1
|
Shen S, Li H, Liu J, Sun L, Yuan Y. The panoramic picture of pepsinogen gene family with pan-cancer. Cancer Med 2020; 9:9064-9080. [PMID: 33067881 PMCID: PMC7724489 DOI: 10.1002/cam4.3489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/18/2020] [Accepted: 09/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background It is well known that pepsinogen (PGs), as an important precursor of pepsin performing digestive function, has a good correlation with the occurrence and development of gastric cancer and it is also known that ectopic PGs expression is related to the prognosis of some cancers. However, the panoramic picture of pepsinogen gene family in human cancer is not clear. This study focused on elucidating the expression profile, activated pathway, immune cells infiltration, mutation, and copy number variation of PGs and their potential role in human cancer. Method Based on the next generation sequence data from TCGA, Oncomine, and CCLE, the molecular changes and clinical correlation of PGs in 33 tumor types were analyzed systematically by R language, including the expression, mutation, and copy number variation of PGs and their correlation with cancer‐related signal transduction pathway, immune cell infiltration, and prognostic potential in different cancers. Results PGs expression profiles appear different in 33 tumors. The transcriptional expression of PGs was detected in 16 of all 33 tumors. PGC was highly expressed in cholangiocarcinoma, colon adenocarcinoma, rectum adenocarcinoma, uterine corpus endometrial carcinoma, bladder urothelial carcinoma and breast cancer, while decreased in stomach adenocarcinoma, kidney renal clear cell carcinoma, prostate adenocarcinoma, lung squamous cell carcinoma, and esophageal carcinoma. PGA3, PGA4, and PGA5 were expressed in most normal tissues, but decreased in cancer tissues. PGs expression was significantly related to the activation or inhibition of many signal transduction pathways, in which PGC and PGA5 are more likely to be associated with cancer‐related pathways. PGC participated in 33 regulatory network pathways in pan‐cancer, mainly distributed in stomach adenocarcinoma, esophageal carcinoma, and lung squamous cell carcinoma, respectively. PGC and PGA3 expression were significantly correlated with immune cell infiltration. The results of survival analysis showed that different PGs expression play significantly different prognostic roles in different cancers. PGC was correlated with poor survival in brain lower grade glioma, skin cutaneous melanoma, and higher survival in kidney renal clear cell carcinoma, acute myeloid leukemia, mesothelioma, and uveal melanoma. PGA4 was only associated with higher survival in kidney renal clear cell carcinoma. Genetic variation analysis showed that PGC gene often mutated in uterine corpus endometrial carcinoma and stomach adenocarcinoma had extensive copy number amplification in various tumor types. PGC expression was upregulated with the increase of copy number in cholangiocarcinoma, esophageal carcinoma, and kidney renal papillary cell carcinoma, while in stomach adenocarcinoma, PGC was upregulated regardless of whether the copy number was increased or decreased. Conclusions PGs was expressed unevenly in a variety of cancer tissues and was related to many carcinogenic pathways and involved in the immune regulation. PGC participated in 33 regulatory pathways in human cancer. Different PGs expression play significantly different prognostic roles in different cancers. The variation of copy number of PGC gene could affect the PGC expression. These findings suggested that PGs, especially PGC have characteristic of broad‐spectrum expression in multiple cancers rather than being confined to the gastric mucosa, which may made PGs be useful biomarkers for prediction/diagnosis/prognosis and effective targets for treatment in human cancer.
Collapse
Affiliation(s)
- Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Hao Li
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Jingwei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Chen H, Zhu HR, Yu XN, Shi X, Bilegsaikhan E, Guo HY, Huang RZ, Liu TT, Shen XZ, Zhu JM. Overexpressed pepsinogen C is associated with poor prognosis in human hepatocellular carcinoma: a tissue microarray study. Cancer Manag Res 2019; 11:2927-2934. [PMID: 31114341 PMCID: PMC6497866 DOI: 10.2147/cmar.s192241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background: Aberrant expression of pepsinogen C (PGC) has been observed in human cancers. However, its role in hepatocellular carcinoma (HCC) remains to be established. The goal of this study is to illustrate PGC expression and to evaluate its clinical relevance in HCC. Materials and methods: PGC expression was examined in 75 pairs of HCC and adjacent non-tumor tissues using tissue microarray. The correlations between its expression and clinical parameters were also analyzed. Results: PGC overexpression was significantly associated with larger tumor size (≥5 cm; P=0.017) and incomplete encapsulation (P<0.0001). Cox regression model demonstrated that PGC expression and tumor size were independent prognostic factors for overall survival (OS) and disease-free survival (DFS) in HCC. The subgroup analysis by Kaplan–Meier uncovered that OS and DFS were much worse in high PGC level group than in low PGC level group with large tumor size subgroup, while no difference of OS was noted between the two groups with low tumor size subgroup. Conclusion: PGC plays a tumorigenesis role in HCC progression, which may lead to a novel insight to the potential biomarker and novel therapeutic strategies for HCC patients.
Collapse
Affiliation(s)
- Hong Chen
- Department of Endocrinology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Hai-Rong Zhu
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xiang-Nan Yu
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xuan Shi
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Enkhnaran Bilegsaikhan
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Hong-Ying Guo
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Ren-Zheng Huang
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Tao-Tao Liu
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| | - Xi-Zhong Shen
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Institute of Liver Disease, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China.,Key Laboratory of Medical Molecular Virology, Shanghai Medical College of Fudan University, Shanghai, People's Republic of China
| | - Ji-Min Zhu
- Department of Gastroenterologyand Hepatology, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Institute of Liver Disease, Zhongshan Hospital of Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Ludovini V, Bianconi F, Siggillino A, Piobbico D, Vannucci J, Metro G, Chiari R, Bellezza G, Puma F, Della Fazia MA, Servillo G, Crinò L. Gene identification for risk of relapse in stage I lung adenocarcinoma patients: a combined methodology of gene expression profiling and computational gene network analysis. Oncotarget 2017; 7:30561-74. [PMID: 27081700 PMCID: PMC5058701 DOI: 10.18632/oncotarget.8723] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/28/2016] [Indexed: 12/30/2022] Open
Abstract
Risk assessment and treatment choice remains a challenge in early non-small-cell lung cancer (NSCLC). The aim of this study was to identify novel genes involved in the risk of early relapse (ER) compared to no relapse (NR) in resected lung adenocarcinoma (AD) patients using a combination of high throughput technology and computational analysis. We identified 18 patients (n.13 NR and n.5 ER) with stage I AD. Frozen samples of patients in ER, NR and corresponding normal lung (NL) were subjected to Microarray technology and quantitative-PCR (Q-PCR). A gene network computational analysis was performed to select predictive genes. An independent set of 79 ADs stage I samples was used to validate selected genes by Q-PCR.From microarray analysis we selected 50 genes, using the fold change ratio of ER versus NR. They were validated both in pool and individually in patient samples (ER and NR) by Q-PCR. Fourteen increased and 25 decreased genes showed a concordance between two methods. They were used to perform a computational gene network analysis that identified 4 increased (HOXA10, CLCA2, AKR1B10, FABP3) and 6 decreased (SCGB1A1, PGC, TFF1, PSCA, SPRR1B and PRSS1) genes. Moreover, in an independent dataset of ADs samples, we showed that both high FABP3 expression and low SCGB1A1 expression was associated with a worse disease-free survival (DFS).Our results indicate that it is possible to define, through gene expression and computational analysis, a characteristic gene profiling of patients with an increased risk of relapse that may become a tool for patient selection for adjuvant therapy.
Collapse
Affiliation(s)
- Vienna Ludovini
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Fortunato Bianconi
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Danilo Piobbico
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Jacopo Vannucci
- Department of Surgical and Biomedical Science, University of Perugia, Perugia, Italy
| | - Giulio Metro
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Rita Chiari
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| | - Guido Bellezza
- Department of Experimental Medicine, Section of Anatomic Pathology and Histology, Perugia, Italy
| | - Francesco Puma
- Department of Surgical and Biomedical Science, University of Perugia, Perugia, Italy
| | | | - Giuseppe Servillo
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Lucio Crinò
- Medical Oncology, S. Maria Della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
4
|
Shen S, Jiang J, Yuan Y. Pepsinogen C expression, regulation and its relationship with cancer. Cancer Cell Int 2017; 17:57. [PMID: 28546787 PMCID: PMC5442862 DOI: 10.1186/s12935-017-0426-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022] Open
Abstract
Pepsinogen C (PGC) belongs to the aspartic protease family and is secreted by gastric chief cells. PGC could be activated to pepsin C and digests polypeptides and amino acids, but as a zymogen PGC’s functions is unclear. In normal physiological conditions, PGC is initially detected in the late embryonic stage and is mainly expressed in gastric mucosa. The in situ expression of PGC in gastric mucosa is decreased considerably in the process of superficial gastritis → atrophic gastritis → gastric cancer (GC), proving that PGC is a comparatively ideal negative marker of GC. Serum PGC, and PGA levels and the PGA/PGC ratio have satisfactory sensitivity, specificity and price–quality ratio for predicting high GC risk. Ectopic PGC expression is significantly increased in prostate cancer, breast cancer, ovary cancer and endometrial cancer. In those sex-related cancers high level PGC expression indicates better prognosis and longer survival. The regulation of PGC expression involves genetic and epigenetic alteration of the encoding PGC gene, hormones modulation and interactions between PGC with other transcription factors and protein kinases. More and more research evidence hinted that PGC has strong correlation with cancer. In the systematic review, we respectively elaborate the structure, potential physiological functions, expression characteristics and regulation of PGC, and especially focus on the relationship between PGC expression and cancer to highlight the role of PGC in the tumorigenesis and its application value in clinical practice.
Collapse
Affiliation(s)
- Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention of Liaoning Provincial Education Department, Shenyang, 110001 China
| | - Jingyi Jiang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention of Liaoning Provincial Education Department, Shenyang, 110001 China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Affiliated Hospital of China Medical University, Key Laboratory of Cancer Etiology and Prevention of Liaoning Provincial Education Department, Shenyang, 110001 China
| |
Collapse
|
5
|
He CY, Sun LP, Xu Q, Liu JW, Jiang JY, Dong NN, Yuan Y. PGC TagSNP and its interaction with H. pylori and relation with gene expression in susceptibility to gastric carcinogenesis. PLoS One 2014; 9:e115955. [PMID: 25551587 PMCID: PMC4281127 DOI: 10.1371/journal.pone.0115955] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 11/28/2014] [Indexed: 01/03/2023] Open
Abstract
Background Pepsinogen C (PGC) plays an important role in sustaining the cellular differentiation during the process of gastric carcinogenesis. This study aimed to assess the role of PGC tagSNPs and their interactions with Helicobacter pylori (H. pylori) in the development of gastric cancer and its precursor, atrophic gastritis. Methods Four PGC tagSNPs (rs6941539, rs6912200, rs3789210 and rs6939861) were genotyped by Sequenom MassARRAY platform in a total of 2311 subjects consisting of 642 gastric cancer, 774 atrophic gastritis, and 895 healthy control subjects. The mRNA and protein expression levels of PGC in gastric tissues and in serum were respectively measured by quantitative reverse transcriptase–polymerase chain reaction (qRT-PCR), immunohistochemistry, and Eenzyme-linked immunoabsorbent assay (ELISA). Results We found associations between PGC rs3789210 CG/GG genotypes and reduced gastric cancer risk and between PGC rs6939861 A variant allele and increased risks of both gastric cancer and atrophic gastritis. As for the haplotypes of PGC rs6941539-rs6912200-rs3789210-rs6939861 loci, the TTCA and TTGG haplotypes were respectively associated with increased and reduced risks of both gastric cancer and atrophic gastritis; additionally, the CTCA haplotype was associated with increased atrophic gastritis risk. Very interestingly, rs6912200 CT/TT genotypes had a positive interaction with H. pylori, synergistically elevating the gastric cancer risk. Moreover, healthy subjects who carried rs6912200 CT, TT and CT/TT variant genotypes had lower histological and serum expression levels of PGC protein. Conclusions Our findings highlight an important role of PGC rs3789210 and rs6939861 in altering susceptibility to atrophic gastritis and/or gastric cancer. Moreover, people who carry rs6912200 variant genotypes exhibit higher gastric cancer risk in case of getting H. pylori infection, which strongly suggest a necessity of preventing and/or eliminating H. pylori infection in those individuals.
Collapse
Affiliation(s)
- Cai-yun He
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
- Department of Molecular Diagnostics of Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, China
| | - Li-ping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Jing-wei Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Jing-yi Jiang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Nan-nan Dong
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, the First Affiliated Hospital of China Medical University, and Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department, Shenyang, China
- * E-mail:
| |
Collapse
|
6
|
Peluffo MC, Murphy MJ, Baughman ST, Stouffer RL, Hennebold JD. Systematic analysis of protease gene expression in the rhesus macaque ovulatory follicle: metalloproteinase involvement in follicle rupture. Endocrinology 2011; 152:3963-74. [PMID: 21791558 PMCID: PMC3176652 DOI: 10.1210/en.2011-1172] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protease genes were identified that exhibited increased mRNA levels before and immediately after rupture of the naturally selected, dominant follicle of rhesus macaques at specific intervals after an ovulatory stimulus. Quantitative real-time PCR validation revealed increased mRNA levels for matrix metalloproteinase (MMP1, MMP9, MMP10, and MMP19) and a disintegrin and metalloproteinase with thrombospondin-like repeats (ADAMTS1, ADAMTS4, ADAMTS9, and ADAMTS15) family members, the cysteine protease cathepsin L (CTSL), the serine protease urokinase-type plasminogen activator (PLAU), and the aspartic acid protease pepsinogen 5 (PGA5). With the exception of MMP9, ADAMTS1, and PGA5, mRNA levels for all other up-regulated proteases increased significantly (P < 0.05) 12 h after an ovulatory human chorionic gonadotropin (hCG) bolus. MMP1, -10, and -19; ADAMTS1, -4, and -9; CTSL; PLAU; and PGA5 also exhibited a secondary increase in mRNA levels in 36-h postovulatory follicles. To further determine metalloproteinase involvement in ovulation, vehicle (n = 4) or metalloproteinase inhibitor (GM6001, 0.5 μg/follicle, n = 8) was injected into the preovulatory follicle at the time of hCG administration. Of the eight GM6001-injected follicles, none displayed typical stigmata indicative of ovulation at 72 h after hCG; whereas all four vehicle-injected follicles ovulated. No significant differences in mean luteal progesterone levels or luteal phase length occurred between the two groups. Subsequent histological analysis revealed that vehicle-injected follicles ruptured, whereas GM6001-injected follicles did not, as evidenced by an intact stroma and trapped oocytes (n = 3). These findings demonstrate metalloproteinases are critical for follicle rupture in primates, and blocking their activity would serve as a novel, nonhormonal means to achieve contraception.
Collapse
Affiliation(s)
- Marina C Peluffo
- Division of Reproductive Sciences, Oregon National Primate Research Center, Oregon Health and Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, USA
| | | | | | | | | |
Collapse
|
7
|
Tani Y, Akiyama Y, Fukamachi H, Yanagihara K, Yuasa Y. Transcription factor SOX2 up-regulates stomach-specific pepsinogen A gene expression. J Cancer Res Clin Oncol 2006; 133:263-9. [PMID: 17136346 DOI: 10.1007/s00432-006-0165-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 10/27/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE Transcription factor SOX2 is expressed in normal gastric mucosae but not in the normal colon. We aimed to clarify the role of SOX2 with reference to pepsinogen expression in the gastrointestinal epithelium. METHODS We analyzed expression of SOX2 and pepsinogens, differentiation markers of the stomach, in ten gastric cancer (GC) and ten colorectal cancer (CRC) cell lines. The effects of over-expression and down-regulation of SOX2 on pepsinogen expression were also examined. RESULTS Six GC and five CRC cell lines showed SOX2 expression on RT-PCR. Expression of pepsinogen A was detectable in eight GC and seven CRC cell lines, whereas the majority of the cell lines expressed pepsinogen C. Over-expression of SOX2 up-regulated expression of pepsinogen A but not that of pepsinogen C in 293T human embryonic kidney cells, and some GC and CRC cell lines. Moreover, pepsinogen A expression was significantly reduced by SOX2 RNA interference in two GC cell lines. CONCLUSION These data suggest that SOX2 plays an important role in regulation of pepsinogen A, and ectopic expression of SOX2 may be associated with abnormal differentiation of colorectal cancer cells.
Collapse
Affiliation(s)
- Yasuyo Tani
- Department of Molecular Oncology, Graduate School of Medicine and Dentistry, Tokyo Medical and Dental University, 1-5-45, Yushima, Tokyo 113-8519, Japan
| | | | | | | | | |
Collapse
|
8
|
Contrastive study of the tissue expression and serum concentration of pepsinogen C in gastric mucosa diseases. Chin J Cancer Res 2006. [DOI: 10.1007/s11670-006-0008-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
9
|
Li HM, Ning PF, Yuan Y. In situ expression and serum level of pepsinogen C in different gastric mucosa diseases. Shijie Huaren Xiaohua Zazhi 2005; 13:2473-2476. [DOI: 10.11569/wcjd.v13.i20.2473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the matching degree of in situ expression and serum level of pepsinogen C (PGC) in different gastric mucosal biopsies, and to evaluate its value in the diagnosis of gastric cancer.
METHODS: A total of 129 gastric mucosa biopsies and its corresponding serum specimens were collected from patients with superficial gastritis (n = 30), gastric ulcer or erosion (n = 35), atrophic gastritis (29), and gastric cancer (n = 35). The expression of PGC in the gastric mucosa was detected by immunohistochemistry, and the concentration of serum pepsinogen A (sPGA) and pepsinogen C (sPGC) were determined by enzyme linked immunosorbent assay (ELISA).
RESULTS: The positive rate of PGC antigen expression decreased in the tissues of superficial gastritis (100%), gastric ulcer or erosion (80.00%), atrophic gastritis (34.48%), and gastric cancer (11.43%) in sequence (P <0.05). The expression rate decreased as the increase of the disease severity. There was no statistical difference in the concentration of sPGA and sPGC among the above 4 groups. The ratio of sPGA to sPGC in the superficial gastritis, gastric ulcer or erosion, atrophic gastritis, and gastric cancer was 11.55±0.69, 9.39±0.86, 8.86±0.63, and 6.83±0.68, respectively (P <0.05), and decreased as the reduction of the PGC expression. There was specific correlation between the expression of PGC in gastric mucosa and the ratio of sPGA to sPGC in the serum (r = 0.297, P = 0.001).
CONCLUSION: Tissue expression of PGC has nega-tive correlation with the severity of the gastric mucosal disease. The ratio of sPGA to sPGC is closely related with the tissue expression of PGC antigen, and it is a convenient and economic index for the screening and diagnosis of gastric cancer.
Collapse
|
10
|
Scorilas A, Borgoño CA, Harbeck N, Dorn J, Schmalfeldt B, Schmitt M, Diamandis EP. Human kallikrein 13 protein in ovarian cancer cytosols: a new favorable prognostic marker. J Clin Oncol 2004; 22:678-85. [PMID: 14966091 DOI: 10.1200/jco.2004.05.144] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Human kallikrein 13 (hK13; encoded by the KLK13 gene) is a secreted serine protease expressed in endocrine tissues, including the prostate, testis, breast, and ovary. We have previously reported steroid hormone regulation of the KLK13 gene and its clinical value as a marker of favorable prognosis in breast cancer at the mRNA level. We hypothesized that hK13 may represent a potential biomarker for ovarian carcinomas. PATIENTS AND METHODS Using a newly developed enzyme-linked immunosorbent assay (ELISA), hK13 levels were quantified in 131 ovarian tumor extracts and correlated with various clinicopathological variables and outcome (progression-free survival [PFS], overall survival [OS]), over a median follow-up period of 42 months. RESULTS hK13 concentration in ovarian tumor cytosols ranged from 0 to 18.4 ng/mg of total protein. An optimal cutoff value of 0.13 ng/mg (67(th) percentile) was selected, based on the ability of hK13 values to predict the PFS of the study population, to categorize tumors as hK13-positive or negative. Women with hK13-positive tumors most often had early stage (stage I/II) disease, no residual tumor after surgery and optimal debulking success (P <.05). Univariate and multivariate Cox regression analyses revealed that patients with hK13-positive tumors had a significantly longer PFS and OS than hK13-negative patients (P <.05). Kaplan-Meier survival curves further confirmed a reduced risk of relapse and death in women with hK13-positive tumors (P =.007 and P =.002, respectively). CONCLUSION These results indicate that hK13 is an independent marker of favorable prognosis in ovarian cancer.
Collapse
Affiliation(s)
- Andreas Scorilas
- Department of Biochemistry and Molecular Biology, University of Athens, Greece
| | | | | | | | | | | | | |
Collapse
|