1
|
Breimann S, Kamp F, Steiner H, Frishman D. AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning. J Mol Biol 2024; 436:168717. [PMID: 39053689 DOI: 10.1016/j.jmb.2024.168717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations. AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block to link amino acid properties with protein function and dysfunctions as well as aid informed decision-making in mutation analysis or protein drug design.
Collapse
Affiliation(s)
- Stephan Breimann
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany; Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Frits Kamp
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany
| | - Harald Steiner
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
2
|
Kleemann K, Bolduan P, Battagliarin G, Christl I, McNeill K, Sander M. Molecular Structure and Conformation of Biodegradable Water-Soluble Polymers Control Adsorption and Transport in Model Soil Mineral Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1274-1286. [PMID: 38164921 PMCID: PMC10795197 DOI: 10.1021/acs.est.3c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 01/03/2024]
Abstract
Water-soluble polymers (WSPs) are used in diverse applications, including agricultural formulations, that can result in the release of WSPs to soils. WSP biodegradability in soils is desirable to prevent long-term accumulation and potential associated adverse effects. In this work, we assessed adsorption of five candidate biodegradable WSPs with varying chemistry, charge, and polarity characteristics (i.e., dextran, diethylaminoethyl dextran, carboxymethyl dextran, polyethylene glycol monomethyl ether, and poly-l-lysine) and of one nonbiodegradable WSP (poly(acrylic acid)) to sand and iron oxide-coated sand particles that represent important soil minerals. Combined adsorption studies using solution-depletion measurements, direct surface adsorption techniques, and column transport experiments over varying solution pH and ionic strengths revealed electrostatics dominating interactions of charged WSPs with the sorbents as well as WSP conformations and packing densities in the adsorbed states. Hydrogen bonding controls adsorption of noncharged WSPs. Under transport in columns, WSP adsorption exhibited fast and slow kinetic adsorption regimes with time scales of minutes to hours. Slow adsorption kinetics in soil may lead to enhanced transport but also shorter lifetimes of biodegradable WSPs, assuming more rapid biodegradation when dissolved than adsorbed. This work establishes a basis for understanding the coupled adsorption and biodegradation dynamics of biodegradable WSPs in agricultural soils.
Collapse
Affiliation(s)
- Kevin Kleemann
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Patrick Bolduan
- BASF
SE, Materials and Formulation Research, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Glauco Battagliarin
- BASF
SE, Materials and Formulation Research, Carl-Bosch-Strasse 38, 67056 Ludwigshafen, Germany
| | - Iso Christl
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | - Michael Sander
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
3
|
Kargaki ME, Arfara F, Iatrou H, Tsitsilianis C. pH-Sensitive Poly(acrylic acid)-g-poly(L-lysine) Charge-Driven Self-Assembling Hydrogels with 3D-Printability and Self-Healing Properties. Gels 2023; 9:512. [PMID: 37504391 PMCID: PMC10379232 DOI: 10.3390/gels9070512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/29/2023] Open
Abstract
We report the rheological behavior of aqueous solutions of a graft copolymer polyampholyte, constituted of polyacrylic acid (PAA) backbone grafted by Poly(L-lysine) (PAA-b-PLL). The graft copolymer self-assembles in aqueous media, forming a three-dimensional (3D) network through polyelectrolyte complexation of the oppositely charged PAA and PLL segments. Rheological investigations showed that the hydrogel exhibits interesting properties, namely, relatively low critical gel concentration, elastic response with slow dynamics, remarkable extended critical strain to flow, shear responsiveness, injectability, 3D printability and self-healing. Due to the weak nature of the involved polyelectrolyte segments, the hydrogel properties display pH-dependency, and they are affected by the presence of salt. Especially upon varying pH, the PLL secondary structure changes from random coil to α-helix, affecting the crosslinking structural mode and, in turn, the overall network structure as reflected in the rheological properties. Thanks to the biocompatibility of the copolymer constituents and the biodegradability of PLL, the designed gelator seems to exhibit potential for bioapplications.
Collapse
Affiliation(s)
- Maria-Eleni Kargaki
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece
| | - Foteini Arfara
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | | |
Collapse
|
4
|
Yoshida K, Kuwahara Y, Hano N, Horie Y, Takafuji M, Ryu N, Nagaoka S, Oda R, Ihara H. Chiral H-aggregation-induced large stokes shift with CPL generation assisted by α-helical poly(L-lysine) substructure. Chirality 2023. [PMID: 36943171 DOI: 10.1002/chir.23553] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/23/2023]
Abstract
Fluorescent materials with large Stokes shifts have significant potential for use in optical applications. Typically, a synthetic design strategy is utilized for this purpose. In this study, we demonstrated a novel method by binding a chiral template to a nonchiral fluorescent agent without chemical modification. Specifically, α-helical poly(L-lysine) was employed as the chiral template, which interacted with a disulfonic fluorescent dye, such as NK2751. The dye caused excimer luminescence by inducing the formation of a chirally H-aggregated dimer only when poly(L-lysine) was in an α-helical shape. The result was a Stokes shift of 230 nm. Similar effects were not observed when the chiral template was in a random coil condition and the Stokes shift was less than 40 nm. These findings imply that H-aggregated dimerization, which often results in quenching, permits the electronic transitions necessary for fluorescence events by the formation of the chirally twisted state. In addition, we introduce for the first time the generation of circularly polarized luminescence using the chirality induction phenomena in a dye supported by poly(L-lysine).
Collapse
Affiliation(s)
- Kyohei Yoshida
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Yutaka Kuwahara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
| | - Nanami Hano
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, Pessac, France
| | - Yumi Horie
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
| | - Makoto Takafuji
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
| | - Naoya Ryu
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Shoji Nagaoka
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
- Kumamoto Industrial Research Institute, Kumamoto, Japan
| | - Reiko Oda
- University of Bordeaux, CNRS, Bordeaux INP, CBMN, Pessac, France
| | - Hirotaka Ihara
- Department of Applied Chemistry and Biochemistry, Kumamoto University, Kumamoto, Japan
- Okinawa College, National Institute of Technology, Okinawa, Japan
| |
Collapse
|
5
|
Chan NJ, Lentz S, Gurr PA, Scheibel T, Qiao GG. Mimicry of silk utilizing synthetic polypeptides. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Masquelier E, Liang SP, Sepunaru L, Morse DE, Gordon MJ. Reversible electrochemical triggering and optical interrogation of polylysine α-helix formation. Bioelectrochemistry 2022; 144:108007. [PMID: 34871847 DOI: 10.1016/j.bioelechem.2021.108007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 11/30/2022]
Abstract
Reversible electrochemical triggering of the random coil to α-helix conformational transition of polylysine (Lys10, Lys20, Lys50) was accomplished at a Pt electrode at potentials < |1| V vs. Ag/AgCl. Direct electroreduction of the N-terminus vs ε-amino groups in Lys sidechains, as well as hydronium reduction and electrolysis, could be easily distinguished and deconvolved using differential pulse voltammetry. Electrochemistry was coupled with in situ UV absorbance and circular dichroism spectroscopies to dynamically follow the evolution of α-helix formation at different potentials. Isotope experiments in H2O vs. D2O unequivocally confirm that direct electroreduction of ε-NH3+/ND3+ groups in Lys sidechains, rather than electrochemically generated pH gradient-induced deprotonation, leads to subsequent α-helix formation. The site-selective electrochemistry and optical methodologies presented herein can be generalized and extended to interrogate other protonation-sensitive biomolecular systems, and potentially provide access to early intermediates and control over the dynamic structural evolution of peptides and proteins.
Collapse
Affiliation(s)
- Eloise Masquelier
- Materials Department, University of California, Santa Barbara, CA, United States
| | - Sheng-Ping Liang
- Dept. Of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Lior Sepunaru
- Dept. Of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | - Daniel E Morse
- Dept. Of Molecular, Cellular and Development Biology, University of California, Santa Barbara, CA, United States; Institue for Collaborative Biotechnologies, University of California, Santa Barbara, CA, United States
| | - Michael J Gordon
- Dept. Of Chemical Engineering, University of California, Santa Barbara, CA, United States; Institue for Collaborative Biotechnologies, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
7
|
Stamou A, Iatrou H, Tsitsilianis C. NIPAm-Based Modification of Poly(L-lysine): A pH-Dependent LCST-Type Thermo-Responsive Biodegradable Polymer. Polymers (Basel) 2022; 14:polym14040802. [PMID: 35215715 PMCID: PMC8962975 DOI: 10.3390/polym14040802] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/16/2022] Open
Abstract
Polylysine is a biocompatible, biodegradable, water soluble polypeptide. Thanks to the pendant primary amines it bears, it is susceptible to modification reactions. In this work Poly(L-lysine) (PLL) was partially modified via the effortless free-catalysed aza-Michael addition reaction at room temperature by grafting N-isopropylacrylamide (NIPAm) moieties onto the amines. The resulting PLL-g-NIPAm exhibited LCST-type thermosensitivity. The LCST can be tuned by the NIPAm content incorporated in the macromolecules. Importantly, depending on the NIPAm content, LCST is highly dependent on pH and ionic strength due to ionization capability of the remaining free lysine residues. PLL-g-NIPAm constitutes a novel biodegradable LCST polymer that could be used as “smart” block in block copolymers and/or terpolymers, of any macromolecular architecture, to design pH/Temperature-responsive self-assemblies (nanocarriers and/or networks) for potential bio-applications.
Collapse
Affiliation(s)
- Aggeliki Stamou
- Department of Chemical Engineering, University of Patras, 26500 Patras, Greece;
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece;
| | | |
Collapse
|
8
|
Naassaoui I, Aschi A. Influence of temperature and salt on coacervation in an aqueous mixture of poly-L-lysine (PLL) and poly-(sodium styrene sulfonate) (PSSNa). EUROPEAN BIOPHYSICS JOURNAL : EBJ 2021; 50:877-887. [PMID: 34047804 DOI: 10.1007/s00249-021-01542-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 01/20/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022]
Abstract
The mixture of poly-L-lysine (PLL) and long-chain PSSNa can lead to the formation of soluble complexes depending on pH, PLL concentration, ionic strength, and temperature. The influence of these stimuli was studied by zetametry, dynamic and ultra-small-angle light scattering, and turbidimetric measurements. First of all, we studied the stoichiometry of complexation, and then considered the influence of salt concentration and temperature on the behavior of the mixture at different pH values. These findings have allowed us to conclude that the polyelectrolyte-polypeptide stoichiometry is controlled by electrostatic interactions between opposite charges. At mass ratios between 1.8 and 2.3 and with net charges close to neutrality, unstable complexes were formed and flocculated due to the hydrophobic attraction leading to macroscopic phase separation. The linear charge density of the complex is also controlled by the ionic strength. Higher CaCl2 concentrations reduce the complex stability and decrease the charge density, which leads to surface patch binding (SPB) at higher pH. Finally, the electrostatic interactions and strength of hydrogen bonds increased the stabilization of the complexes formed at temperatures lower than 45 °C. At temperatures higher than 45 °C, hydrophobic interactions became more dominant, causing a destabilization of the complexes.
Collapse
Affiliation(s)
- Imen Naassaoui
- Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Université de Tunis El Manar, 2092, Tunis, Tunisia
| | - Adel Aschi
- Faculté des Sciences de Tunis, LR99ES16 Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Université de Tunis El Manar, 2092, Tunis, Tunisia.
| |
Collapse
|
9
|
Zeng QH, Wang JJ, Zhang YH, Song YQ, Liang JL, Zhang XW. Recovery and identification bioactive peptides from protein isolate of Spirulina platensis and their in vitro effectiveness against oxidative stress-induced erythrocyte hemolysis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:3776-3782. [PMID: 32248525 DOI: 10.1002/jsfa.10408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 03/20/2020] [Accepted: 04/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Spirulina platensis is recognized as one of the most nutritious foods, containing a high protein content of up to 70%. Meanwhile, he interest in using natural protein resources to develop bioactive peptides is steadily increasing. Therefore, this study released the bioactive peptides from S. platensis by enzymatic hydrolysis using pepsin (1:3000 U g-1 ), and their amino acid sequences were determined by de novo sequencing. On this basis, the antioxidant activities of synthesized bioactive peptides were comprehensively evaluated by 2,2'-azinobis-3-ethylbenzothiazolin-6-sulfonic acid assay, 1,1-diphenyl-2-picryhydrazyl assay, and cell hemolysis assay induced by 2,2'-azobis-(2-amidino-propane) dihydrochloride (AAPH). RESULTS The degree of hydrolysis and recovery percentage of pepsin hydrolysis were 172 and 825 g kg-1 respectively, and FFEFF (P1: m/z 736.4, 8%), EYFDALA (P2: m/z 828.4, relative intensity 18.5%), and VTAPAASVAL (P3: m/z 899.5, relative intensity 17.3%) were purified and identified. P2 possessed an excellent radical scavenging activity compared with P1, P3, and vitamin C, which was contributed to by its high β-sheet conformation and specific amino acid compositions. Moreover, P2 significantly attenuated AAPH-induced oxidative hemolysis of erythrocytes and protected the erythrocytes, because it reduced the formation of malondialdehyde and increased the enzyme activities of superoxide dismutase, catalase, and glutathione peroxidase in erythrocytes. CONCLUSION This study provided insights into the potential antioxidant function of the synthesized peptides originated from the bioactive peptides of S. platensis proteins, which would contribute to the development of natural antioxidant from new protein resources. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qiao-Hui Zeng
- Department of Food Science, Foshan University, Foshan, China
| | - Jing Jing Wang
- Department of Food Science, Foshan University, Foshan, China
| | - Ying-Hui Zhang
- Department of Food Science, Foshan University, Foshan, China
| | - Yu-Qiong Song
- Department of Food Science, Foshan University, Foshan, China
| | - Jing-Lin Liang
- Department of Food Science, Foshan University, Foshan, China
| | - Xue-Wu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
10
|
Morawiak M, Stolarska M, Cieślak M, Urbanczyk‐Lipkowska Z. Interactions of rationally designed small peptide dendrons functionalized with valine or sinapic acid with α‐helix and β‐sheet structures of poly‐
l
‐lysine and poly‐
l
‐glutamic acid. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Maja Morawiak
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| | | | - Maciej Cieślak
- Institute of Organic Chemistry Polish Academy of Sciences Warsaw Poland
| | | |
Collapse
|
11
|
Batys P, Morga M, Bonarek P, Sammalkorpi M. pH-Induced Changes in Polypeptide Conformation: Force-Field Comparison with Experimental Validation. J Phys Chem B 2020; 124:2961-2972. [PMID: 32182068 PMCID: PMC7590956 DOI: 10.1021/acs.jpcb.0c01475] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/17/2022]
Abstract
Microsecond-long all-atom molecular dynamics (MD) simulations, circular dichroism, laser Doppler velocimetry, and dynamic light-scattering techniques have been used to investigate pH-induced changes in the secondary structure, charge, and conformation of poly l-lysine (PLL) and poly l-glutamic acid (PGA). The employed combination of the experimental methods reveals for both PLL and PGA a narrow pH range at which they are charged enough to form stable colloidal suspensions, maintaining their α-helix content above 60%; an elevated charge state of the peptides required for colloidal stability promotes the peptide solvation as a random coil. To obtain a more microscopic view on the conformations and to verify the modeling performance, peptide secondary structure and conformations rising in MD simulations are also examined using three different force fields, i.e., OPLS-AA, CHARMM27, and AMBER99SB*-ILDNP. Ramachandran plots reveal that in the examined setup the α-helix content is systematically overestimated in CHARMM27, while OPLS-AA overestimates the β-sheet fraction at lower ionization degrees. At high ionization degrees, the OPLS-AA force-field-predicted secondary structure fractions match the experimentally measured distribution most closely. However, the pH-induced changes in PLL and PGA secondary structure are reasonably captured only by the AMBER99SB*-ILDNP force field, with the exception of the fully charged PGA in which the α-helix content is overestimated. The comparison to simulations results shows that the examined force fields involve significant deviations in their predictions for charged homopolypeptides. The detailed mapping of secondary structure dependency on pH for the polypeptides, especially finding the stable colloidal α-helical regime for both examined peptides, has significant potential for practical applications of the charged homopolypeptides. The findings raise attention especially to the pH fine tuning as an underappreciated control factor in surface modification and self-assembly.
Collapse
Affiliation(s)
- Piotr Batys
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Maria Morga
- Jerzy
Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland
| | - Piotr Bonarek
- Department
of Physical Biochemistry, Faculty of Biochemistry, Biophysics and
Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maria Sammalkorpi
- Department of Chemistry and Materials Science and Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
12
|
Naassaoui I, Aschi A. Evaluation of Properties and Structural Transitions of Poly-L-lysine: Effects of pH and Temperature. J MACROMOL SCI B 2019. [DOI: 10.1080/00222348.2019.1638593] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Imen Naassaoui
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16, Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Tunis, Tunisia
| | - Adel Aschi
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR99ES16, Laboratoire Physique de la Matière Molle et de la Modélisation Électromagnétique, Tunis, Tunisia
| |
Collapse
|
13
|
Min J, Ma C, Liu X, Li J, Jiang H, Wen X, Chen X, Mijowska E, Tang T. Synthesis of Polylysine/Silica Hybrids through Branched-Polylysine-Mediated Biosilicification. ACS OMEGA 2018; 3:17573-17580. [PMID: 31458359 PMCID: PMC6643853 DOI: 10.1021/acsomega.8b01587] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/02/2018] [Indexed: 06/10/2023]
Abstract
Although many biosilicification methods based on cationic linear α-poly -l- lysine for synthesis of polylysine/silica hybrids have been investigated, these methods tend to rely on the counteranions, added catalysts, and complex synthesis process. To explore a simple and efficient biosilicification method, in this work, branched poly-l-lysine (BPL) is used as both a catalyst to hydrolyze tetraethoxysilane (TEOS) and an in situ template to direct silicic acids forming polylysine/silica hybrids in one-pot mode. The catalysis of BPL to hydrolyze TEOS results from the abundant hydrogen bonding (as the active site) to increase the nucleophilicity of BPL. Meanwhile, the hydrogen bonding is also found to be the key factor determining the self-assembly of BPL. During biosilicification, owing to self-assembly of BPL molecules, BPL would form spherical particles by keeping a random-coil conformation or form lamellar structures by undergoing a conformational transition from a random-coil to β-sheet construction. As a result, polylysine/silica hybrids with tunable topological structures are synthesized using aggregated BPLs as templates after the hydrolysis of TEOS. This finding of applying BPL to fulfill the biosilicification procedure without counteranions and added catalysts would enable a better understanding of the polypeptide-governed biosilicification process and pave a way for fabricating complex inorganic architectures applicable to silica transformational chemistry.
Collapse
Affiliation(s)
- Jiakang Min
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Road 5625, Changchun 130022, China
- University
of Chinese Academy of Sciences, Beijing 100039, China
| | - Changde Ma
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Road 5625, Changchun 130022, China
| | - Xiaoguang Liu
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Road 5625, Changchun 130022, China
- Nanomaterials
Physicochemistry Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, al. Piastów 45, Szczecin 70-311, Poland
| | - Jiaxin Li
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Road 5625, Changchun 130022, China
| | - Hanqing Jiang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Road 5625, Changchun 130022, China
| | - Xin Wen
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Road 5625, Changchun 130022, China
- Nanomaterials
Physicochemistry Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, al. Piastów 45, Szczecin 70-311, Poland
| | - Xuecheng Chen
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Road 5625, Changchun 130022, China
- Nanomaterials
Physicochemistry Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, al. Piastów 45, Szczecin 70-311, Poland
| | - Ewa Mijowska
- Nanomaterials
Physicochemistry Department, Faculty of Chemical Technology and Engineering, West Pomeranian University of Technology Szczecin, al. Piastów 45, Szczecin 70-311, Poland
| | - Tao Tang
- State
Key Laboratory of Polymer Physics and Chemistry, Changchun Institute
of Applied Chemistry, Chinese Academy of
Sciences, Renmin Road 5625, Changchun 130022, China
| |
Collapse
|
14
|
Schwaighofer A, Alcaráz MR, Araman C, Goicoechea H, Lendl B. External cavity-quantum cascade laser infrared spectroscopy for secondary structure analysis of proteins at low concentrations. Sci Rep 2016; 6:33556. [PMID: 27633337 PMCID: PMC5025714 DOI: 10.1038/srep33556] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/30/2016] [Indexed: 12/19/2022] Open
Abstract
Fourier transform infrared (FTIR) and circular dichroism (CD) spectroscopy are analytical techniques employed for the analysis of protein secondary structure. The use of CD spectroscopy is limited to low protein concentrations (<2 mg ml(-1)), while FTIR spectroscopy is commonly used in a higher concentration range (>5 mg ml(-1)). Here we introduce a quantum cascade laser (QCL)-based IR transmission setup for analysis of protein and polypeptide secondary structure at concentrations as low as 0.25 mg ml(-1) in deuterated buffer solution. We present dynamic QCL-IR spectra of the temperature-induced α-helix to β-sheet transition of poly-L-lysine. The concentration dependence of the α-β transition temperature between 0.25 and 10 mg ml(-1) was investigated by QCL-IR, FTIR and CD spectroscopy. By using QCL-IR spectroscopy it is possible to perform IR spectroscopic analysis in the same concentration range as CD spectroscopy, thus enabling a combined analysis of biomolecules secondary structure by CD and IR spectroscopy.
Collapse
Affiliation(s)
- Andreas Schwaighofer
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| | - Mirta R. Alcaráz
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
- Laboratorio de Desarrollo Analítico y Quimiometría, FBCB, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Can Araman
- Department of Chemistry, Institute of Biological Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Héctor Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría, FBCB, Universidad Nacional del Litoral-CONICET, Ciudad Universitaria, 3000 Santa Fe, Argentina
| | - Bernhard Lendl
- Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/164-UPA, 1060 Vienna, Austria
| |
Collapse
|
15
|
Wu X, Ryder MP, McGuire J, Snider JL, Schilke KF. Sequential and competitive adsorption of peptides at pendant PEO layers. Colloids Surf B Biointerfaces 2015; 130:69-76. [PMID: 25909181 DOI: 10.1016/j.colsurfb.2015.04.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 04/05/2015] [Accepted: 04/06/2015] [Indexed: 11/24/2022]
Abstract
Earlier work provided direction for development of responsive drug delivery systems based on modulation of the structure, amphiphilicity, and surface density of bioactive peptides entrapped within pendant polyethylene oxide (PEO) brush layers. In this work, we describe the sequential and competitive adsorption behavior of such peptides at pendant PEO layers. Three cationic peptides were used for this purpose: the arginine-rich, amphiphilic peptide WLBU2, a peptide chemically identical to WLBU2 but of scrambled sequence (S-WLBU2), and the non-amphiphilic peptide poly-L-arginine (PLR). Optical waveguide lightmode spectroscopy (OWLS) was used to quantify the rate and extent of peptide adsorption and elution at surfaces coated with PEO. UV spectroscopy and time-of-flight secondary ion mass spectrometry (TOF-SIMS) were used to quantify the extent of peptide exchange during the course of sequential and competitive adsorption. Circular dichroism (CD) was used to evaluate conformational changes after adsorption of peptide mixtures at PEO-coated silica nanoparticles. Results indicated that amphiphilic peptides are able to displace adsorbed, non-amphiphilic peptides in PEO layers, while non-amphiphilic peptides were not able to displace more amphiphilic peptides. In addition, peptides of greater amphiphilicity dominated the adsorption at the PEO layer from mixtures with less amphiphilic or non-amphiphilic peptides.
Collapse
Affiliation(s)
| | - Matthew P Ryder
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Joseph McGuire
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA
| | | | - Karl F Schilke
- School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97331, USA.
| |
Collapse
|
16
|
Maeta E, Ishihara K. Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix. BIOMATERIALS AND BIOMECHANICS IN BIOENGINEERING 2014. [DOI: 10.12989/bme.2014.1.3.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Moriuchi T, Ebisu K, Katano C, Hirao T. Polypeptide-induced Fluorescence of Pyrene Derivatives Based on Coordination Programming. CHEM LETT 2014. [DOI: 10.1246/cl.140230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Toshiyuki Moriuchi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Keisuke Ebisu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Chiaki Katano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
| | - Toshikazu Hirao
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University
- JST, ACT-C
| |
Collapse
|
18
|
Germershaus O, Werner V, Kutscher M, Meinel L. Deciphering the mechanism of protein interaction with silk fibroin for drug delivery systems. Biomaterials 2014; 35:3427-34. [DOI: 10.1016/j.biomaterials.2013.12.083] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Accepted: 12/22/2013] [Indexed: 12/24/2022]
|
19
|
Effect of peptide secondary structure on adsorption and adsorbed film properties on end-grafted polyethylene oxide layers. Acta Biomater 2014; 10:56-66. [PMID: 24060880 DOI: 10.1016/j.actbio.2013.09.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/09/2013] [Accepted: 09/13/2013] [Indexed: 01/12/2023]
Abstract
Poly-l-lysine (PLL), in α-helix or β-sheet configuration, was used as a model peptide for investigating the effect of secondary structures on adsorption events to poly(ethylene oxide) (PEO) modified surfaces formed using θ solvents. Circular dichroism results showed that the secondary structure of PLL persisted upon adsorption to Au and PEO modified Au surfaces. Quartz crystal microbalance with dissipation (QCM-D) was used to characterize the chemisorbed PEO layer in different solvents (θ and good solvents), as well as the sequential adsorption of PLL in different secondary structures (α-helix or β-sheet). QCM-D results suggest that chemisorption of PEO 750 and 2000 from θ solutions led to brushes 3.8 ± 0.1 and 4.5 ± 0.1 nm thick with layer viscosities of 9.2 ± 0.8 and 4.8 ± 0.5 cP, respectively. The average number of H2O per ethylene oxides, while in θ solvent, was determined as ~0.9 and ~1.2 for the PEO 750 and 2000 layers, respectively. Upon immersion in good solvent (as used for PLL adsorption experiments), the number of H2O per ethylene oxides increased to ~1.5 and ~2.0 for PEO 750 and 2000 films, respectively. PLL adsorbed masses for α-helix and β-sheet on Au sensors was 231 ± 5 and 1087 ± 14 ng cm(-2), with layer viscosities of 2.3 ± 0.1 and 1.2 ± 0.1 cP, respectively; suggesting that the α-helix layer was more rigid, despite a smaller adsorbed mass, than that of β-sheet layers. The PEO 750 layer reduced PLL adsorbed amounts to ~10 and 12% of that on Au for α-helices and β-sheets respectively. The PLL adsorbed mass to PEO 2000 layers dropped to ~12% and 4% of that on Au, for α-helix and β-sheet respectively. No significant differences existed for the viscosities of adsorbed α-helix and β-sheet PLL on PEO surfaces. These results provide new insights into the fundamental understanding of the effects of secondary structures of peptides and proteins on their surface adsorption.
Collapse
|
20
|
Binazadeh M, Faghihnejad A, Unsworth LD, Zeng H. Understanding the Effect of Secondary Structure on Molecular Interactions of Poly-l-lysine with Different Substrates by SFA. Biomacromolecules 2013; 14:3498-508. [DOI: 10.1021/bm400837t] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Mojtaba Binazadeh
- Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Ali Faghihnejad
- Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| | - Larry D. Unsworth
- Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
- National Institute of Nanotechnology, Edmonton, Alberta, T6G 2M9, Canada
| | - Hongbo Zeng
- Department of Chemical
and Materials Engineering, University of Alberta, Edmonton, Alberta, T6G 2V4, Canada
| |
Collapse
|
21
|
Morimoto N, Yamazaki M, Tamada J, Akiyoshi K. Polysaccharide-hair cationic polypeptide nanogels: self-assembly and enzymatic polymerization of amylose primer-modified cholesteryl poly(L-lysine). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7509-7514. [PMID: 23621379 DOI: 10.1021/la3047774] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, we prepared a new associating polymer, ChMaPLL, by the substitution of the poly(L-lysine) moiety with oligosaccharide amylose primer and cholesterol. ChMaPLL formed positively charged polypeptide nanogels (~50 nm) via self-assembly in water. The nanogels showed a secondary structural transition to an α-helix structure induced by poly(L-lysine) in response to an increase in pH. Oligosaccharides of the nanogels reacted with the phosphorylase a enzyme. Amylose-conjugated nanogels were obtained by enzymatic polymerization. The elongation of the saccharide chain shielded the positive charge of the nanogels. The multiresponsive polysaccharide-polypeptide hybrid nanogels might prove to be useful in the areas of biotechnology and biomedicine.
Collapse
Affiliation(s)
- Nobuyuki Morimoto
- Department of Materials Processing, Graduate School of Engineering, Tohoku University, Aoba-ku, Sendai, Japan
| | | | | | | |
Collapse
|
22
|
Mirtič A, Grdadolnik J. The structure of poly-l-lysine in different solvents. Biophys Chem 2013; 175-176:47-53. [DOI: 10.1016/j.bpc.2013.02.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 02/13/2013] [Accepted: 02/13/2013] [Indexed: 10/27/2022]
|
23
|
Effect of peptide secondary structure on adsorption and adsorbed film properties. Acta Biomater 2013; 9:6403-13. [PMID: 23376129 DOI: 10.1016/j.actbio.2013.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 01/07/2013] [Accepted: 01/12/2013] [Indexed: 01/15/2023]
Abstract
Protein adsorption at the biomaterial-tissue interface is of utmost importance to the widespread application of engineered materials. The present study asked what role the secondary structures of peptides play in their adsorption, as well as how these structures affect the physicochemical properties of the final adsorbed layer. To this end, α-helices and β-sheets were induced in poly-l-lysine, and their adsorption to Au surfaces was monitored using quartz crystal microbalance with dissipation. It was observed that secondary structures played an important role in governing both the adsorption process and the final film properties. Higher initial adsorption rates were obtained for α-helices compared with β-sheets, regardless of solution salt concentration. Adsorption half-time for β-sheets was greater than that for α-helices, and the final amount adsorbed on β-sheet was significantly higher than that on α-helix. The adsorbed amount and adsorption half-time decreased with increasing salt concentration, suggesting that electrostatic interactions played a role. It was found that the differences in Zeta potential coupled with the apparent effect of surface contact area differences between α-helix and β-sheet conformations are ultimately responsible for these different peptide adsorption behaviours at the Au interface. The initial adsorption rate of α-helix increased with salt concentrations up to 50mM, whereas β-sheet initial adsorption rates increased with salt concentrations up to 500 mM. Viscosities for films formed from α-helices were about twice those of β-sheets films, regardless of solution ionic strength. It was evident that the peptide secondary structures influence all aspects of their adsorption, as well as affecting the adsorbed film properties.
Collapse
|
24
|
Binazadeh M, Kabiri M, Unsworth LD. Poly(ethylene glycol) and Poly(carboxy betaine) Based Nonfouling Architectures: Review and Current Efforts. ACS SYMPOSIUM SERIES 2012. [DOI: 10.1021/bk-2012-1120.ch028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Takahashi D, Tanabe R, Izumi T. Induction and inversion of chirality in poly-L
-lysine and methyl orange complex. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Collazos-Castro JE, Polo JL, Hernández-Labrado GR, Padial-Cañete V, García-Rama C. Bioelectrochemical control of neural cell development on conducting polymers. Biomaterials 2010; 31:9244-55. [DOI: 10.1016/j.biomaterials.2010.08.057] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 08/24/2010] [Indexed: 01/07/2023]
|
27
|
Moriuchi T, Yoshii K, Katano C, Hirao T. Poly-L-lysine-induced Self-association and Luminescence of Dicyanoaurate(I). CHEM LETT 2010. [DOI: 10.1246/cl.2010.841] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
28
|
Advincula MC, Patel P, Mather PT, Mattson T, Goldberg AJ. Polypeptide-catalyzed silica for dental applications. J Biomed Mater Res B Appl Biomater 2009; 88:321-31. [DOI: 10.1002/jbm.b.31007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Influence of assembling pH on the stability of poly(l-glutamic acid) and poly(l-lysine) multilayers against urea treatment. Colloids Surf B Biointerfaces 2008; 62:250-7. [DOI: 10.1016/j.colsurfb.2007.10.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 09/30/2007] [Accepted: 10/22/2007] [Indexed: 11/19/2022]
|
30
|
Savin T, Doyle PS. Electrostatically tuned rate of peptide self-assembly resolved by multiple particle tracking. SOFT MATTER 2007; 3:1194-1202. [PMID: 32900041 DOI: 10.1039/b700434f] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogels formed from the self-assembly of oligopeptides are being extensively studied for biomedical applications. The kinetics of their gelation, as well as a quantitative description of the forces controlling the rate of assembly has not yet been addressed. We report here the use of multiple particle tracking to measure the self-assembly kinetics of the model peptide FKFEFKFE (KFE8). KFE8 forms well-defined β-sheet intermediates and is often used as a model peptide system that forms a fibrous network in aqueous solvent. We find that increasing the pH of this system from 3.5 to 4.0 decreases the time of KFE8 gelation by almost hundredfold, from hours to minutes. A remarkable self-similarity between measurements performed at different pH suggests that, although accelerated by the pH increase, gelation follows an invariable mechanism. We propose a semi-quantitative interpretation for the order of magnitudes of gelation time using a simple model for the interaction driving the self-assembly in terms of the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. Such understanding is important for the development of current and future therapeutic applications ( drug delivery).
Collapse
Affiliation(s)
- Thierry Savin
- Massachusetts Institute of Technology, Department of Chemical Engineering, 77 Massachusetts Avenue, Room 66-270, Cambridge, Massachusetts 02139, USA.
| | - Patrick S Doyle
- Massachusetts Institute of Technology, Department of Chemical Engineering, 77 Massachusetts Avenue, Room 66-270, Cambridge, Massachusetts 02139, USA.
| |
Collapse
|
31
|
Ahmed I, Liu HY, Mamiya PC, Ponery AS, Babu AN, Weik T, Schindler M, Meiners S. Three-dimensional nanofibrillar surfaces covalently modified with tenascin-C-derived peptides enhance neuronal growth in vitro. J Biomed Mater Res A 2006; 76:851-60. [PMID: 16345089 DOI: 10.1002/jbm.a.30587] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Current methods to promote growth of cultured neurons use two-dimensional (2D) glass or polystyrene surfaces coated with a charged molecule (e.g. poly-L-lysine (PLL)) or an isolated extracellular matrix (ECM) protein (e.g. laminin-1). However, these 2D surfaces represent a poor topological approximation of the three-dimensional (3D) architecture of the assembled ECM that regulates neuronal growth in vivo. Here we report on the development of a new 3D synthetic nanofibrillar surface for the culture of neurons. This nanofibrillar surface is composed of polyamide nanofibers whose organization mimics the porosity and geometry of the ECM. Neuronal adhesion and neurite outgrowth from cerebellar granule, cerebral cortical, hippocampal, motor, and dorsal root ganglion neurons were similar on nanofibers and PLL-coated glass coverslips; however, neurite generation was increased. Moreover, covalent modification of the nanofibers with neuroactive peptides derived from human tenascin-C significantly enhanced the ability of the nanofibers to facilitate neuronal attachment, neurite generation, and neurite extension in vitro. Hence the 3D nanofibrillar surface provides a physically and chemically stabile cell culture surface for neurons and, potentially, an exciting new opportunity for the development of peptide-modified matrices for use in strategies designed to encourage axonal regrowth following central nervous system injury.
Collapse
Affiliation(s)
- Ijaz Ahmed
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, New Jersey 08854
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tomczak MM, Glawe DD, Drummy LF, Lawrence CG, Stone MO, Perry CC, Pochan DJ, Deming TJ, Naik RR. Polypeptide-Templated Synthesis of Hexagonal Silica Platelets. J Am Chem Soc 2005; 127:12577-82. [PMID: 16144405 DOI: 10.1021/ja0524503] [Citation(s) in RCA: 198] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Several studies have demonstrated the use of biomimetic approaches in the synthesis of a variety of inorganic materials. Poly-L-lysine (PLL) promotes the precipitation of silica from a silicic acid solution within minutes. The molecular weight of PLL was found to affect the morphology of the resulting silica precipitate. Larger-molecular weight PLL produced hexagonal silica platelets, whereas spherical silica particles were obtained using low-molecular weight PLL. Here we report on the polypeptide secondary-structure transition that occurs during the silicification reaction. The formation of the hexagonal silica platelets is attributed to the PLL helical chains that are formed in the presence of monosilicic acid and phosphate ions. Hexagonal PLL crystals can also serve as templates in directing the growth of the silica in a manner that generates a largely mesoporous silica phase that is oriented with respect to the protein crystal template.
Collapse
Affiliation(s)
- Melanie M Tomczak
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Dayton, Ohio 45433, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rha CS, Lee DH, Kim SG, Min WK, Byun SG, Kweon DH, Han NS, Seo JH. Production of cyclodextrin by poly-lysine fused Bacillus macerans cyclodextrin glycosyltransferase immobilized on cation exchanger. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/j.molcatb.2005.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Ngankam AP, Van Tassel PR. In situ layer-by-layer film formation kinetics under an applied voltage measured by optical waveguide lightmode spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2005; 21:5865-71. [PMID: 15952835 DOI: 10.1021/la050066d] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Layer-by-layer (LbL) thin film assembly occurs via the alternate adsorption of positively and negatively charged macromolecular species. We investigate here the control of LbL film growth through the electric potential of the underlying substrate. We employ optical waveguide lightmode spectroscopy (OWLS) to obtain in situ kinetic measurements of poly(allylamine hydrochloride)/poly(sodium 4-styrenesulfonate) (PAH/PSS) and poly(L-lysine)/dextran sulfate (PLL/DXS) multilayer film formation in the presence of an applied voltage difference (deltaV) between the adsorbing substrate, an indium tin oxide- (ITO-) coated waveguiding sensor chip, and a parallel platinum counterelectrode. We find initial layer adsorption to be significantly enhanced by an applied potential for both polyelectrolyte systems: the mass and thickness of (positively charged) PAH and PLL layers on ITO are about 60% and 500% larger, respectively, at deltaV = 2 V than at open circuit potential (OCP), in apparent violation of electrostatics. A kinetic analysis reveals the initial attachment rate constant to decrease with voltage, in agreement with electrostatics. To reconcile these results, we propose a more coiled and loosely bound adsorbed polymer conformation at higher applied potential. Following 10 adsorption steps, the mass and thickness of a PAH/PSS film grown under deltaV = 2 V are about 15% less than those of a comparable film grown under OCP, reflecting a lower degree of complexation between adsorbing polyanions and more highly coiled adsorbed polycations. Following 14 adsorption steps, the mass and thickness of a PLL/DXS film grown under deltaV = 2 V are about 70% greater than those of a comparable film grown under OCP, reflecting the increased charge overcompensation in the initial layer. We find the scaling of film mass () with the number of adsorption steps (n) to be linear in the PAH/PSS system and exponential (i.e., approximately eyn) in the PLL/DXS system, irrespective of applied voltage. We observe to decrease with applied voltage and to exhibit a crossover to a smaller value around n = 5. Extrapolation reveals PLL/DXS multilayer films to be suppressed by increased voltage in the limit of large n: the mass of films grown at OCP and deltaV = 1 V would surpass that of a film grown under deltaV = 2 V at about the 23rd and 18th adsorption steps, respectively. The formation kinetics of PLL/DXS, but not PAH/PSS, change qualitatively under voltage: PLL adsorption is slow to reach a plateau, possibly due to the formation of secondary structure, and a decrease in film mass occurs toward the end of each DXS adsorption step, suggesting spontaneous removal of some PLL/DXS complexes from the film.
Collapse
Affiliation(s)
- A Pascal Ngankam
- Department of Chemical Engineering, Yale University, New Haven, Connecticut 06520-8286, USA
| | | |
Collapse
|
35
|
Tavares F, Bratko D, Prausnitz J. The role of salt–macroion van der Waals interactions in the colloid–colloid potential of mean force. Curr Opin Colloid Interface Sci 2004. [DOI: 10.1016/j.cocis.2004.05.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Tavares FW, Bratko D, Blanch HW, Prausnitz JM. Ion-Specific Effects in the Colloid−Colloid or Protein−Protein Potential of Mean Force: Role of Salt−Macroion van der Waals Interactions. J Phys Chem B 2004. [DOI: 10.1021/jp037809t] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- F. W. Tavares
- Department of Chemical Engineering, University of California, Berkeley, California 94720, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - D. Bratko
- Department of Chemical Engineering, University of California, Berkeley, California 94720, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - H. W. Blanch
- Department of Chemical Engineering, University of California, Berkeley, California 94720, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - J. M. Prausnitz
- Department of Chemical Engineering, University of California, Berkeley, California 94720, and Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
37
|
Haynie DT, Balkundi S, Palath N, Chakravarthula K, Dave K. Polypeptide multilayer films: role of molecular structure and charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2004; 20:4540-7. [PMID: 15969163 DOI: 10.1021/la036330p] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The role of molecular structure, charge, and hydrophobicity in polyelectrolyte layer-by-layer assembly (LbL) of thin films has been studied using the model polypeptides poly-L-glutamatic acid (PLGA) and poly-L-lysine (PLL), quartz crystal microbalance (QCM), and circular dichroism spectroscopy (CD). The adsorption behavior of PLGA and PLL has been compared with the structure of these molecules in aqueous solution under the same conditions. The data show that the deposition of polypeptide per adsorption step scales with average secondary structure content, whether alpha helix or beta sheet. This is contrary to the expectation based on the view that hydrogen bonds are crucial to polypeptide film assembly, because secondary structure formation in a polypeptide reduces its intermolecular hydrogen-bonding potential. The data also show that polypeptide adsorption scales with ionic strength and chain length. Taken together, the results increase knowledge of polypeptide-based LbL thin film fabrication and will help to provide a firmer foundation for the use of natural or designed polypeptides in LbL.
Collapse
Affiliation(s)
- Donald T Haynie
- Biomedical Engineering, Institute for Micromanufacturing, Louisiana Tech University, P.O. Box 10137, Ruston, Louisiana 71272, USA
| | | | | | | | | |
Collapse
|
38
|
Rodríguez F, Glawe DD, Naik RR, Hallinan KP, Stone MO. Study of the Chemical and Physical Influences upon in Vitro Peptide-Mediated Silica Formation. Biomacromolecules 2004; 5:261-5. [PMID: 15002982 DOI: 10.1021/bm034232c] [Citation(s) in RCA: 141] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Herein, we report on the ability to create complex 2-D and 3-D silica networks in vitro via polycationic peptide-mediated biosilicification under experimentally altered chemical and physical influences. These structures differ from the sphere-like silica network of particles obtained in vitro under static conditions. Under chemical influences, overall morphologies were observed to shift from a characteristic network of sphere-like silica particles to a sheetlike structure in the presence of -OH groups from additives and to sharp-edged, platelike structures in the presence of larger polycationic peptide matrixes. Under physical influences, using externally applied force fields, overall silica morphologies were observed to transition from sphere-like to fiberlike and dendrite-like structures. These findings could lead to the future development of bio-inspired complex 2-D and 3-D silica micro- and nano-devices.
Collapse
Affiliation(s)
- Francisco Rodríguez
- Air Force Research Laboratory, Materials and Manufacturing Directorate, 3005 Hobson Way, Wright-Patterson Air Force Base, Dayton Ohio 45433-7702, USA
| | | | | | | | | |
Collapse
|