1
|
Frischauf N, Strasser J, Borg EG, Labrijn AF, Beurskens FJ, Preiner J. Complement activation by IgG subclasses is governed by their ability to oligomerize upon antigen binding. Proc Natl Acad Sci U S A 2024; 121:e2406192121. [PMID: 39436656 PMCID: PMC11536094 DOI: 10.1073/pnas.2406192121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/05/2024] [Indexed: 10/23/2024] Open
Abstract
Complement activation through antibody-antigen complexes is crucial in various pathophysiological processes and utilized in immunotherapies to eliminate infectious agents, regulatory immune cells, or cancer cells. The tertiary structures of the four IgG antibody subclasses are largely comparable, with the most prominent difference being the hinge regions connecting the Fab and Fc domains, providing them with unique structural flexibility. Complement recruitment and activation depend strongly on IgG subclass, which is commonly rationalized by differences in hinge flexibility and the respective affinities for C1, the first component of the classical complement pathway. However, a unifying mechanism of how these different IgG subclass properties combine to modulate C1 activation has not yet been proposed. We here demonstrate that complement activation is determined by their varying ability to form IgG oligomers on antigenic surfaces large enough to multivalently bind and activate C1. We directly visualize the resulting IgG oligomer structures and characterize their distribution by means of high-speed atomic force microscopy, quantify their complement recruitment efficiency from quartz crystal microbalance experiments, and characterize their ability to activate complement on tumor cell lines as well as in vesicle-based complement lysis assays. We present a mechanistic model of the multivalent interactions that govern C1 binding to IgG oligomers and use it to extract kinetic rate constants from real-time interaction data from which we further calculate equilibrium dissociation constants. Together, we provide a comprehensive view on the parameters that govern complement activation by the different IgG subclasses, which may inform the design of future antibody therapies.
Collapse
Affiliation(s)
- Nikolaus Frischauf
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| | - Jürgen Strasser
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| | | | | | | | - Johannes Preiner
- Medical Engineering, Nano Structuring and Bio-Analytics, University of Applied Sciences Upper Austria, Linz4020, Austria
| |
Collapse
|
2
|
Mekala JR, Nalluri HP, Reddy PN, S B S, N S SK, G V S D SK, Dhiman R, Chamarthy S, Komaragiri RR, Manyam RR, Dirisala VR. Emerging trends and therapeutic applications of monoclonal antibodies. Gene 2024; 925:148607. [PMID: 38797505 DOI: 10.1016/j.gene.2024.148607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 04/02/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Monoclonal antibodies (mAbs) are being used to prevent, detect, and treat a broad spectrum of malignancies and infectious and autoimmune diseases. Over the past few years, the market for mAbs has grown exponentially. They have become a significant part of many pharmaceutical product lines, and more than 250 therapeutic mAbs are undergoing clinical trials. Ever since the advent of hybridoma technology, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some of the benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies, which are affordable versions of therapeutic antibodies. Along with biosimilars, innovations in antibody engineering have helped to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. In the future, mAbs generated by applying next-generation sequencing (NGS) are expected to become a powerful tool in clinical therapeutics. This article describes the methods of mAb production, pre-clinical and clinical development of mAbs, approved indications targeted by mAbs, and novel developments in the field of mAb research.
Collapse
Affiliation(s)
- Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA.
| | - Hari P Nalluri
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Prakash Narayana Reddy
- Department of Microbiology, Dr. V.S. Krishna Government College, Visakhapatnam 530013, India
| | - Sainath S B
- Department of Biotechnology, Vikrama Simhapuri University, Nellore 524320, AP, India
| | - Sampath Kumar N S
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India
| | - Sai Kiran G V S D
- Santhiram Medical College and General Hospital, Nandyal, Kurnool 518501, AP, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Sciences, National Institute of Technology Rourkela-769008, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522502, Guntur, Andhra Pradesh, INDIA
| | - Raghava Rao Komaragiri
- Department of CSE, Koneru Lakshmaiah Education Foundation (KLEF), Vaddeswaram 522302, Andhra Pradesh, INDIA
| | - Rajasekhar Reddy Manyam
- Amrita School of Computing, Amrita Vishwa Vidyapeetham, Amaravati Campus, Amaravati, Andhra Pradesh, India
| | - Vijaya R Dirisala
- Department of Biotechnology, Vignan's (Deemed to be) University, Guntur 522213, AP, India.
| |
Collapse
|
3
|
Gao C, Chen Q, Hao X, Wang Q. Immunomodulation of Antibody Glycosylation through the Placental Transfer. Int J Mol Sci 2023; 24:16772. [PMID: 38069094 PMCID: PMC10705935 DOI: 10.3390/ijms242316772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Establishing an immune balance between the mother and fetus during gestation is crucial, with the placenta acting as the epicenter of immune tolerance. The placental transfer of antibodies, mainly immunoglobulin G (IgG), is critical in protecting the developing fetus from infections. This review looks at how immunomodulation of antibody glycosylation occurs during placental transfer and how it affects fetal health. The passage of maternal IgG antibodies through the placental layers, including the syncytiotrophoblast, stroma, and fetal endothelium, is discussed. The effect of IgG subclass, glycosylation, concentration, maternal infections, and antigen specificity on antibody transfer efficiency is investigated. FcRn-mediated IgG transport, influenced by pH-dependent binding, is essential for placental transfer. Additionally, this review delves into the impact of glycosylation patterns on antibody functionality, considering both protective and pathological effects. Factors affecting the transfer of protective antibodies, such as maternal vaccination, are discussed along with reducing harmful antibodies. This in-depth examination of placental antibody transfer and glycosylation provides insights into improving neonatal immunity and mitigating the effects of maternal autoimmune and alloimmune conditions.
Collapse
Affiliation(s)
| | | | | | - Qiushi Wang
- Department of Blood Transfusion, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
4
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. Nat Commun 2023; 14:7218. [PMID: 37940661 PMCID: PMC10632514 DOI: 10.1038/s41467-023-42097-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/25/2023] [Indexed: 11/10/2023] Open
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved envelope (Env) epitopes to block viral replication. Here, using structural analyses, we provide evidence to explain why a vaccine targeting the membrane-proximal external region (MPER) of HIV-1 elicits antibodies with human bnAb-like paratopes paradoxically unable to bind HIV-1. Unlike in natural infection, vaccination with MPER/liposomes lacks a necessary structure-based constraint to select for antibodies with an adequate approach angle. Consequently, the resulting Abs cannot physically access the MPER crawlspace on the virion surface. By studying naturally arising Abs, we further reveal that flexibility of the human IgG3 hinge mitigates the epitope inaccessibility and additionally facilitates Env spike protein crosslinking. Our results suggest that generation of IgG3 subtype class-switched B cells is a strategy for anti-MPER bnAb induction. Moreover, the findings illustrate the need to incorporate topological features of the target epitope in immunogen design.
Collapse
Affiliation(s)
- Kemin Tan
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, IL, USA
| | - Junjian Chen
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Laboratory of Immunology, Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Kaku
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yi Wang
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- NeoCura Bio-Medical Technology Co., Ltd., Beijing, China
| | - Luke Donius
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- AbbVie Bioresearch Center, AbbVie Inc., Worcester, MA, USA
| | - Rafiq Ahmad Khan
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Xiaolong Li
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Hannah Richter
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Thomas Walz
- Laboratory of Molecular Electron Microscopy, The Rockefeller University, New York, NY, USA
| | - Wonmuk Hwang
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
- Department of Materials Science & Engineering, Texas A&M University, College Station, TX, USA
- Department of Physics & Astronomy, Texas A&M University, College Station, TX, USA
| | - Ellis L Reinherz
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Mikyung Kim
- Laboratory of Immunobiology, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Department of Dermatology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Żeliszewska P, Wasilewska M, Szych J, Adamczyk Z. Mechanism of Anti-Salmonella Rabbit Immunoglobulin Adsorption on Polymer Particles. Biomolecules 2023; 13:1390. [PMID: 37759790 PMCID: PMC10526532 DOI: 10.3390/biom13091390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
The adsorption of anti-Salmonella rabbit immunoglobulin (IgaR) on negatively charged polymer particles leading to the formation of immunolatex was studied using various techniques comprising atomic force microscopy (AFM) and laser Doppler velocimetry (LDV). Initially, the basic physicochemical properties of IgaR molecules and the particles, inter alia their electrophoretic mobilities, the zeta potentials and hydrodynamic diameters, were determined under different ionic strengths and pHs. Applying AFM, single immunoglobulin molecules adsorbed on mica were also imaged, which allowed to determine their size. The adsorption of the IgaR molecules on the particles leading to changes in their electrophoretic mobility was monitored in situ using the LDV method. The obtained results were interpreted applying a general electrokinetic model which yielded quantitative information about the molecule coverage on the particles. The obtained immunolatex was thoroughly characterized with respect to its acid-base properties and its stability upon storage. Notably, the developed procedure demonstrated better efficiency compared to commercially applied methods, characterized by a higher immunoglobulin consumption.
Collapse
Affiliation(s)
- Paulina Żeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Monika Wasilewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
| | - Jolanta Szych
- Biomex Co., Ltd., ul. Friedleina 4-6 lok. 117, 30-009 Krakow, Poland;
| | - Zbigniew Adamczyk
- Jerzy Haber Institute of Catalysis and Surface Chemistry Polish Academy of Science, Niezapominajek 8, 30-239 Krakow, Poland;
| |
Collapse
|
6
|
Abu Hammad K, Dinu V, MacCalman TE, Pattem J, Goodall M, Gillis RB, Jefferis R, Harding SE. Comparative sedimentation equilibrium analysis of two IgG1 glycoforms: IgGCri and IgGWid. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:439-443. [PMID: 37195494 PMCID: PMC10444637 DOI: 10.1007/s00249-023-01656-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/14/2023] [Indexed: 05/18/2023]
Abstract
The solution properties of two different glycoforms of IgG1 (IgG1Cri and IgG1Wid) are compared using primarily sedimentation equilibrium analysis with two complementary analysis routines: SEDFIT-MSTAR and MULTISIG. IgGCri bears diantennary complex-type glycans on its Fc domain that are fully core fucosylated and partially sialylated, whilst on IgGWid, they are non-fucosylated, partially galactosylated and non-sialylated. IgGWid is also Fab glycosylated. Despite these differences, SEDFIT-MSTAR analysis shows similar weight average molar masses Mw of ~ (150 ± 5) kDa for IgGCri and ~ (154 ± 5) kDa for IgGWid and both glycoforms show evidence of the presence of a small fraction of dimer confirmed by MULTISIG analysis and also by sedimentation coefficient distributions from supportive sedimentation velocity measurements. The closeness of the sedimentation equilibrium behaviour and sedimentation coefficient distributions with a main peak sedimentation coefficient of ~ 6.4S for both glycoforms at different concentrations suggest that the different glycosylation profiles do not significantly impact on molar mass (molecular weight) nor conformation in solution.
Collapse
Affiliation(s)
- Khalil Abu Hammad
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Vlad Dinu
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Thomas E MacCalman
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Jacob Pattem
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | - Margaret Goodall
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Richard B Gillis
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK
- College of Business, Technology and Engineering, Food and Nutrition Group, Sheffield Hallam University, Sheffield, S1 1WB, UK
| | - Roy Jefferis
- Institute of Immunology & Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Stephen E Harding
- National Centre for Macromolecular Hydrodynamics (NCMH), School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
| |
Collapse
|
7
|
Tan K, Chen J, Kaku Y, Wang Y, Donius L, Khan RA, Li X, Richter H, Seaman MS, Walz T, Hwang W, Reinherz EL, Kim M. Inadequate structural constraint on Fab approach rather than paratope elicitation limits HIV-1 MPER vaccine utility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.27.546734. [PMID: 37425731 PMCID: PMC10327024 DOI: 10.1101/2023.06.27.546734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Broadly neutralizing antibodies (bnAbs) against HIV-1 target conserved epitopes, thereby inhibiting viral entry. Yet surprisingly, those recognizing linear epitopes in the HIV-1 gp41 membrane proximal external region (MPER) are elicited neither by peptide nor protein scaffold vaccines. Here, we observe that while Abs generated by MPER/liposome vaccines may exhibit human bnAb-like paratopes, B-cell programming without constraints imposed by the gp160 ectodomain selects Abs unable to access the MPER within its native "crawlspace". During natural infection, the flexible hinge of IgG3 partially mitigates steric occlusion of less pliable IgG1 subclass Abs with identical MPER specificity, until affinity maturation refines entry mechanisms. The IgG3 subclass maintains B-cell competitiveness, exploiting bivalent ligation resulting from greater intramolecular Fab arm length, offsetting weak antibody affinity. These findings suggest future immunization strategies.
Collapse
|
8
|
Biophysical Reviews’ “meet the editors series”—a profile of Steve Harding’s career in macromolecular hydrodynamics. Biophys Rev 2022; 14:605-610. [DOI: 10.1007/s12551-022-00963-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 05/24/2022] [Indexed: 01/14/2023] Open
|
9
|
Foss S, Jonsson A, Bottermann M, Watkinson R, Lode HE, McAdam MB, Michaelsen TE, Sandlie I, James LC, Andersen JT. Potent TRIM21 and complement-dependent intracellular antiviral immunity requires the IgG3 hinge. Sci Immunol 2022; 7:eabj1640. [PMID: 35486676 PMCID: PMC7614286 DOI: 10.1126/sciimmunol.abj1640] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Humans have four IgG antibody subclasses that selectively or differentially engage immune effector molecules to protect against infections. Although IgG1 has been studied in detail and is the subclass of most approved antibody therapeutics, increasing evidence indicates that IgG3 is associated with enhanced protection against pathogens. Here, we report that IgG3 has superior capacity to mediate intracellular antiviral immunity compared with the other subclasses due to its uniquely extended and flexible hinge region, which facilitates improved recruitment of the cytosolic Fc receptor TRIM21, independently of Fc binding affinity. TRIM21 may also synergize with complement C1/C4-mediated lysosomal degradation via capsid inactivation. We demonstrate that this process is potentiated by IgG3 in a hinge-dependent manner. Our findings reveal differences in how the four IgG subclasses mediate intracellular immunity, knowledge that may guide IgG subclass selection and engineering of antiviral antibodies for prophylaxis and therapy.
Collapse
Affiliation(s)
- Stian Foss
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4956, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Alexandra Jonsson
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4956, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Maria Bottermann
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2-0QH, United Kingdom
| | - Ruth Watkinson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2-0QH, United Kingdom
| | - Heidrun E. Lode
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4956, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Martin B. McAdam
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4956, N-0424 Oslo, Norway
| | - Terje E. Michaelsen
- Department of Chemical Pharmacy, School of Pharmacy, University of Oslo, N-0371, Oslo, Norway
- Infection Immunology, Norwegian Institute of Public Health, N-0213, Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4956, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Leo C. James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, CB2-0QH, United Kingdom
| | - Jan Terje Andersen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, PO Box 4956, N-0424 Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| |
Collapse
|
10
|
Zografou C, Vakrakou AG, Stathopoulos P. Short- and Long-Lived Autoantibody-Secreting Cells in Autoimmune Neurological Disorders. Front Immunol 2021; 12:686466. [PMID: 34220839 PMCID: PMC8248361 DOI: 10.3389/fimmu.2021.686466] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/28/2021] [Indexed: 12/24/2022] Open
Abstract
As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts (SLPBs) are produced by a primary extrafollicular response, followed by the generation of memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur parallel to IgE, in response to chronic stimulation by allergens and helminths. Although IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding and cause a wide range of autoimmune disorders including neurological autoimmunity. In myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase (MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab commonly leads to long-term remission and a marked reduction in autoantibody titer, pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic inflammatory demyelinating polyneuropathy and autoimmune encephalitis with autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-mediated neurological disorders can also respond well to rituximab induction therapy in combination with an autoantibody titer drop, remission tends to be less long-lasting and cases where titers are refractory tend to occur more often than in IgG4 autoimmunity. Moreover, presence of GC-like structures in the thymus of myasthenic patients with predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to generate LLPCs. Here, we review available information on the short-and long-lived nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and highlight common mechanisms as well as differences, all of which can inform therapeutic strategies and personalized medical approaches.
Collapse
Affiliation(s)
- C Zografou
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - A G Vakrakou
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - P Stathopoulos
- First Department of Neurology, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
11
|
Habazin S, Štambuk J, Šimunović J, Keser T, Razdorov G, Novokmet M. Mass Spectrometry-Based Methods for Immunoglobulin G N-Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:73-135. [PMID: 34687008 DOI: 10.1007/978-3-030-76912-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Mass spectrometry and its hyphenated techniques enabled by the improvements in liquid chromatography, capillary electrophoresis, novel ionization, and fragmentation modes are truly a cornerstone of robust and reliable protein glycosylation analysis. Boost in immunoglobulin G (IgG) glycan and glycopeptide profiling demands for both applied biomedical and research applications has brought many new advances in the field in terms of technical innovations, sample preparation, improved throughput, and confidence in glycan structural characterization. This chapter summarizes mass spectrometry basics, focusing on IgG and monoclonal antibody N-glycosylation analysis on several complexity levels. Different approaches, including antibody enrichment, glycan release, labeling, and glycopeptide preparation and purification, are covered and illustrated with recent breakthroughs and examples from the literature omitting excessive theoretical frameworks. Finally, selected highly popular methodologies in IgG glycoanalytics such as liquid chromatography-mass spectrometry and matrix-assisted laser desorption ionization are discussed more thoroughly yet in simple terms making this text a practical starting point either for the beginner in the field or an experienced clinician trying to make sense out of the IgG glycomic or glycoproteomic dataset.
Collapse
Affiliation(s)
- Siniša Habazin
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Jerko Štambuk
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | - Mislav Novokmet
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.
| |
Collapse
|
12
|
Marsh‐Wakefield F, Ashhurst T, Trend S, McGuire HM, Juillard P, Zinger A, Jones AP, Kermode AG, Hawke S, Grau GE, Hart PH, Byrne SN. IgG 3 + B cells are associated with the development of multiple sclerosis. Clin Transl Immunology 2020; 9:e01133. [PMID: 32355561 PMCID: PMC7190396 DOI: 10.1002/cti2.1133] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Disease-modifying therapies (DMTs) targeting B cells are amongst the most effective for preventing multiple sclerosis (MS) progression. IgG3 antibodies and their uncharacterised B-cell clones are predicted to play a pathogenic role in MS. Identifying subsets of IgG3 + B cells involved in MS progression could improve diagnosis, could inform timely disease intervention and may lead to new DMTs that target B cells more specifically. METHODS We designed a 31-parameter B-cell-focused mass cytometry panel to interrogate the role of peripheral blood IgG3 + B cells in MS progression of two different patient cohorts: one to investigate the B-cell subsets involved in conversion from clinically isolated syndrome (CIS) to MS; and another to compare MS patients with inactive or active stages of disease. Each independent cohort included a group of non-MS controls. RESULTS Nine distinct CD20+IgD-IgG3 + B-cell subsets were identified. Significant changes in the proportion of CD21+CD24+CD27-CD38- and CD27+CD38hiCD71hi memory B-cell subsets correlated with changes in serum IgG3 levels and time to conversion from CIS to MS. The same CD38- double-negative B-cell subset was significantly elevated in MS patients with active forms of the disease. A third CD21+CD24+CD27+CD38- subset was elevated in patients with active MS, whilst narrowband UVB significantly reduced the proportion of this switched-memory B-cell subset. CONCLUSION We have identified previously uncharacterised subsets of IgG3 + B cells and shown them to correlate with autoimmune attacks on the central nervous system (CNS). These results highlight the potential for therapies that specifically target IgG3 + B cells to impact MS progression.
Collapse
Affiliation(s)
- Felix Marsh‐Wakefield
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
| | - Thomas Ashhurst
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Viral Immunopathology LaboratoryDepartment of PathologyThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Sydney Cytometry FacilityCharles Perkins CentreThe University of Sydney and Centenary InstituteSydneyNSWAustralia
| | - Stephanie Trend
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
- Centre for Neuromuscular and Neurological DisordersPerron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
| | - Helen M McGuire
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Ramaciotti Facility for Human Systems BiologyThe University of SydneySydneyNSWAustralia
- Translational Immunology LaboratoryDepartment of PathologyThe University of SydneySydneyNSWAustralia
| | - Pierre Juillard
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
| | - Anna Zinger
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
| | - Anderson P Jones
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Allan G Kermode
- Centre for Neuromuscular and Neurological DisordersPerron Institute for Neurological and Translational ScienceUniversity of Western AustraliaPerthWAAustralia
- Institute for Immunology and Infectious DiseaseMurdoch UniversityPerthWAAustralia
| | - Simon Hawke
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
- Central West Neurology and NeurosurgeryOrangeNSWAustralia
| | - Georges E Grau
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Vascular Immunology UnitDepartment of PathologyThe University of SydneySydneyNSWAustralia
| | - Prue H Hart
- Telethon Kids InstituteUniversity of Western AustraliaPerthWAAustralia
| | - Scott N Byrne
- School of Medical SciencesFaculty of Medicine and HealthThe University of SydneySydneyNSWAustralia
- Charles Perkins CentreThe University of SydneySydneyNSWAustralia
- Centre for Immunology and Allergy ResearchWestmead Institute for Medical ResearchWestmeadNSWAustralia
| |
Collapse
|
13
|
Czajka P, Antosiewicz JM, Długosz M. Effects of Hydrodynamic Interactions on the Near-Surface Diffusion of Spheroidal Molecules. ACS OMEGA 2019; 4:17016-17030. [PMID: 31646249 PMCID: PMC6796493 DOI: 10.1021/acsomega.9b02618] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/12/2019] [Indexed: 05/21/2023]
Abstract
We investigated diffusion of spheroidal molecules near a planar surface, accounting for spatially dependent translational and rotational mobilities of molecules resulting from their hydrodynamic interactions with the plane. Rigid-body Brownian dynamics simulations of prolate ellipsoids of revolution of an axial ratio in the range of 1.5 to 3.0, suspended in a viscous fluid, with a no-slip flat boundary confining the suspension were employed. Mobility tensor matrices of molecules were evaluated as functions of spheroids' distance and orientation with respect to the plane. Hydrodynamic interactions with the surface lead to substantial changes of spheroids' translational diffusion coefficients both in the direction perpendicular and parallel to the plane when compared with the values characterizing the bulk diffusion. Moreover, the short-time translational diffusion of molecules, measured in the laboratory frame, both in an unbounded fluid and under the confinement, is non-Gaussian, with much larger deviations from Gaussianity observed in the latter case. In an unbounded fluid, distributions of translational displacements of molecules deviate from those expected for a simple Brownian motion as a result of shape anisotropy. In the presence of the plane, spheroids experience an additional anisotropic drag, and consequently, their mobilities depend on their positions and orientations. Therefore, anomalies in the short-time dynamics observed under confinement can be explained in terms of the so-called diffusing-diffusivity mechanism. Our findings have implications for understanding of a wide range of biological and technological processes that involve diffusion of anisotropic molecules near surfaces of natural and model cell membranes, biosensors and nanosensors, and electrodes.
Collapse
Affiliation(s)
- Paweł Czajka
- Faculty
of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jan M. Antosiewicz
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej Długosz
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
- E-mail: . Phone: +48 22 55 32 229
| |
Collapse
|
14
|
Damelang T, Rogerson SJ, Kent SJ, Chung AW. Role of IgG3 in Infectious Diseases. Trends Immunol 2019; 40:197-211. [PMID: 30745265 DOI: 10.1016/j.it.2019.01.005] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/20/2022]
Abstract
IgG3 comprises only a minor fraction of IgG and has remained relatively understudied until recent years. Key physiochemical characteristics of IgG3 include an elongated hinge region, greater molecular flexibility, extensive polymorphisms, and additional glycosylation sites not present on other IgG subclasses. These characteristics make IgG3 a uniquely potent immunoglobulin, with the potential for triggering effector functions including complement activation, antibody (Ab)-mediated phagocytosis, or Ab-mediated cellular cytotoxicity (ADCC). Recent studies underscore the importance of IgG3 effector functions against a range of pathogens and have provided approaches to overcome IgG3-associated limitations, such as allotype-dependent short Ab half-life, and excessive proinflammatory activation. Understanding the molecular and functional properties of IgG3 may facilitate the development of improved Ab-based immunotherapies and vaccines against infectious diseases.
Collapse
Affiliation(s)
- Timon Damelang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Rogerson
- Department of Medicine, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Amy W Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
15
|
Hansen K, Lau AM, Giles K, McDonnell JM, Struwe WB, Sutton BJ, Politis A. A Mass-Spectrometry-Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angew Chem Int Ed Engl 2018; 57:17194-17199. [PMID: 30408305 PMCID: PMC6392142 DOI: 10.1002/anie.201812018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 11/09/2022]
Abstract
Immunoglobulins are biomolecules involved in defence against foreign substances. Flexibility is key to their functional properties in relation to antigen binding and receptor interactions. We have developed an integrative strategy combining ion mobility mass spectrometry (IM-MS) with molecular modelling to study the conformational dynamics of human IgG antibodies. Predictive models of all four human IgG subclasses were assembled and their dynamics sampled in the transition from extended to collapsed state during IM-MS. Our data imply that this collapse of IgG antibodies is related to their intrinsic structural features, including Fab arm flexibility, collapse towards the Fc region, and the length of their hinge regions. The workflow presented here provides an accurate structural representation in good agreement with the observed collision cross section for these flexible IgG molecules. These results have implications for studying other nonglobular flexible proteins.
Collapse
Affiliation(s)
- Kjetil Hansen
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | - Andy M. Lau
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| | | | | | | | - Brian J. Sutton
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonUK
| | - Argyris Politis
- Department of ChemistryKing's College London7 Trinity StreetLondonSE1 1DBUK
| |
Collapse
|
16
|
Ying C, Houghtaling J, Eggenberger OM, Guha A, Nirmalraj P, Awasthi S, Tian J, Mayer M. Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown. ACS NANO 2018; 12:11458-11470. [PMID: 30335956 DOI: 10.1021/acsnano.8b06489] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanopores with diameters from 20 to 50 nm in silicon nitride (SiN x) windows are useful for single-molecule studies of globular macromolecules. While controlled breakdown (CBD) is gaining popularity as a method for fabricating nanopores with reproducible size control and broad accessibility, attempts to fabricate large nanopores with diameters exceeding ∼20 nm via breakdown often result in undesirable formation of multiple nanopores in SiN x membranes. To reduce the probability of producing multiple pores, we combined two strategies: laser-assisted breakdown and controlled pore enlargement by limiting the applied voltage. Based on laser power-dependent increases in nanopore conductance upon illumination and on the absence of an effect of ionic strength on the ratio between the nanopore conductance before and after laser illumination, we suggest that the increased rate of controlled breakdown results from laser-induced heating. Moreover, we demonstrate that conductance values before and after coating the nanopores with a fluid lipid bilayer can indicate fabrication of a single nanopore versus multiple nanopores. Complementary flux measurements of Ca2+ through the nanopore typically confirmed assessments of single or multiple nanopores that we obtained using the coating method. Finally, we show that thermal annealing of CBD pores significantly increased the success rate of coating and reduced the current noise before and after lipid coating. We characterize the geometry of these nanopores by analyzing individual resistive pulses produced by translocations of spherical proteins and demonstrate the usefulness of these nanopores for estimating the approximate molecular shape of IgG proteins.
Collapse
Affiliation(s)
- Cuifeng Ying
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Jared Houghtaling
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
- Department of Biomedical Engineering , University of Michigan , 2200 Bonisteel Boulevard , Ann Arbor , Michigan 48109 , United States
| | - Olivia M Eggenberger
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Anirvan Guha
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Peter Nirmalraj
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Saurabh Awasthi
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| | - Jianguo Tian
- Key Laboratory of Weak-Light Nonlinear Photonics, Ministry of Education, School of Physics , Nankai University , Tianjin 300071 , China
| | - Michael Mayer
- Adolphe Merkle Institute , University of Fribourg , Chemin des Verdiers 4 , CH-1700 Fribourg , Switzerland
| |
Collapse
|
17
|
Hansen K, Lau AM, Giles K, McDonnell JM, Struwe WB, Sutton BJ, Politis A. A Mass‐Spectrometry‐Based Modelling Workflow for Accurate Prediction of IgG Antibody Conformations in the Gas Phase. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201812018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kjetil Hansen
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| | - Andy M. Lau
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| | - Kevin Giles
- Waters Corp. Stamford Road Wilmslow SK9 4AX UK
| | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics King's College London UK
| | | | - Brian J. Sutton
- Randall Centre for Cell and Molecular Biophysics King's College London UK
| | - Argyris Politis
- Department of Chemistry King's College London 7 Trinity Street London SE1 1DB UK
| |
Collapse
|
18
|
Adamczyk Z, Nattich-Rak M, Dąbkowska M, Kujda-Kruk M. Albumin adsorption at solid substrates: A quest for a unified approach. J Colloid Interface Sci 2018; 514:769-790. [DOI: 10.1016/j.jcis.2017.11.083] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/27/2017] [Accepted: 11/29/2017] [Indexed: 12/20/2022]
|
19
|
Characterization of the NISTmAb Reference Material using small-angle scattering and molecular simulation. Anal Bioanal Chem 2018; 410:2161-2171. [DOI: 10.1007/s00216-018-0869-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/11/2017] [Accepted: 01/10/2018] [Indexed: 12/15/2022]
|
20
|
Monolayers of immunoglobulin G on polystyrene microparticles and their interactions with human serum albumin. J Colloid Interface Sci 2017; 490:587-597. [DOI: 10.1016/j.jcis.2016.11.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 11/23/2016] [Accepted: 11/25/2016] [Indexed: 11/15/2022]
|
21
|
Castellanos MM, Clark NJ, Watson MC, Krueger S, McAuley A, Curtis JE. Role of Molecular Flexibility and Colloidal Descriptions of Proteins in Crowded Environments from Small-Angle Scattering. J Phys Chem B 2016; 120:12511-12518. [DOI: 10.1021/acs.jpcb.6b10637] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria Monica Castellanos
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
- Institute for Bioscience and Biotechnology Research, 9600 Gudelsky Drive, Rockville, Maryland 20850, United States
| | - Nicholas J. Clark
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Max C. Watson
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Susan Krueger
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| | - Arnold McAuley
- Department
of Drug Product Development, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Joseph E. Curtis
- NIST
Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 6102, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
22
|
Bratek-Skicki A, Żeliszewska P, Ruso JM. Fibrinogen: a journey into biotechnology. SOFT MATTER 2016; 12:8639-8653. [PMID: 27722513 DOI: 10.1039/c6sm01895e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fibrinogen has been known since the mid-nineteenth century. Although initially its interest had been within the field of physiology over time its study has spread to new disciplines such as biochemistry, colloids and interfaces or biotechnology. First, we will describe the bulk properties of the molecule as well as its supramolecular assembly with different ligands by using different techniques and theoretical models. In the next step we will analyze the interfacial properties, an important topic because fibrinogen is considered to be a major inhibitor of lung surfactants' function at the lining layer of alveoli. The final step will be devoted to its main application in biotechnology. Thus, the adsorption of fibrinogen at solid/electrolyte interfaces and at carrier particles will be discussed. The reversibility of adsorption, fibrinogen molecule orientation, and maximum coverage will be thoroughly discussed. The stability of fibrinogen monolayers formed at these surfaces with respect to pH and ionic strength cyclic changes will also be presented. Based on the physicochemical data, adsorption kinetics and colloid particle deposition measurements, probable adsorption mechanisms of fibrinogen on solid/electrolyte interfaces will be defined.
Collapse
Affiliation(s)
- Anna Bratek-Skicki
- J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Paulina Żeliszewska
- J. Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Cracow, Poland
| | - Juan M Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, Spain.
| |
Collapse
|
23
|
Mechanism of immunoglobulin G adsorption on polystyrene microspheres. Colloids Surf B Biointerfaces 2016; 137:183-90. [DOI: 10.1016/j.colsurfb.2015.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/03/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
|
24
|
Pollitt MJ, Buckton G, Piper R, Brocchini S. Measuring antibody coatings on gold nanoparticles by optical spectroscopy. RSC Adv 2015. [DOI: 10.1039/c4ra15661g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coating thickness estimates of coated gold nanoparticles was achieved to avoid reduction of diagnostic sensitivity from excess antibody.
Collapse
Affiliation(s)
| | | | - Rob Piper
- Molecular Physiology and Biophysics
- University of Iowa
- Iowa City
- USA
| | | |
Collapse
|
25
|
Vidarsson G, Dekkers G, Rispens T. IgG subclasses and allotypes: from structure to effector functions. Front Immunol 2014; 5:520. [PMID: 25368619 PMCID: PMC4202688 DOI: 10.3389/fimmu.2014.00520] [Citation(s) in RCA: 1784] [Impact Index Per Article: 162.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 10/06/2014] [Indexed: 12/21/2022] Open
Abstract
Of the five immunoglobulin isotypes, immunoglobulin G (IgG) is most abundant in human serum. The four subclasses, IgG1, IgG2, IgG3, and IgG4, which are highly conserved, differ in their constant region, particularly in their hinges and upper CH2 domains. These regions are involved in binding to both IgG-Fc receptors (FcγR) and C1q. As a result, the different subclasses have different effector functions, both in terms of triggering FcγR-expressing cells, resulting in phagocytosis or antibody-dependent cell-mediated cytotoxicity, and activating complement. The Fc-regions also contain a binding epitope for the neonatal Fc receptor (FcRn), responsible for the extended half-life, placental transport, and bidirectional transport of IgG to mucosal surfaces. However, FcRn is also expressed in myeloid cells, where it participates in both phagocytosis and antigen presentation together with classical FcγR and complement. How these properties, IgG-polymorphisms and post-translational modification of the antibodies in the form of glycosylation, affect IgG-function will be the focus of the current review.
Collapse
Affiliation(s)
- Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Gillian Dekkers
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam , Amsterdam , Netherlands
| |
Collapse
|
26
|
Dąbkowska M, Adamczyk Z. Mechanism of immonoglobulin G adsorption on mica-AFM and electrokinetic studies. Colloids Surf B Biointerfaces 2014; 118:57-64. [DOI: 10.1016/j.colsurfb.2014.02.053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 02/10/2014] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
|
27
|
Singh SN, Yadav S, Shire SJ, Kalonia DS. Dipole-Dipole Interaction in Antibody Solutions: Correlation with Viscosity Behavior at High Concentration. Pharm Res 2014; 31:2549-58. [DOI: 10.1007/s11095-014-1352-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 02/27/2014] [Indexed: 11/28/2022]
|
28
|
García de la Torre J, Harding SE. Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO. Biophys Rev 2013; 5:195-206. [PMID: 23646070 PMCID: PMC3641304 DOI: 10.1007/s12551-013-0102-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/22/2013] [Indexed: 11/21/2022] Open
Abstract
The last three decades has seen some important advances in our ability to represent the conformation of proteins in solution on the basis of hydrodynamic measurements. Advances in theoretical modeling capabilities have been matched by commensurate advances in the precision of hydrodynamic measurements. We consider the advances in whole-body (simple ellipsoid-based) modeling-still useful for providing an overall idea of molecular shape, particularly for those systems where only a limited amount of data is available-and outline the ELLIPS suite of algorithms which facilitates the use of this approach. We then focus on bead modeling strategies, particularly the surface or shell-bead approaches and the HYDRO suite of algorithms. We demonstrate how these are providing great insights into complex issues such as the conformation of immunoglobulins and other multi-domain complexes.
Collapse
Affiliation(s)
- José García de la Torre
- Departamento de Quimica Fisica, Universidad de Murcia, Regional Campus Mare Nostrum, 30071 Murcia, Spain
| | - Stephen E. Harding
- School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD England, UK
| |
Collapse
|
29
|
Sørensen TJ, Thyrhaug E, Szabelski M, Luchowski R, Gryczynski I, Gryczynski Z, Laursen BW. Azadioxatriangulenium: a long fluorescence lifetime fluorophore for large biomolecule binding assay. Methods Appl Fluoresc 2013; 1:025001. [PMID: 29148442 DOI: 10.1088/2050-6120/1/2/025001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Of the many optical bioassays available, sensing by fluorescence anisotropy has great advantages as it provides a sensitive, instrumentally simple, ratiometric method of detection. However, it is hampered by a severe limitation, as the emission lifetime of the label needs to be comparable to the correlation lifetime (tumbling time) of the biomolecule which is labelled. For proteins of moderate size this is on the order of 20-200 ns, which due to practical issues currently limits the choice of labels to the dansyl-type dyes and certain aromatic dyes. These have the significant drawback of UV/blue absorption and emission as well as an often significant solvent sensitivity. Here, we report the synthesis and characterization of a new fluorescent label for high molecular weight biomolecule assay based on the azadioxatriangulenium motif. The NHS ester of the long fluorescence lifetime, red-emitting fluorophore: azadioxatriangulenium (ADOTA-NHS) was conjugated to anti-rabbit Immunoglobulin G (antiIgG). The long fluorescence lifetime was exploited to determine the correlation time of the high molecular weight antibody and its complex with rabbit Immunoglobulin G (IgG) with steady-state fluorescence anisotropy and time-resolved methods: solution phase immuno-assay was performed following either steady-state or time-resolved fluorescence anisotropy. By performing a variable temperature experiment it was determined that the binding of the ligand resulted in an increase in correlation time of more than 75%, and an increase in the steady-state anisotropy of 18%. The results show that the triangulenium class of dyes can be used in anisotropy assay to detect binding events involving biomolecules of far larger size than what is possible with most other red-emitting organic dyes.
Collapse
Affiliation(s)
- Thomas Just Sørensen
- Department of Molecular Biology and Immunology, Center for Commercialization of Fluorescence Technologies, University of North Texas Health Science Center, Fort Worth, TX 76107, USA. Nano-Science Center and Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 København Ø, Denmark
| | | | | | | | | | | | | |
Collapse
|
30
|
Adamczyk Z, Cichocki B, Ekiel-Jeżewska ML, Słowicka A, Wajnryb E, Wasilewska M. Fibrinogen conformations and charge in electrolyte solutions derived from DLS and dynamic viscosity measurements. J Colloid Interface Sci 2012; 385:244-57. [DOI: 10.1016/j.jcis.2012.07.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/02/2012] [Accepted: 07/03/2012] [Indexed: 11/17/2022]
|
31
|
Guélat B, Ströhlein G, Lattuada M, Delegrange L, Valax P, Morbidelli M. Simulation model for overloaded monoclonal antibody variants separations in ion-exchange chromatography. J Chromatogr A 2012; 1253:32-43. [DOI: 10.1016/j.chroma.2012.06.081] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/21/2012] [Accepted: 06/25/2012] [Indexed: 12/18/2022]
|
32
|
Krayukhina E, Uchiyama S, Fukui K. Effects of rotational speed on the hydrodynamic properties of pharmaceutical antibodies measured by analytical ultracentrifugation sedimentation velocity. Eur J Pharm Sci 2012; 47:367-74. [PMID: 22728396 DOI: 10.1016/j.ejps.2012.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/04/2012] [Accepted: 06/08/2012] [Indexed: 11/30/2022]
Abstract
Analytical ultracentrifugation sedimentation velocity (AUC-SV) has recently become one of the most important tools for the measurement of hydrodynamic properties of proteins. Although a number of studies using AUC-SV as applied to pharmaceutical antibodies have been conducted, the effect of rotational speed on molecular properties has not been systematically examined. The present study aimed to elucidate the influence of rotational speed on the hydrodynamic parameters of pharmaceutical antibodies. A monoclonal and a polyclonal antibody were studied by using AUC-SV at 5 different rotor speeds, and the acquired data were analyzed either by using the computer programs SEDFIT or UltraScan. The frictional ratio of the studied antibodies decreased at high rotor speeds, resulting in underestimation of molecular weight. The frictional ratio value of the monoclonal antibody measured at the low rotor speed was consistent with that of human immunoglobulin G1 computed from its three-dimensional structure. The best agreement between the measured molecular weight and the value calculated from the antibody sequence was achieved at the lower rotor speed. Similar to the results obtained using antibodies, AUC-SV analysis of human serum albumin revealed that the frictional ratio and apparent molecular weight behave in a speed-dependent manner. We deduced that the findings were mainly attributable to the hydrostatic pressure in the analytical ultracentrifuge. The current study implies that rotor speed should be carefully considered in antibody studies using AUC-SV.
Collapse
Affiliation(s)
- Elena Krayukhina
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita 565-0871, Japan
| | | | | |
Collapse
|
33
|
|
34
|
Patel TR, Meier M, Li J, Morris G, Rowe AJ, Stetefeld J. T-shaped arrangement of the recombinant agrin G3-IgG Fc protein. Protein Sci 2011; 20:931-40. [PMID: 21448912 PMCID: PMC3104224 DOI: 10.1002/pro.628] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 12/12/2022]
Abstract
Agrin is a large heparin sulphate proteoglycan with multiple domains, which is located in the extracellular matrix. The C-terminal G3 domain of agrin is functionally one of the most important domains. It harbors an α-dystroglycan binding site and carries out acetylcholine receptor clustering activities. In the present study, we have fused the G3 domain of agrin to an IgG Fc domain to produce a G3-Fc fusion protein that we intend to use as a tool to investigate new binding partners of agrin. As a first step of the study, we have characterized the recombinant fusion protein using a multidisciplinary approach using dynamic light scattering, analytical ultracentrifugation and small angle X-ray scattering (SAXS). Interestingly, our SAXS analysis using the high-resolution structures of G3 and Fc domain as models indicates that the G3-Fc protein forms a T-shaped molecule with the G3 domains extruding perpendicularly from the Fc scaffold. To validate our models, we have used the program HYDROPRO to calculate the hydrodynamic properties of the solution models. The calculated values are in excellent agreement with those determined experimentally.
Collapse
Affiliation(s)
- Trushar R Patel
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba R3T2N2, Canada
| | | | | | | | | | | |
Collapse
|
35
|
Jefferis R. The antibody paradigm: present and future development as a scaffold for biopharmaceutical drugs. Biotechnol Genet Eng Rev 2011; 26:1-42. [PMID: 21415874 DOI: 10.5661/bger-26-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early studies of the humoral immune response revealed an apparent paradox: an infinite diversity of antibody specificities encoded within a finite genome. In consequence antibodies became a focus of interest for biochemists and geneticists. It resulted in the elucidation of the basic structural unit, the immunoglobulin (Ig) domain, comprised of ~ 100 amino acid residues that generate the characteristic "immunoglobulin (Ig) fold". The Ig fold has an anti-parallel ß-pleated sheet (barrel) structure that affords structural stability whilst the ß-bends allow for essentially infinite structural variation and functional diversity. This versatility is reflected in the Ig domain being the most widely utilised structural unit within the proteome. Human antibodies are comprised of multiple Ig domains and their structural diversity may be enhanced through the attachment of oligosaccharides. This review summarizes our current understanding of the immunoglobulin structure/function relationships and the application of protein and oligosaccharide engineering to further develop the Ig domain as a scaffold for the generation of new and novel antibody based therapeutics.
Collapse
Affiliation(s)
- Roy Jefferis
- School of Immunity and Infection, The College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
36
|
Ortega A, Amorós D, García de la Torre J. Global fit and structure optimization of flexible and rigid macromolecules and nanoparticles from analytical ultracentrifugation and other dilute solution properties. Methods 2010; 54:115-23. [PMID: 21163355 DOI: 10.1016/j.ymeth.2010.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/24/2010] [Accepted: 12/03/2010] [Indexed: 11/30/2022] Open
Abstract
The calculation of hydrodynamic and other solution properties from structural information (size and shape or flexibility) of macromolecules and nanoparticles is feasible thanks to existing theories and computational tools. Here we review our recent advances in the inverse problem of extracting structural information from those properties. The concepts of equivalent radii and ratios of radii are particularly useful in global-fitting structural analysis, when one has to treat simultaneously with various properties, eventually for a series of samples. Based on the equivalent radii or their ratios, we define target functions that measure the adequacy of a given structure to fit a set of experimental properties. Structural determination is carried out by minimization of those target functions. We review a variety of examples. Some of them refer to the simple, yet important models like ellipsoids, cylinders and wormlike chains, whose structure is determined by optimization of the model parameters. In other, more complex cases, properties are calculated with computational tools like programs in the HYDRO suite. We have devised other tools to make the structure optimization from the results of those calculations in a quite direct, simple and systematic manner.
Collapse
Affiliation(s)
- A Ortega
- Departamento de Química Física, Facultad de Química, Universidad de Murcia, 30071 Murcia, Spain.
| | | | | |
Collapse
|
37
|
Harding SE, Abdelhameed AS, Morris GA. On the hydrodynamic analysis of conformation in mixed biopolymer systems. POLYM INT 2010. [DOI: 10.1002/pi.2934] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Guélat B, Ströhlein G, Lattuada M, Morbidelli M. Electrostatic model for protein adsorption in ion-exchange chromatography and application to monoclonal antibodies, lysozyme and chymotrypsinogen A. J Chromatogr A 2010; 1217:5610-21. [DOI: 10.1016/j.chroma.2010.06.064] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 06/19/2010] [Accepted: 06/24/2010] [Indexed: 11/16/2022]
|
39
|
Amorós D, Ortega A, Harding SE, García de la Torre J. Multi-scale calculation and global-fit analysis of hydrodynamic properties of biological macromolecules: determination of the overall conformation of antibody IgG molecules. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2008; 39:361-70. [DOI: 10.1007/s00249-008-0388-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2008] [Revised: 11/24/2008] [Accepted: 11/28/2008] [Indexed: 10/21/2022]
|
40
|
Lu Y, Harding SE, Rowe AJ, Davis KG, Fish B, Varley P, Gee C, Mulot S. The Effect of a Point Mutation on the Stability of IgG4 as Monitored by Analytical Ultracentrifugation. J Pharm Sci 2008; 97:960-9. [PMID: 17722105 DOI: 10.1002/jps.21016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There is presently considerable interest in the state of aggregation and biophysical integrity of antibody preparations, and recent advances in the analysis of data from the analytical ultracentrifuge renders it a powerful probe of these stability phenomena, under both storage and freeze-thaw conditions. Solutions of a wild-type IgG4 antibody and a single amino acid hinge mutant IgG4m (serine residue 241 converted to proline) were exposed to different accelerated stress conditions, namely (i) elevated temperature storage for various periods (up to 59 days at 37 degrees C) or (ii) a series of freeze-thaw cycles (storage at -80 degrees C then incubation at 20 degrees C for 1 h under different conditions). Analysis using the nondisruptive probe of sedimentation velocity in the analytical ultracentrifuge indicated that for both antibodies the monomer was always the most common species present whatever storage regime had been used. Sedimentation coefficient distribution analysis showed that other higher oligomer species and half-antibodies were present, and appeared to be not in chemical equilibrium with each other. Solution heterogeneity was found to increase considerably with treatment for both native and hinge-mutant antibodies although the latter appeared to be more resistant to freeze-thaw-induced aggregation.
Collapse
Affiliation(s)
- Yanling Lu
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, LE12 5RD, UK
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Nobbmann U, Connah M, Fish B, Varley P, Gee C, Mulot S, Chen J, Zhou L, Lu Y, Shen F, Yi J, Harding SE. Dynamic light scattering as a relative tool for assessing the molecular integrity and stability of monoclonal antibodies. Biotechnol Genet Eng Rev 2008; 24:117-28. [PMID: 18059629 DOI: 10.1080/02648725.2007.10648095] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ulf Nobbmann
- Malvern Instruments Ltd, Grovewood Road, Malvern, WR14 1XZ, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Hydrodynamic bead modeling (HBM) is the representation of a macromolecule by an assembly of spheres (or beads) for which measurable hydrodynamic (and related) parameters are then computed in order to understand better the macromolecular solution conformation. An example-based account is given of the main stages in HBM of rigid macromolecules, namely: model construction, model visualization, accounting for hydration, and hydrodynamic calculations. Different types of models are appropriate for different macromolecules, according to their composition, to what is known about the molecule or according to the types of experimental data that the model should reproduce. Accordingly, the construction of models based on atomic coordinates as well as much lower resolution data (e.g., electron microscopy images) is described. Similarly, several programs for hydrodynamic calculations are summarized, some generating the most basic set of solution parameters (e.g., sedimentation and translational diffusion coefficients, intrinsic viscosity, radius of gyration, and Stokes radius) while others extend to data determined by nuclear magnetic resonance, fluorescence anisotropy, and electric birefringence methods. An insight into the topic of hydrodynamic hydration is given, together with some practical suggestions for its satisfactory treatment in the modeling context. All programs reviewed are freely available.
Collapse
|
43
|
Lu Y, Harding SE, Michaelsen TE, Longman E, Davis KG, Ortega A, Grossmann JG, Sandlie I, García de la Torre J. Solution conformation of wild-type and mutant IgG3 and IgG4 immunoglobulins using crystallohydrodynamics: possible implications for complement activation. Biophys J 2007; 93:3733-44. [PMID: 17704171 PMCID: PMC2084252 DOI: 10.1529/biophysj.107.108993] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/22/2007] [Indexed: 11/18/2022] Open
Abstract
We have employed the recently described crystallohydrodynamic approach to compare the time-averaged domain orientation of human chimeric IgG3wt (wild-type) and IgG4wt as well as two hinge mutants of IgG3 and an IgG4S331P (mutation from serine to proline at position 331, EU numbering) mutant of IgG4. The approach involves combination of the known shape of the Fab and Fc regions from crystallography with hydrodynamic data for the Fab and Fc fragments and hydrodynamic and small angle x-ray scattering data for the intact IgG structures. In this way, ad hoc assumptions over hydration can be avoided and model degeneracy (uniqueness problems) can be minimized. The best fit model for the solution structure of IgG3wt demonstrated that the Fab regions are directed away from the plane of the Fc region and with a long extended hinge region in between. The best fit model of the IgG3m15 mutant with a short hinge (and enhanced complement activation activity) showed a more open, but asymmetric structure. The IgG3HM5 mutant devoid of a hinge region (and also devoid of complement-activation activity) could not be distinguished at the low-resolution level from the structure of the enhanced complement-activating mutant IgG3m15. The lack of inter-heavy-chain disulphide bond rather than a significantly different domain orientation may be the reason for the lack of complement-activating activity of the IgG3HM5 mutant. With IgG4, there are significant and interesting conformational differences between the wild-type IgG4, which shows a symmetric structure, and the IgG4S331P mutant, which shows a highly asymmetric structure. This structural difference may explain the ability of the IgG4S331P mutant to activate complement in stark contrast to the wild-type IgG4 molecule which is devoid of this activity.
Collapse
Affiliation(s)
- Yanling Lu
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, Sutton Bonington, England
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bongini L, Fanelli D, Piazza F, De Los Rios P, Sanner M, Skoglund U. A dynamical study of antibody-antigen encounter reactions. Phys Biol 2007; 4:172-80. [PMID: 17928656 DOI: 10.1088/1478-3975/4/3/004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The effects of internal dynamics in diffusion-driven encounters between macro-molecules represent a problem of broad relevance in molecular biology. In this view, we investigate a typical antigen-antibody reaction chain, based on a coarse-grained mechanical model parameterized directly upon results from single-molecule experiments. We demonstrate that the internal dynamics is a crucial factor in the encounter process. To describe our numerical results, we formulate a simple, intuitive theoretical framework, and we develop it analytically. This enables us to show that the inner dynamics of antibody molecules results in a cooperative behavior of their individual sub-units. Along the same lines, we also investigate the case of double binding to multi-valent antigens. Our results quantify the enhancement of avidity afforded by the double binding in excellent agreement with the available experimental data.
Collapse
Affiliation(s)
- Lorenzo Bongini
- Dipartimento di Fisica, Università di Firenze, V. G. Sansone 1, 50019 Firenze, Italy.
| | | | | | | | | | | |
Collapse
|
45
|
Lu Y, Longman E, Davis KG, Ortega A, Grossmann JG, Michaelsen TE, de la Torre JG, Harding SE. Crystallohydrodynamics of protein assemblies: Combining sedimentation, viscometry, and x-ray scattering. Biophys J 2006; 91:1688-97. [PMID: 16766619 PMCID: PMC1544311 DOI: 10.1529/biophysj.106.083469] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Accepted: 05/24/2006] [Indexed: 11/18/2022] Open
Abstract
Crystallohydrodynamics describes the domain orientation in solution of antibodies and other multidomain protein assemblies where the crystal structures may be known for the domains but not the intact structure. The approach removes the necessity for an ad hoc assumed value for protein hydration. Previous studies have involved only the sedimentation coefficient leading to considerable degeneracy or multiplicity of possible models for the conformation of a given protein assembly, all agreeing with the experimental data. This degeneracy can be considerably reduced by using additional solution parameters. Conformation charts are generated for the three universal (i.e., size-independent) shape parameters P (obtained from the sedimentation coefficient or translational diffusion coefficient), nu (from the intrinsic viscosity), and G (from the radius of gyration), and calculated for a wide range of plausible orientations of the domains (represented as bead-shell ellipsoidal models derived from their crystal structures) and after allowance for any linker or hinge regions. Matches are then sought with the set of functions P, nu, and G calculated from experimental data (allowing for experimental error). The number of solutions can be further reduced by the employment of the D max parameter (maximum particle dimension) from x-ray scattering data. Using this approach we are able to reduce the degeneracy of possible solution models for IgG3 to a possible representative structure in which the Fab domains are directed away from the plane of the Fc domain, a structure in accord with the recognition that IgG3 is the most efficient complement activator among human IgG subclasses.
Collapse
Affiliation(s)
- Yanling Lu
- National Centre for Macromolecular Hydrodynamics, University of Nottingham, School of Biosciences, Sutton Bonington, England
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC. The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J 2004; 87:4259-70. [PMID: 15361408 PMCID: PMC1304934 DOI: 10.1529/biophysj.104.047746] [Citation(s) in RCA: 558] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Accepted: 09/08/2004] [Indexed: 12/31/2022] Open
Abstract
The effects of nonionic polymers on human red blood cell (RBC) aggregation were investigated. The hydrodynamic radius (Rh) of individual samples of dextran, polyvinylpyrrolidone, and polyoxyethylene over a range of molecular weights (1,500-2,000,000) were calculated from their intrinsic viscosities using the Einstein viscosity relation and directly measured by quasi-elastic light scattering, and the effect of each polymer sample on RBC aggregation was studied by nephelometry and low-shear viscometry. For all three polymers, despite their different structures, samples with Rh <4 nm were found to inhibit aggregation, whereas those with Rh >4 nm enhanced aggregation. Inhibition increased with Rh and was maximal at approximately 3 nm; above 4 nm the pro-aggregant effect increased with Rh. For comparison, the Rh of 12 plasma proteins were calculated from literature values of intrinsic viscosity or diffusion coefficient. Each protein known to promote RBC aggregation had Rh >4 nm, whereas those with Rh <4 nm either inhibited or had no effect on aggregation. These results suggest that the influence of a nonionic polymer or plasma protein on RBC aggregation is simply a consequence of its size in an aqueous environment, and that the specific type of macromolecule is of minor importance.
Collapse
Affiliation(s)
- J K Armstrong
- Department of Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | |
Collapse
|
47
|
Calarese DA, Scanlan CN, Zwick MB, Deechongkit S, Mimura Y, Kunert R, Zhu P, Wormald MR, Stanfield RL, Roux KH, Kelly JW, Rudd PM, Dwek RA, Katinger H, Burton DR, Wilson IA. Antibody domain exchange is an immunological solution to carbohydrate cluster recognition. Science 2003; 300:2065-71. [PMID: 12829775 DOI: 10.1126/science.1083182] [Citation(s) in RCA: 621] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Human antibody 2G12 neutralizes a broad range of human immunodeficiency virus type 1 (HIV-1) isolates by binding an unusually dense cluster of carbohydrate moieties on the "silent" face of the gp120 envelope glycoprotein. Crystal structures of Fab 2G12 and its complexes with the disaccharide Manalpha1-2Man and with the oligosaccharide Man9GlcNAc2 revealed that two Fabs assemble into an interlocked VH domain-swapped dimer. Further biochemical, biophysical, and mutagenesis data strongly support a Fab-dimerized antibody as the prevalent form that recognizes gp120. The extraordinary configuration of this antibody provides an extended surface, with newly described binding sites, for multivalent interaction with a conserved cluster of oligomannose type sugars on the surface of gp120. The unique interdigitation of Fab domains within an antibody uncovers a previously unappreciated mechanism for high-affinity recognition of carbohydrate or other repeating epitopes on cell or microbial surfaces.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/metabolism
- Antibody Affinity
- Antibody Specificity
- Binding Sites, Antibody
- Cell Adhesion Molecules/metabolism
- Centrifugation, Density Gradient
- Crystallization
- Crystallography, X-Ray
- Dimerization
- Disaccharides/chemistry
- Disaccharides/metabolism
- Epitopes
- HIV Antibodies/chemistry
- HIV Antibodies/genetics
- HIV Antibodies/immunology
- HIV Antibodies/metabolism
- HIV Envelope Protein gp120/immunology
- HIV-1/immunology
- Humans
- Hydrogen Bonding
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/genetics
- Immunoglobulin Fab Fragments/immunology
- Immunoglobulin Fab Fragments/metabolism
- Immunoglobulin Heavy Chains/chemistry
- Immunoglobulin Heavy Chains/immunology
- Immunoglobulin Light Chains/chemistry
- Immunoglobulin Light Chains/immunology
- Immunoglobulin Variable Region/chemistry
- Immunoglobulin Variable Region/immunology
- Lectins/chemistry
- Lectins/immunology
- Lectins/metabolism
- Lectins, C-Type/metabolism
- Ligands
- Mannans/chemistry
- Mannans/metabolism
- Mannosides/chemistry
- Mannosides/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutagenesis
- Oligosaccharides/chemistry
- Oligosaccharides/immunology
- Oligosaccharides/metabolism
- Protein Conformation
- Protein Structure, Tertiary
- Receptors, Cell Surface/metabolism
Collapse
Affiliation(s)
- Daniel A Calarese
- Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Thurnheer T, Gmür R, Shapiro S, Guggenheim B. Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl Environ Microbiol 2003; 69:1702-9. [PMID: 12620862 PMCID: PMC150054 DOI: 10.1128/aem.69.3.1702-1709.2003] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to examine the diffusion of macromolecules through an in vitro biofilm model of supragingival plaque. Polyspecies biofilms containing Actinomyces naeslundii, Fusobacterium nucleatum, Streptococcus oralis, Streptococcus sobrinus, Veillonella dispar, and Candida albicans were formed on sintered hydroxyapatite disks and then incubated at room temperature for defined periods with fluorescent markers with molecular weights ranging from 3,000 to 900,000. Subsequent examination by confocal laser scanning microscopy revealed that the mean square penetration depths for all tested macromolecules except immunoglobulin M increased linearly with time, diffusion coefficients being linearly proportional to the cube roots of the molecular weights of the probes (range, 10,000 to 240,000). Compared to diffusion in bulk water, diffusion in the biofilms was markedly slower. The rate of diffusion for each probe appeared to be constant and not a function of biofilm depth. Analysis of diffusion phenomena through the biofilms suggested tortuosity as the most probable explanation for retarded diffusion. Selective binding of probes to receptors present in the biofilms could not explain the observed extent of retardation of diffusion. These results are relevant to oral health, as selective attenuated diffusion of fermentable carbohydrates and acids produced within dental plaque is thought to be essential for the development of carious lesions.
Collapse
Affiliation(s)
- Thomas Thurnheer
- Institute for Oral Microbiology and General Immunology, University of Zürich, Plattenstrasse 11, CH-8028 Zürich, Switzerland.
| | | | | | | |
Collapse
|
49
|
Powell AK, Fernig DG, Turnbull JE. Fibroblast growth factor receptors 1 and 2 interact differently with heparin/heparan sulfate. Implications for dynamic assembly of a ternary signaling complex. J Biol Chem 2002; 277:28554-63. [PMID: 12034712 DOI: 10.1074/jbc.m111754200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Heparan sulfate (HS) regulates the kinetics of fibroblast growth factor 2 (FGF2)-stimulated intracellular signaling and differentially activates cell proliferation of cells expressing different FGF receptors (FGFRs). Evidence suggests that HS interacts with both FGFs and FGFRs to form active ternary signaling complexes. Here we compare the interactions of two FGFRs with HS. We show that the ectodomains of FGFR1 IIIc and FGFR2 IIIc exhibit specific interactions with different characteristics for both heparin and porcine mucosal HS. These glycans are both known to activate FGF signaling via these receptors. FGFR2 interacts with a higher apparent affinity than FGFR1 despite both involving 6-O-, 2-O-, and N-sulfates. FGFR1 and FGFR2 bind heparin with mean association rate constants of 1.9 x 10(5) and 2.1 x 10(6) m(-1)s(-1), respectively, and dissociation rate constants of 1.2 x 10(-2) and 2.7 x 10(-2) s(-1), respectively. These produced calculated affinities of 63 and 13 nm, respectively. Hence, FGFR1 and FGFR2 bind to heparin chains with markedly different kinetics and affinities. We propose a mechanistic model where the kinetic parameters of the HS/FGFR interaction are a key element regulating the formation of ternary complexes and the resulting FGF signaling outcomes.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Biotinylation
- Cattle
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Enzyme-Linked Immunosorbent Assay
- Fibroblast Growth Factors/metabolism
- Glycosaminoglycans/metabolism
- Heparin/metabolism
- Heparitin Sulfate/metabolism
- Kinetics
- Lung/metabolism
- Models, Biological
- Protein Binding
- Protein Structure, Tertiary
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptor, Fibroblast Growth Factor, Type 2
- Receptors, Fibroblast Growth Factor/metabolism
- Signal Transduction
- Swine
Collapse
Affiliation(s)
- Andrew K Powell
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
50
|
Abstract
The background and purpose of the British Biophysical Society Discussion meeting, The Hydration Problem in Solution Biophysics, held at the University of Glasgow, 12 September 2000, is described, particularly in relation to previous meetings in this field. Whereas a study of the nature and dynamic properties of water associated with a molecule is an important topic by itself, the collection of papers based on this meeting focus mainly on its affect in interpreting biophysical data in terms of macromolecular shape in a solution environment, particularly under dilute and very dilute systems. The techniques considered are largely hydrodynamically or thermodynamically based and supplemented by molecular modeling strategies; but in the context of how these could be used in conjunction with techniques like X-ray crystallography, NMR and neutron scattering.
Collapse
Affiliation(s)
- S E Harding
- NCMH Physical Biochemistry Laboratory, School of Biosciences, University of Nottingham, Sutton Bonington LE12 5RD, UK.
| |
Collapse
|