionisation of fullerenes in the gas phase. Emphasis is placed on the excitation time dependence of different ionisation regimes as manifested by photoelectron spectroscopy. The ionisation rates are modelled for the intermediate situation where the excitation energy is equilibrated between electronic degrees of freedom but not yet coupled to vibrational degrees of freedom. The model is shown to describe many aspects of the experiments. New results are presented on the intra-cluster molecular fusion of fullerene molecules when van der Waals bound clusters of fullerenes are exposed to ultra-short laser pulses. Pump-probe measurements give a decay time constant for the intra-cluster fusion reaction of 520 +/- 55 fs. A comparison with monomer ionisation results suggests that the time window for the fusion reaction is influenced by the coupling of the electronic excitation energy to vibrational degrees of freedom of the molecules in the cluster.
Collapse
|
10
|
Thiel L, Hotop H, Meyer W. Ab initio investigation of the autoionization process Ar*(4s3P2, 3P0)+Hg --> (Ar-Hg)+ + e-: potential energy curves and autoionization widths, ionization cross sections, and electron energy spectra. J Chem Phys 2005; 122:184309. [PMID: 15918706 DOI: 10.1063/1.1891666] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Multireference configuration interaction (MRCI) calculations have been performed for the Ar*(4s3P2,0) + Hg collision complex. Feshbach projection based on orbital occupancy defines the entrance channel resonance states and provides their potential energy curves as well as resonance-continuum coupling matrix elements, which are turned into an autoionization width function by Stieltjes imaging. Coupled cluster calculations with singles, doubles, and pertubative triples [CCSD(T)] give the exit channel potential of ArHg+. The Hg20+ core is treated by a scalar-relativistic effective core potential, reparametrized to reproduce experimental excitation and ionization energies. Spin-orbit interaction is included for the Ar* open 3p shell. The nuclear motion is treated within the local complex potential approximation. Ionization occurs for 85% (3P0) and 98% (3P2) of the symmetry allowed close collisions. Calculated ionization cross sections show good agreement with experimental data. The difference potential of the collision complex is remarkably flat down to internuclear separations of 8a0 and leads to very sharp peaks in theoretical electron energy spectra for single collision energies. After accounting for the experimental energy distribution and the resolution function of the spectrometer, a very satisfying agreement with experimental electron energy spectra is found, including subtle differences due to spin-orbit coupling. Theoretical input appears indispensable for an analysis of the measured data in terms of potential energy curves and autoionization width functions.
Collapse
Affiliation(s)
- Linda Thiel
- Department of Chemistry, University of Kaiserslautern, D-67663 Kaiserslautern, Federal Republic of Germany
| | | | | |
Collapse
|
11
|
Broks BHP, Brok WJM, Remy J, van der Mullen JJAM, Benidar A, Biennier L, Salama F. Numerical investigation of the discharge characteristics of the pulsed discharge nozzle. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2005; 71:036409. [PMID: 15903590 DOI: 10.1103/physreve.71.036409] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2004] [Indexed: 05/02/2023]
Abstract
The characteristics of the plasma generated by a pulsed discharge slit nozzle (PDN) are investigated. The PDN source is designed to produce and cool molecular ions creating an astrophysically relevant environment in the laboratory. A discharge model is applied to this system to provide a qualitative as well as a quantitative picture of the plasma. We find that the plasma's properties and behavior are characteristic of those of a glow discharge. We model the electron density and energy, as well as the argon ion and metastable atom number density. The results reveal a high abundance of metastable argon atoms in the expansion region, which is more than one order of magnitude higher than the abundance of electrons and ions. These findings confirm experimental observations, which concluded that large molecular ions are dominantly formed through Penning ionization of the neutral molecular precursors seeded in the supersonic expansion of argon gas. The simulations presented here will help optimize the yield of formation of molecular ions and radicals in the PDN source; they will also provide key physical insight into the characteristics of interstellar molecules and ions analogs in laboratory experiments.
Collapse
Affiliation(s)
- B H P Broks
- Department of Applied Physics, Eindhoven University of Technology, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
12
|
Gross A, Levine RD. Spectroscopic characterization of collision-induced electronic deformation energy using sum rules. J Chem Phys 2003. [DOI: 10.1063/1.1592510] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
13
|
Hansen K, Hoffmann K, Campbell EEB. Thermal electron emission from the hot electronic subsystem of vibrationally cold C60. J Chem Phys 2003. [DOI: 10.1063/1.1584671] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
14
|
Campbell EE, Levine RD. Delayed ionization and fragmentation en route to thermionic emission: statistics and dynamics. Annu Rev Phys Chem 2000; 51:65-98. [PMID: 11031276 DOI: 10.1146/annurev.physchem.51.1.65] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Thermionic emission is discussed as a long time (microseconds) decay mode of energy-rich large molecules, metallic and metcar clusters, and fullerenes. We review what is known and consider the many experiments, systems, and theoretical and computational studies that still need to be done. We conclude with a wish list for future work. Particular attention is given to the experimental signatures, such as the dependence on the mode of energy acquisition, and theoretical indications of a not-quite-statistical delayed ionization and to the competition of electron emission with other decay modes, such as fragmentation or radiative cooling. Coupling of the electronic and nuclear modes can be a bottleneck and quite long time-delayed ionization can be observed, as in the decay of high Rydberg states probed by ZEKE spectroscopy, before the onset of complete energy partitioning.
Collapse
Affiliation(s)
- E E Campbell
- School of Physics and Engineering Physics, Göteborg University, Göteborg, SE-41296 Sweden.
| | | |
Collapse
|
15
|
Brunetti B, Candori P, Falcinelli S, Vecchiocattivi F, Sassara A, Chergui M. Dynamics of the Penning Ionization of Fullerene Molecules by Metastable Neon Atoms. J Phys Chem A 2000. [DOI: 10.1021/jp994008a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Campbell EE, Hansen K, Hoffmann K, Korn G, Tchaplyguine M, Wittmann M, Hertel IV. From above threshold ionization to statistical electron emission: the laser pulse-duration dependence of C60 photoelectron spectra. PHYSICAL REVIEW LETTERS 2000; 84:2128-2131. [PMID: 11017225 DOI: 10.1103/physrevlett.84.2128] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/1999] [Revised: 12/02/1999] [Indexed: 05/23/2023]
Abstract
The photoelectron spectra of C60 ionized using a 790 nm laser with pulse durations varying from 25 fs to 5 ps have been determined. For 25 fs pulses, in the absence of fragmentation, the ionization mechanism is direct multiphoton ionization with clear observation of above threshold ionization. As the pulse duration is increased, this becomes dominated by a statistical ionization due to equilibration among the electronic degrees of freedom. For pulse durations on the order of a ps coupling to the vibrational degrees of freedom occurs and the well-known phenomenon of delayed (&mgr;s) ionization is observed.
Collapse
Affiliation(s)
- EE Campbell
- School of Physics and Engineering Physics, Gothenburg University & CTH, S-41296 Gothenburg, Sweden
| | | | | | | | | | | | | |
Collapse
|
17
|
|