1
|
Jurberg AD, Chaves B, Pinho LG, da Silva JHM, Savino W, Cotta-de-Almeida V. VLA-4 as a Central Target for Modulating Neuroinflammatory Disorders. Neuroimmunomodulation 2021; 28:213-221. [PMID: 34515173 DOI: 10.1159/000518721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/22/2021] [Indexed: 11/19/2022] Open
Abstract
The complex steps leading to the central nervous system (CNS) inflammation and the progress to neuroinflammatory and neurodegenerative disorders have opened up new research and intervention avenues. This review focuses on the therapeutic targeting of the VLA-4 integrin to discuss the clear-cut effect on immune cell trafficking into brain tissues. Besides, we explore the possibility that blocking VLA-4 may have a relevant impact on nonmigratory activities of immune cells, such as antigen presentation and T-cell differentiation, during the neuroinflammatory process. Lastly, the recent refinement of computational techniques is highlighted as a way to increase specificity and to reduce the detrimental side effects of VLA-4 immunotherapies aiming at developing better clinical interventions.
Collapse
Affiliation(s)
- Arnon Dias Jurberg
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| | - Beatriz Chaves
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Lia Gonçalves Pinho
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - João Hermínio Martins da Silva
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Computational Modeling Group, Oswaldo Cruz Foundation (Fiocruz), Eusébio, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation (Fiocruz), Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- School of Medicine, Estácio de Sá University, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Zöller M. CD44, Hyaluronan, the Hematopoietic Stem Cell, and Leukemia-Initiating Cells. Front Immunol 2015; 6:235. [PMID: 26074915 PMCID: PMC4443741 DOI: 10.3389/fimmu.2015.00235] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 04/30/2015] [Indexed: 12/14/2022] Open
Abstract
CD44 is an adhesion molecule that varies in size due to glycosylation and insertion of so-called variant exon products. The CD44 standard isoform (CD44s) is highly expressed in many cells and most abundantly in cells of the hematopoietic system, whereas expression of CD44 variant isoforms (CD44v) is more restricted. CD44s and CD44v are known as stem cell markers, first described for hematopoietic stem cells and later on confirmed for cancer- and leukemia-initiating cells. Importantly, both abundantly expressed CD44s as well as CD44v actively contribute to the maintenance of stem cell features, like generating and embedding in a niche, homing into the niche, maintenance of quiescence, and relative apoptosis resistance. This is surprising, as CD44 is not a master stem cell gene. I here will discuss that the functional contribution of CD44 relies on its particular communication skills with neighboring molecules, adjacent cells and, last not least, the surrounding matrix. In fact, it is the interaction of the hyaluronan receptor CD44 with its prime ligand, which strongly assists stem cells to fulfill their special and demanding tasks. Recent fundamental progress in support of this “old” hypothesis, which may soon pave the way for most promising new therapeutics, is presented for both hematopoietic stem cell and leukemia-initiating cell. The contribution of CD44 to the generation of a stem cell niche, to homing of stem cells in their niche, to stem cell quiescence and apoptosis resistance will be in focus.
Collapse
Affiliation(s)
- Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery , Heidelberg , Germany
| |
Collapse
|
3
|
Erb U, Megaptche AP, Gu X, Büchler MW, Zöller M. CD44 standard and CD44v10 isoform expression on leukemia cells distinctly influences niche embedding of hematopoietic stem cells. J Hematol Oncol 2014; 7:29. [PMID: 24684724 PMCID: PMC4022365 DOI: 10.1186/1756-8722-7-29] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/25/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND A blockade of CD44 is considered a therapeutic option for the elimination of leukemia initiating cells. However, anti-panCD44 can interfere with hematopoiesis. Therefore we explored, whether a CD44 variant isoform (CD44v)-specific antibody can inhibit leukemia growth without attacking hematopoiesis. As a model we used CD44v10 transfected EL4 thymoma cells (EL4-v10). METHODS The therapeutic efficacy of anti-panCD44 and anti-CD44v10 was evaluated after intravenous application of EL4/EL4-v10. Ex vivo and in vitro studies evaluated the impact of anti-panCD44 and anti-CD44v10 as well as of EL4 and EL4-v10 on hematopoietic stem cells (HSC) in cocultures with bone marrow stroma cells with a focus on adhesion, migration, cell cycle progression and apoptosis resistance. RESULTS Intravenously injected EL4-v10 grow in bone marrow and spleen. Anti-panCD44 and, more pronounced anti-CD44v10 prolong the survival time. The higher efficacy of anti-CD44v10 compared to anti-panCD44 does not rely on stronger antibody-dependent cellular cytotoxicity or on promoting EL4-v10 apoptosis. Instead, EL4 compete with HSC niche embedding. This has consequences on quiescence and apoptosis-protecting signals provided by the stroma. Anti-panCD44, too, more efficiently affected embedding of HSC than of EL4 in the bone marrow stroma. EL4-v10, by catching osteopontin, migrated on bone marrow stroma and did not or weakly interfere with HSC adhesion. Anti-CD44v10, too, did not affect the HSC--bone marrow stroma crosstalk. CONCLUSION The therapeutic effect of anti-panCD44 and anti-CD44v10 is based on stimulation of antibody-dependent cellular cytotoxicity. The superiority of anti-CD44v10 is partly due to blocking CD44v10-stimulated osteopontin expression that could drive HSC out of the niche. However, the main reason for the superiority of anti-CD44v10 relies on neither EL4-v10 nor anti-CD44v10 severely interfering with HSC--stroma cell interactions that, on the other hand, are affected by EL4 and anti-panCD44. Anti-panCD44 disturbing HSC embedding in the osteogenic niche weakens its therapeutic effect towards EL4. Thus, as far as leukemic cells express CD44v isoforms, the therapeutic use of anti-panCD44 should be avoided in favor of CD44v-specific antibodies.
Collapse
Affiliation(s)
- Ulrike Erb
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | | | - Xiaoyu Gu
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| | | | - Margot Zöller
- Department of Tumor Cell Biology, University Hospital of Surgery, Heidelberg, Germany
| |
Collapse
|
4
|
Girbl T, Lunzer V, Greil R, Namberger K, Hartmann TN. The CXCR4 and adhesion molecule expression of CD34+ hematopoietic cells mobilized by "on-demand" addition of plerixafor to granulocyte-colony-stimulating factor. Transfusion 2014; 54:2325-35. [PMID: 24673458 PMCID: PMC4215600 DOI: 10.1111/trf.12632] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 12/18/2022]
Abstract
Background Granulocyte–colony-stimulating factor (G-CSF) is routinely used for mobilization of hematopoietic stem and progenitor cells preceding autologous transplantation after high-dose chemotherapy in hematologic malignancies. However, due to high mobilization failure rates, alternative mobilization strategies are required. Study Design and Methods Patients who poorly mobilized CD34+ hematopoietic cells (HCs) with G-CSF additionally received the CXCR4 antagonist plerixafor. The phenotype of CD34+ HCs collected after this plerixafor-induced “rescue” mobilization, in regard to adhesion molecule and CD133, CD34, and CD38 expression in comparison to CD34+ HCs collected after traditional G-CSF administration in good mobilizers, was analyzed flow cytometrically. To confirm previous studies in our patient cohort, the efficiency of mobilization and subsequent engraftment after this “on-demand” plerixafor mobilization were analyzed. Results Pronounced mobilization occurred after plerixafor administration in poor mobilizers, resulting in similar CD34+ cell yields as obtained by G-CSF in good mobilizers, whereby plerixafor increased the content of primitive CD133+/CD34+/CD38– cells. The surface expression profiles of the marrow homing and retention receptors CXCR4, VLA-4, LFA-1, and CD44 on mobilized CD34+ cells and hematopoietic recovery after transplantation were similar in patients receiving G-CSF plus plerixafor or G-CSF. Unexpectedly, the expression levels of respective adhesion receptors were not related to mobilization efficiency or engraftment. Conclusion The results show that CD34+ HCs collected by plerixafor-induced rescue mobilization are qualitatively equivalent to CD34+ HCs collected after traditional G-CSF mobilization in good mobilizers, in regard to their adhesive phenotype and engraftment potential. Thereby, plerixafor facilitates the treatment of poor mobilizers with autologous HC transplantation after high-dose chemotherapy.
Collapse
Affiliation(s)
- Tamara Girbl
- Laboratory for Immunological and Molecular Cancer Research, Third Medical Department with Hematology, Medical Oncology, Hemostaseology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria
| | | | | | | | | |
Collapse
|
5
|
Singh V, Erb U, Zöller M. Cooperativity of CD44 and CD49d in leukemia cell homing, migration, and survival offers a means for therapeutic attack. THE JOURNAL OF IMMUNOLOGY 2013; 191:5304-16. [PMID: 24127558 DOI: 10.4049/jimmunol.1301543] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A CD44 blockade drives leukemic cells into differentiation and apoptosis by dislodging from the osteogenic niche. Because anti-CD49d also supports hematopoietic stem cell mobilization, we sought to determine the therapeutic efficacy of a joint CD49d/CD44 blockade. To unravel the underlying mechanism, the CD49d(-) EL4 lymphoma was transfected with CD49d or point-mutated CD49d, prohibiting phosphorylation and FAK binding; additionally, a CD44(-) Jurkat subline was transfected with murine CD44, CD44 with a point mutation in the ezrin binding site, or with cytoplasmic tail-truncated CD44. Parental and transfected EL4 and Jurkat cells were evaluated for adhesion, migration, and apoptosis susceptibility in vitro and in vivo. Ligand-binding and Ab-blocking studies revealed CD44-CD49d cooperation in vitro and in vivo in adhesion, migration, and apoptosis resistance. The cooperation depends on ligand-induced proximity such that both CD44 and CD49d get access to src, FAK, and paxillin and via lck to the MAPK pathway, with the latter also supporting antiapoptotic molecule liberation. Accordingly, synergisms were only seen in leukemia cells expressing wild-type CD44 and CD49d. Anti-CD44 together with anti-CD49d efficiently dislodged EL4-CD49d/Jurkat-CD44 in bone marrow and spleen. Dislodging was accompanied by increased apoptosis susceptibility that strengthened low-dose chemotherapy, the combined treatment most strongly interfering with metastatic settlement and being partly curative. Ab treatment also promoted NK and Ab-dependent cellular cytotoxicity activation, which affected leukemia cells independent of CD44/CD49d tail mutations. Thus, mostly owing to a blockade of joint signaling, anti-CD44 and anti-CD49d hamper leukemic cell settlement and break apoptosis resistance, which strongly supports low-dose chemotherapy.
Collapse
Affiliation(s)
- Vibuthi Singh
- Department of Tumor Cell Biology, University Hospital of Surgery, 69120 Heidelberg, Germany
| | | | | |
Collapse
|
6
|
Sackstein R. The biology of CD44 and HCELL in hematopoiesis: the 'step 2-bypass pathway' and other emerging perspectives. Curr Opin Hematol 2011; 18:239-48. [PMID: 21546828 DOI: 10.1097/moh.0b013e3283476140] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PURPOSE OF REVIEW The homing and egress of hematopoietic stem and progenitor cells (HSPCs) to and from marrow, respectively, and the proliferation and differentiation of HSPCs within marrow are complex processes critically regulated by the ordered expression and function of adhesion molecules that direct key cell-cell and cell-matrix interactions. The integral membrane molecule CD44, known primarily for its role in binding hyaluronic acid, is characteristically expressed on HSPCs. Conspicuously, human HSPCs uniquely display a specialized glycoform of CD44 known as hematopoietic cell E-/L-selectin ligand (HCELL), which is the most potent ligand for both E-selectin and L-selectin expressed on human cells. This review focuses on recent advances in our understanding of the biology of CD44 and HCELL in hematopoiesis. RECENT FINDINGS New data indicate that CD44-mediated events in hematopoiesis are more complex than previously imagined. Ex-vivo glycan engineering has established that HCELL serves as a 'bone marrow homing receptor'. Moreover, biochemical studies now show that CD44 forms bimolecular complexes with a variety of membrane proteins, one of which is VLA-4. Engagement of CD44 or of HCELL directly induces VLA-4 activation via G-protein-dependent signaling, triggering a 'step 2-bypass pathway' of cell migration, and extravascular lodgment, in absence of chemokine receptor engagement. SUMMARY Recent studies have further clarified the roles of CD44 and its glycoform HCELL in hematopoietic processes, providing key insights on how targeting these molecules may be beneficial in promoting hematopoiesis and in treating hematologic malignancies.
Collapse
Affiliation(s)
- Robert Sackstein
- Department of Dermatology, Brigham and Women's Hospital, Harvard Skin Disease Research Center, Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
7
|
Schubert M, Herbert N, Taubert I, Ran D, Singh R, Eckstein V, Vitacolonna M, Ho AD, Zöller M. Differential survival of AML subpopulations in NOD/SCID mice. Exp Hematol 2011; 39:250-263.e4. [DOI: 10.1016/j.exphem.2010.10.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/29/2010] [Accepted: 10/12/2010] [Indexed: 11/26/2022]
|
8
|
Warnke C, Menge T, Hartung HP, Racke MK, Cravens PD, Bennett JL, Frohman EM, Greenberg BM, Zamvil SS, Gold R, Hemmer B, Kieseier BC, Stüve O. Natalizumab and progressive multifocal leukoencephalopathy: what are the causal factors and can it be avoided? ACTA ACUST UNITED AC 2010; 67:923-30. [PMID: 20697042 DOI: 10.1001/archneurol.2010.161] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Natalizumab (Tysabri) was the first monoclonal antibody approved for the treatment of relapsing forms of multiple sclerosis (MS). After its initial approval, 3 patients undergoing natalizumab therapy in combination with other immunoregulatory and immunosuppressive agents were diagnosed with progressive multifocal leukoencephalopathy (PML). The agent was later reapproved and its use restricted to monotherapy in patients with relapsing forms of MS. Since reapproval in 2006, additional cases of PML were reported in patients with MS receiving natalizumab monotherapy. Thus, there is currently no convincing evidence that natalizumab-associated PML is restricted to combination therapy with other disease-modifying or immunosuppressive agents. In addition, recent data indicate that risk of PML might increase beyond 24 months of treatment.
Collapse
Affiliation(s)
- Clemens Warnke
- Neurology Section, VA North Texas Health Care System, Medical Service, 4500 S Lancaster Rd, Dallas, TX 75216, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Neumann F, Zohren F, Haas R. The role of natalizumab in hematopoietic stem cell mobilization. Expert Opin Biol Ther 2009; 9:1099-106. [PMID: 19566481 DOI: 10.1517/14712590903055011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The humanized monoclonal very late antigen 4 (VLA-4) antibody natalizumab is FDA approved for the treatment of patients with multiple sclerosis and Crohn's disease. In this review we focus on its role in the context of hematopoietic stem cell transplantation and stem cell diseases. The use of natalizumab alone or in combination with either cytotoxic drugs or other antibodies might be a new modality for stem cell mobilization and a therapeutic option for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Frank Neumann
- Heinrich-Heine-University, Department of Hematology, Oncology and Clinical Immunology, Duesseldorf, Germany.
| | | | | |
Collapse
|
10
|
Vagima Y, Avigdor A, Goichberg P, Shivtiel S, Tesio M, Kalinkovich A, Golan K, Dar A, Kollet O, Petit I, Perl O, Rosenthal E, Resnick I, Hardan I, Gellman YN, Naor D, Nagler A, Lapidot T. MT1-MMP and RECK are involved in human CD34+ progenitor cell retention, egress, and mobilization. J Clin Invest 2009; 119:492-503. [PMID: 19197139 DOI: 10.1172/jci36541] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Accepted: 12/22/2008] [Indexed: 12/26/2022] Open
Abstract
The mechanisms governing hematopoietic progenitor cell mobilization are not fully understood. We report higher membrane type 1-MMP (MT1-MMP) and lower expression of the MT1-MMP inhibitor, reversion-inducing cysteine-rich protein with Kazal motifs (RECK), on isolated circulating human CD34+ progenitor cells compared with immature BM cells. The expression of MT1-MMP correlated with clinical mobilization of CD34+ cells in healthy donors and patients with lymphoid malignancies. Treatment with G-CSF further increased MT1-MMP and decreased RECK expression in human and murine hematopoietic cells in a PI3K/Akt-dependent manner, resulting in elevated MT1-MMP activity. Blocking MT1-MMP function by Abs or siRNAs impaired chemotaxis and homing of G-CSF-mobilized human CD34+ progenitors. The mobilization of immature and maturing human progenitors in chimeric NOD/SCID mice by G-CSF was inhibited by anti-MT1-MMP treatment, while RECK neutralization promoted motility and egress of BM CD34+ cells. BM c-kit+ cells from MT1-MMP-deficient mice also exhibited inferior chemotaxis, reduced homing and engraftment capacities, and impaired G-CSF-induced mobilization in murine chimeras. Membranal CD44 cleavage by MT1-MMP was enhanced following G-CSF treatment, reducing CD34+ cell adhesion. Accordingly, CD44-deficient mice had a higher frequency of circulating progenitors. Our results reveal that the motility, adhesion, homing, and mobilization of human hematopoietic progenitor cells are regulated in a cell-autonomous manner by dynamic and opposite changes in MT1-MMP and RECK expression.
Collapse
Affiliation(s)
- Yaron Vagima
- Immunology Department,Weizmann Institute of Science, Hertzl Str., Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The monoclonal anti-VLA-4 antibody natalizumab mobilizes CD34+ hematopoietic progenitor cells in humans. Blood 2008; 111:3893-5. [PMID: 18235044 DOI: 10.1182/blood-2007-10-120329] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We investigated the role of adhesion molecule VLA-4 in CD34+ blood stem-cell mobilization. Therefore, we examined 20 patients with multiple sclerosis (MS) who were treated with the anti-VLA-4 antibody natalizumab. Treated patients had received a median number of 4 natalizumab infusions (range: 2-9 infusions). Blood samples were taken 4 weeks following the last infusion. With a median proportion of 7.6 CD34+ cells/microL (range: 2.2-30.4 cells/microL), these patients had a significantly higher (P=.003) amount of circulating CD34+ cells compared with 5 healthy volunteers (median: 1.4/microL; range: 0.6-2.4/microL) and 5 untreated MS patients (median: 1.0/microL; range: 0.5-1.7/microL) (P=.001). Serial measurements in 4 patients receiving their first natalizumab infusion showed a maximal significant increase in circulating CD34+ cells from 3.3/microL (range: 1.6-4.8/microL) to 10.4/microL (range: 7.5-12.04/microL) 72 hours following natalizumab infusion (P=.001), including pluripotent cells in colony-forming assays. This mobilizing ability of natalizumab might be useful for patients with poor response to granulocyte colony-stimulating factor (G-CSF)-based protocols.
Collapse
|
12
|
Bonig H, Priestley GV, Oehler V, Papayannopoulou T. Hematopoietic progenitor cells (HPC) from mobilized peripheral blood display enhanced migration and marrow homing compared to steady-state bone marrow HPC. Exp Hematol 2007; 35:326-34. [PMID: 17258081 PMCID: PMC1847625 DOI: 10.1016/j.exphem.2006.09.017] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2006] [Revised: 08/21/2006] [Accepted: 09/25/2006] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Faster engraftment of G-CSF-mobilized peripheral blood (MPB) transplants compared to steady-state bone marrow (ssBM) is well documented and clinically relevant. A number of different factors likely contribute to this outcome. In the present study we explored whether independent of cell number there are intrinsic differences in the efficiency of progenitor cell homing to marrow between MPB and ssBM. METHODS Mobilization was achieved by continuous infusion of G-CSF alone or in combination with other mobilizing agents. In vivo homing assays, in vitro migration assays, gene expression analysis, and flow cytometry were utilized to compare homing-related in vivo and in vitro properties of MPB and ssBM HPC. RESULTS Marrow homing of murine MPB HPC, generated by different mobilizing schemes, was reproducibly significantly superior to that of ssBM, in lethally irradiated as well as in nonirradiated hosts. This phenotype was independent of MMP9, selectins, and beta2- and alpha4-integrins. Superior homing was also observed for human MPB HPC transplanted into NOD/SCIDbeta2microglobulin(-/-) recipients. Inhibition of HPC migration abrogated the homing advantage of MPB but did not affect homing of ssBM HPC, whereas enhancement of motility by CD26 inhibition improved marrow homing only of ssBM HPC. Enhanced SDF-1-dependent chemotaxis and low CD26 expression on MPB HPC were identified as potential contributing factors. Significant contributions of the putative alternative SDF-1 receptor, RDC1, were unlikely based on gene expression data. CONCLUSION The data suggest increased motility as a converging endpoint of complex changes seen in MPB HPC which is likely responsible for their favorable homing.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine/Hematology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
13
|
Ford CD, Greenwood J, Anderson J, Snow G, Petersen FB. CD34+ cell adhesion molecule profiles differ between patients mobilized with granulocyte-colony-stimulating factor alone and chemotherapy followed by granulocyte-colony-stimulating factor. Transfusion 2006; 46:193-8. [PMID: 16441594 DOI: 10.1111/j.1537-2995.2006.00717.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND High-dose therapy with autologous peripheral blood progenitor cell support is widely utilized but requires successful CD34+ cell mobilization and collection. Chemotherapy plus growth factors appear to mobilize more CD34+ cells than growth factors alone. Because alterations in expression of adhesion molecules are important in the trafficking of hematopoietic progenitors, the possibility was explored that the mechanism of this superior mobilization may be greater down regulation of adhesion molecules. STUDY DESIGN AND METHODS The expression of eight adhesion molecules (CD11a, b, and c; 15s; 49d and e; 54; and 62L) on the collected CD34+ cells from 15 patients undergoing mobilization with chemotherapy plus granulocyte-colony-stimulating factor (G-CSF) was compared with those of 14 concomitant patients receiving G-CSF alone. RESULTS Patients receiving chemotherapy plus G-CSF mobilized more CD34+ cells and did not differ in prior chemotherapy or radiation. There were no significant differences in the percentage of CD34+ cells expressing any of the adhesion molecules examined between the two groups. The chemotherapy plus G-CSF-mobilized cells consistently showed higher expression intensity, and this showed significance or a strong trend for CD11a and c, CD15s, and CD54. Despite these higher expression levels, there were no differences in engraftment kinetics. CONCLUSIONS CD34+ cells mobilized by chemotherapy plus growth factors appear to have higher intensities of expression of several adhesion molecules. The significance of this observation will require further study.
Collapse
Affiliation(s)
- Clyde D Ford
- Utah Blood and Marrow Transplant Program, LDS Hospital, Salt Lake City, Utah 84143, USA.
| | | | | | | | | |
Collapse
|
14
|
Dahl E, Burroughs J, DeFor T, Verfaillie C, Weisdorf D. Progenitor content of autologous grafts: mobilized bone marrow vs mobilized blood. Bone Marrow Transplant 2003; 32:575-80. [PMID: 12953129 DOI: 10.1038/sj.bmt.1704237] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The progenitor content of autologous peripheral blood progenitor and stem cell collections is a major determinant of prompt hematopoietic recovery following autologous stem cell transplantation. We analyzed unstimulated bone marrow (BM) and peripheral blood (PB) apheresis products in comparison to those collected following G-CSF or GM-CSF stimulation. We quantitated their committed (CFU-GM) and primitive (long-term culture-initiating cells, LTC-IC) progenitors in relation to hematologic recovery in 63 patients undergoing autografting for lymphoid malignancies. G-CSF, but not GM-CSF, substantially enriched the committed progenitor content (2.5-3.6-fold) of both PB and BM grafts. G-CSF also enriched the LTC-IC content of BM and PB compared to control grafts. GM-CSF augmented (11.5-fold) the LTC-IC content of stimulated BM, but not GM-CSF-mobilized PB. Neutrophil recovery was substantially quicker in recipients of BM or PB mobilized with G-CSF or GM-CSF. In contrast, red cell and platelet recovery was accelerated in recipients of GM-CSF-stimulated BM (but not PB) and G-CSF-stimulated PB (but not BM). No direct correlation between progenitor dose and hematopoietic recovery for neutrophils, platelets or red cells was observed. Cytokine stimulation can augment the committed and more primitive multilineage progenitor content of BM and PB grafts, to a differing extent. The uncertain relationship with multilineage myeloid recovery emphasizes the limitations in using clonogenic progenitor analyses to assess the adequacy of an autologous graft prior to transplantation.
Collapse
Affiliation(s)
- E Dahl
- Blood and Marrow Transplant Program and the Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
15
|
Steidl U, Kronenwett R, Martin S, Haas R. Molecular biology of hematopoietic stem cells. VITAMINS AND HORMONES 2003; 66:1-28. [PMID: 12852251 DOI: 10.1016/s0083-6729(03)01001-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Human CD34+ hematopoietic stem and progenitor cells are capable of maintaining a life-long supply of the entire spectrum of blood cells dependent on systemic needs. Recent studies suggest that hematopoietic stem cells are, beyond their hematopoietic potential, able to differentiate into nonhematopoietic cell types, which could open novel avenues in the field of cellular therapy. Here, we concentrate on the molecular biology underlying basic features of hematopoietic stem cells. Immunofluorescence analyses, culture assays, and transplantation models permit an extensive immunological as well as functional characterization of human hematopoietic stem and progenitor cells. New methods such as cDNA array technology have demonstrated that distinct gene expression patterns of transcription factors and cell cycle genes molecularly control self-renewal, differentiation, and proliferation. Furthermore, several adhesion molecules have been shown to play an important role in the regulation of hematopoiesis and stem cell trafficking. Progress has also been made in elucidating molecular mechanisms of stem cell aging that limit replicative potential. Finally, more recent data provide the first molecular basis for a better understanding of transdifferentiation and developmental plasticity of hematopoietic stem cells. These findings could be helpful for non-hematopoietic cell therapeutic approaches.
Collapse
Affiliation(s)
- Ulrich Steidl
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich Heine University of Düsseldorf, D-40225 Düsseldorf, Germany
| | | | | | | |
Collapse
|
16
|
Tse WT, Egalka MC. Stem cell plasticity and blood and marrow transplantation: a clinical strategy. J Cell Biochem 2002; 38:96-103. [PMID: 12046856 DOI: 10.1002/jcb.10038] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The newly described phenomenon of stem cell plasticity raises interesting biological questions and offers exciting opportunities in clinical application. This review uses the well-established practice of blood and marrow transplantation as a paradigm to explore the clinical consequences of this finding. Recently proposed non-myeloablative conditioning regimens have shown that mixed donor-host hematolymphoid chimerism can be established with relatively low toxicity in both animal studies and human trials. Hematopoietic growth factor treatment of transplanted patients can mobilize a large number of donor stem cells to migrate from marrow to non-hematopoietic organs. We propose that these advances, in conjunction with the developmental plasticity of stem cells, can constitute components of a clinical strategy to use blood and marrow transplantation as a platform to treat systemic diseases involving non-hematopoietic tissues.
Collapse
Affiliation(s)
- William T Tse
- Division of Hematology/Oncology, Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|