1
|
Krenn PW, Montanez E, Costell M, Fässler R. Integrins, anchors and signal transducers of hematopoietic stem cells during development and in adulthood. Curr Top Dev Biol 2022; 149:203-261. [PMID: 35606057 DOI: 10.1016/bs.ctdb.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Hematopoietic stem cells (HSCs), the apex of the hierarchically organized blood cell production system, are generated in the yolk sac, aorta-gonad-mesonephros region and placenta of the developing embryo. To maintain life-long hematopoiesis, HSCs emigrate from their site of origin and seed in distinct microenvironments, called niches, of fetal liver and bone marrow where they receive supportive signals for self-renewal, expansion and production of hematopoietic progenitor cells (HPCs), which in turn orchestrate the production of the hematopoietic effector cells. The interactions of hematopoietic stem and progenitor cells (HSPCs) with niche components are to a large part mediated by the integrin superfamily of adhesion molecules. Here, we summarize the current knowledge regarding the functional properties of integrins and their activators, Talin-1 and Kindlin-3, for HSPC generation, function and fate decisions during development and in adulthood. In addition, we discuss integrin-mediated mechanosensing for HSC-niche interactions, ex vivo protocols aimed at expanding HSCs for therapeutic use, and recent approaches targeting the integrin-mediated adhesion in leukemia-inducing HSCs in their protecting, malignant niches.
Collapse
Affiliation(s)
- Peter W Krenn
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany; Department of Biosciences and Medical Biology, Cancer Cluster Salzburg, Paris-Lodron University of Salzburg, Salzburg, Austria.
| | - Eloi Montanez
- Department of Physiological Sciences, Faculty of Medicine and Health Sciences, University of Barcelona and Bellvitge Biomedical Research Institute, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Mercedes Costell
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universitat de València, Burjassot, Spain; Institut Universitari de Biotecnologia i Biomedicina, Universitat de València, Burjassot, Spain
| | - Reinhard Fässler
- Department of Molecular Medicine, Max Planck Institute of Biochemistry, Martinsried, Germany
| |
Collapse
|
2
|
Bačenková D, Trebuňová M, Čížková D, Hudák R, Dosedla E, Findrik-Balogová A, Živčák J. In Vitro Model of Human Trophoblast in Early Placentation. Biomedicines 2022; 10:biomedicines10040904. [PMID: 35453654 PMCID: PMC9029210 DOI: 10.3390/biomedicines10040904] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/09/2022] [Accepted: 04/13/2022] [Indexed: 12/26/2022] Open
Abstract
The complex process of placental implantation and development affects trophoblast progenitors and uterine cells through the regulation of transcription factors, cytokines, adhesion receptors and their ligands. Differentiation of trophoblast precursors in the trophectoderm of early ontogenesis, caused by the transcription factors, such as CDX2, TEAD4, Eomes and GATA3, leads to the formation of cytotrophoblast and syncytiotrophoblast populations. The molecular mechanisms involved in placental formation inside the human body along with the specification and differentiation of trophoblast cell lines are, mostly due to the lack of suitable cell models, not sufficiently elucidated. This review is an evaluation of current technologies, which are used to study the behavior of human trophoblasts and other placental cells, as well as their ability to represent physiological conditions both in vivo and in vitro. An in vitro 3D model with a characteristic phenotype is of great benefit for the study of placental physiology. At the same time, it provides great support for future modeling of placental disease.
Collapse
Affiliation(s)
- Darina Bačenková
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
- Correspondence: ; Tel.: +42-1055-602-2380
| | - Marianna Trebuňová
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
| | - Daša Čížková
- Centre for Experimental and Clinical Regenerative Medicine, The University of Veterinary Medicine and Pharmacy, 04181 Košice, Slovakia;
| | - Radovan Hudák
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
| | - Erik Dosedla
- Department of Gynecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafarik Univerzity Hospital AGEL Košice-Šaca, Pavol Jozef Šafarik University in Košice, 04015 Košice-Šaca, Slovakia;
| | - Alena Findrik-Balogová
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
| | - Jozef Živčák
- Department of Biomedical Engineering and Measurement, Faculty of Mechanical Engineering, Technical University of Košice, 04200 Košice, Slovakia; (M.T.); (R.H.); (A.F.-B.); (J.Ž.)
| |
Collapse
|
3
|
Cannon P, Asokan A, Czechowicz A, Hammond P, Kohn DB, Lieber A, Malik P, Marks P, Porteus M, Verhoeyen E, Weissman D, Weissman I, Kiem HP. Safe and Effective In Vivo Targeting and Gene Editing in Hematopoietic Stem Cells: Strategies for Accelerating Development. Hum Gene Ther 2021; 32:31-42. [PMID: 33427035 DOI: 10.1089/hum.2020.263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
On May 11, 2020, the National Institutes of Health (NIH) and the Bill & Melinda Gates Foundation (Gates Foundation) held an exploratory expert scientific roundtable to inform an NIH-Gates Foundation collaboration on the development of scalable, sustainable, and accessible HIV and sickle cell disease (SCD) therapies based on in vivo gene editing of hematopoietic stem cells (HSCs). A particular emphasis was on how such therapies could be developed for low-resource settings in sub-Saharan Africa. Paula Cannon, PhD, of the University of Southern California and Hans-Peter Kiem, MD, PhD, of the Fred Hutchinson Cancer Research Center served as roundtable cochairs. Welcoming remarks were provided by the leadership of NIH, NHLBI, and BMGF, who cited the importance of assessing the state of the science and charting a path toward finding safe, effective, and durable gene-based therapies for HIV and SCD. These remarks were followed by three sessions in which participants heard presentations on and discussed the therapeutic potential of modified HSCs, leveraging HSC biology and differentiation, and in vivo HSC targeting approaches. This roundtable serves as the beginning of an ongoing discussion among NIH, the Gates Foundation, research and patient communities, and the public at large. As this collaboration progresses, these communities will be engaged as we collectively navigate the complex scientific and ethical issues surrounding in vivo HSC targeting and editing. Summarized excerpts from each of the presentations are given hereunder, reflecting the individual views and perspectives of each presenter.
Collapse
Affiliation(s)
- Paula Cannon
- Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Aravind Asokan
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Paula Hammond
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Donald B Kohn
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Andre Lieber
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Punam Malik
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Peter Marks
- U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Els Verhoeyen
- CIRI, Université de Lyon, INSERM, CNRS, ENS de Lyon, Lyon, France.,Université de Nice, Nice, France
| | - Drew Weissman
- Department of Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Irving Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine; Stanford University School of Medicine, Stanford, California, USA
| | - Hans-Peter Kiem
- Stem Cell and Gene Therapy Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| |
Collapse
|
4
|
Kulkarni R, Kale V. Physiological Cues Involved in the Regulation of Adhesion Mechanisms in Hematopoietic Stem Cell Fate Decision. Front Cell Dev Biol 2020; 8:611. [PMID: 32754597 PMCID: PMC7366553 DOI: 10.3389/fcell.2020.00611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Hematopoietic stem cells (HSC) could have several fates in the body; viz. self-renewal, differentiation, migration, quiescence, and apoptosis. These fate decisions play a crucial role in maintaining homeostasis and critically depend on the interaction of the HSCs with their micro-environmental constituents. However, the physiological cues promoting these interactions in vivo have not been identified to a great extent. Intense research using various in vitro and in vivo models is going on in various laboratories to understand the mechanisms involved in these interactions, as understanding of these mechanistic would greatly help in improving clinical transplantations. However, though these elegant studies have identified the molecular interactions involved in the process, harnessing these interactions to the recipients' benefit would ultimately depend on manipulation of environmental cues initiating them in vivo: hence, these need to be identified at the earliest. HSCs reside in the bone marrow, which is a very complex tissue comprising of various types of stromal cells along with their secreted cytokines, extra-cellular matrix (ECM) molecules and extra-cellular vesicles (EVs). These components control the HSC fate decision through direct cell-cell interactions - mediated via various types of adhesion molecules -, cell-ECM interactions - mediated mostly via integrins -, or through soluble mediators like cytokines and EVs. This could be a very dynamic process involving multiple transient interactions acting concurrently or sequentially, and the adhesion molecules involved in various fate determining situations could be different. If the switch mechanisms governing these dynamic states in vivo are identified, they could be harnessed for the development of novel therapeutics. Here, in addition to reviewing the adhesion molecules involved in the regulation of HSCs, we also touch upon recent advances in our understanding of the physiological cues known to initiate specific adhesive interactions of HSCs with the marrow stromal cells or ECM molecules and EVs secreted by them.
Collapse
Affiliation(s)
- Rohan Kulkarni
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International University, Pune, India
| |
Collapse
|
5
|
Lineage marker expression on mouse hematopoietic stem cells. Exp Hematol 2019; 76:13-23.e2. [DOI: 10.1016/j.exphem.2019.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 01/01/2023]
|
6
|
Szade K, Gulati GS, Chan CKF, Kao KS, Miyanishi M, Marjon KD, Sinha R, George BM, Chen JY, Weissman IL. Where Hematopoietic Stem Cells Live: The Bone Marrow Niche. Antioxid Redox Signal 2018; 29:191-204. [PMID: 29113449 PMCID: PMC6016729 DOI: 10.1089/ars.2017.7419] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hematopoietic stem cells (HSCs) can sustain the production of blood throughout one's lifetime. However, for proper self-renewal of its own population and differentiation to blood, the HSC requires a specialized microenvironment called the "niche." Recent Advances: Recent studies using novel mouse models have shed new light on the cellular architecture and function of the HSC niche. Here, we review the different cells that constitute the HSC niche and the molecular mechanisms that underlie HSC and niche interaction. We discuss the evidence and potential features that distinguish the HSC niche from other microenvironments in the bone marrow. The relevance of the niche in malignant transformation of the HSCs and harboring cancer metastasis to the bone is also outlined. In addition, we address how the niche may regulate reactive oxygen species levels surrounding the HSCs. Critical Issues and Future Directions: We propose future directions and remaining challenges in investigating the niche of HSCs. We discuss how a better understanding of the HSC niche may help in restoring an aged hematopoietic system, fighting against malignancies, and transplanting purified HSCs safely and effectively into patients. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Krzysztof Szade
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California.,2 Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Krakow, Poland
| | - Gunsagar S Gulati
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Charles K F Chan
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Kevin S Kao
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Masanori Miyanishi
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Kristopher D Marjon
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Rahul Sinha
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Benson M George
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - James Y Chen
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| | - Irving L Weissman
- 1 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
7
|
Abstract
I started research in high school, experimenting on immunological tolerance to transplantation antigens. This led to studies of the thymus as the site of maturation of T cells, which led to the discovery, isolation, and clinical transplantation of purified hematopoietic stem cells (HSCs). The induction of immune tolerance with HSCs has led to isolation of other tissue-specific stem cells for regenerative medicine. Our studies of circulating competing germline stem cells in colonial protochordates led us to document competing HSCs. In human acute myelogenous leukemia we showed that all preleukemic mutations occur in HSCs, and determined their order; the final mutations occur in a multipotent progenitor derived from the preleukemic HSC clone. With these, we discovered that CD47 is an upregulated gene in all human cancers and is a "don't eat me" signal; blocking it with antibodies leads to cancer cell phagocytosis. CD47 is the first known gene common to all cancers and is a target for cancer immunotherapy.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, and Ludwig Center for Cancer Stem Cell Research and Medicine at Stanford, Stanford, CA 94305
| |
Collapse
|
8
|
Kräter M, Jacobi A, Otto O, Tietze S, Müller K, Poitz DM, Palm S, Zinna VM, Biehain U, Wobus M, Chavakis T, Werner C, Guck J, Bornhauser M. Bone marrow niche-mimetics modulate HSPC function via integrin signaling. Sci Rep 2017; 7:2549. [PMID: 28566689 PMCID: PMC5451425 DOI: 10.1038/s41598-017-02352-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/10/2017] [Indexed: 12/25/2022] Open
Abstract
The bone marrow (BM) microenvironment provides critical physical cues for hematopoietic stem and progenitor cell (HSPC) maintenance and fate decision mediated by cell-matrix interactions. However, the mechanisms underlying matrix communication and signal transduction are less well understood. Contrary, stem cell culture is mainly facilitated in suspension cultures. Here, we used bone marrow-mimetic decellularized extracellular matrix (ECM) scaffolds derived from mesenchymal stromal cells (MSCs) to study HSPC-ECM interaction. Seeding freshly isolated HSPCs adherent (AT) and non-adherent (SN) cells were found. We detected enhanced expansion and active migration of AT-cells mediated by ECM incorporated stromal derived factor one. Probing cell mechanics, AT-cells displayed naïve cell deformation compared to SN-cells indicating physical recognition of ECM material properties by focal adhesion. Integrin αIIb (CD41), αV (CD51) and β3 (CD61) were found to be induced. Signaling focal contacts via ITGβ3 were identified to facilitate cell adhesion, migration and mediate ECM-physical cues to modulate HSPC function.
Collapse
Affiliation(s)
- Martin Kräter
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Angela Jacobi
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Oliver Otto
- Centre for Innovation Competence - Humoral Immune Reactions in Cardiovascular Diseases, University of Greifswald, Greifswald, Mecklenburg-Western Pomerania, 17489, Germany
| | - Stefanie Tietze
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Katrin Müller
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - David M Poitz
- Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Sandra Palm
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Valentina M Zinna
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Ulrike Biehain
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Manja Wobus
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany
| | - Triantafyllos Chavakis
- Department of Clinical Pathobiochemistry, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Institute for Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden, Max Bergmann Center of Biomaterials, Dresden, Saxony, 01307, Germany
| | - Jochen Guck
- Biotechnology Center, Technische Universität Dresden, Dresden, Saxony, 01307, Germany
| | - Martin Bornhauser
- Medical Clinic I, University Hospital Carl Gustav Carus, Dresden, Saxony, 01307, Germany.
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Saxony, 01307, Germany.
| |
Collapse
|
9
|
Levesque JP, Winkler IG. Cell Adhesion Molecules in Normal and Malignant Hematopoiesis: from Bench to Bedside. CURRENT STEM CELL REPORTS 2016. [DOI: 10.1007/s40778-016-0066-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
De Grandis M, Lhoumeau AC, Mancini SJC, Aurrand-Lions M. Adhesion receptors involved in HSC and early-B cell interactions with bone marrow microenvironment. Cell Mol Life Sci 2016; 73:687-703. [PMID: 26495446 PMCID: PMC11108274 DOI: 10.1007/s00018-015-2064-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 09/16/2015] [Accepted: 10/08/2015] [Indexed: 02/06/2023]
Abstract
Hematopoiesis takes place in the bone marrow of adult mammals and is the process by which blood cells are replenished every day throughout life. Differentiation of hematopoietic cells occurs in a stepwise manner through intermediates of differentiation that could be phenotypically identified. This has allowed establishing hematopoietic cell classification with hematopoietic stem cells (HSCs) at the top of the hierarchy. HSCs are mostly quiescent and serve as a reservoir for maintenance of lifelong hematopoiesis. Over recent years, it has become increasingly clear that HSC quiescence is not only due to intrinsic properties, but is also mediated by cognate interactions between HSCs and surrounding cells within micro-anatomical sites called “niches”. This hematopoietic/stromal crosstalk model also applies to more mature progenitors such as B cell progenitors, which are thought to reside in distinct “niches”. This prompted many research teams to search for specific molecular mechanisms supporting leuko-stromal crosstalk in the bone marrow and acting at specific stage of differentiation to regulate hematopoietic homeostasis. Here, we review recent data on adhesion mechanisms involved in HSCs and B cell progenitors interactions with surrounding bone marrow stromal cells.
Collapse
Affiliation(s)
- Maria De Grandis
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Anne-Catherine Lhoumeau
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Stéphane J. C. Mancini
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| | - Michel Aurrand-Lions
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Inserm U1068, CNRS UMR7258, Aix-Marseille Université UM105, Marseille, France
| |
Collapse
|
11
|
Foster K, Lassailly F, Anjos-Afonso F, Currie E, Rouault-Pierre K, Bonnet D. Different Motile Behaviors of Human Hematopoietic Stem versus Progenitor Cells at the Osteoblastic Niche. Stem Cell Reports 2015; 5:690-701. [PMID: 26455414 PMCID: PMC4649139 DOI: 10.1016/j.stemcr.2015.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023] Open
Abstract
Despite advances in our understanding of interactions between mouse hematopoietic stem cells (HSCs) and their niche, little is known about communication between human HSCs and the microenvironment. Using a xenotransplantation model and intravital imaging, we demonstrate that human HSCs display distinct motile behaviors to their hematopoietic progenitor cell (HPC) counterparts, and the same pattern can be found between mouse HSCs and HPCs. HSCs become significantly less motile after transplantation, while progenitor cells remain motile. We show that human HSCs take longer to find their niche than previously expected and suggest that the niche be defined as the position where HSCs stop moving. Intravital imaging is the only technique to determine where in the bone marrow stem cells stop moving, and future analyses should focus on the environment surrounding the HSC at this point.
Collapse
Affiliation(s)
- Katie Foster
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - François Lassailly
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Fernando Anjos-Afonso
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Erin Currie
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Kevin Rouault-Pierre
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London WC2A 3LY, UK.
| |
Collapse
|
12
|
Weissman I. Evolution of normal and neoplastic tissue stem cells: progress after Robert Hooke. Philos Trans R Soc Lond B Biol Sci 2015; 370:20140364. [PMID: 26416675 PMCID: PMC4633993 DOI: 10.1098/rstb.2014.0364] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2015] [Indexed: 01/29/2023] Open
Abstract
The appearance of stem cells coincides with the transition from single-celled organisms to metazoans. Stem cells are capable of self-renewal as well as differentiation. Each tissue is maintained by self-renewing tissue-specific stem cells. The accumulation of mutations that lead to preleukaemia are in the blood-forming stem cell, while the transition to leukaemia stem cells occurs in the clone at a progenitor stage. All leukaemia and cancer cells escape being removed by scavenger macrophages by expressing the 'don't eat me' signal CD47. Blocking antibodies to CD47 are therapeutics for all cancers, and are currently being tested in clinical trials in the US and UK.
Collapse
Affiliation(s)
- Irving Weissman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
13
|
Grella A, Kole D, Holmes W, Dominko T. FGF2 Overrides TGFβ1-Driven Integrin ITGA11 Expression in Human Dermal Fibroblasts. J Cell Biochem 2015; 117:1000-8. [PMID: 26403263 DOI: 10.1002/jcb.25386] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 12/28/2022]
Abstract
Deposition of collagen-based extracellular matrix by fibroblasts during wound healing leads to scar formation--a typical outcome of the healing process in soft tissue wounds. The process can, however, be skewed in favor of tissue regeneration by manipulation of wound environment. Low oxygen conditions and supplementation with FGF2 provide extracellular cues that drive wound fibroblasts towards a pro-regenerative phenotype. Under these conditions, fibroblasts dramatically alter expression of many genes among which the most significantly deregulated are extracellular matrix and adhesion molecules. Here we investigate the mechanism of a collagen I binding integrin α11 (ITGA11) deregulation in response to low oxygen-mediated FGF2 effects in dermal fibroblasts. Using RT-PCR, qRT-PCR, Western blotting, and immunocytochemistry, we describe significant down-regulation of ITGA11. Decrease in ITGA11 is associated with its loss from focal adhesions. We show that loss of ITGA11 requires FGF2 induced ERK1/2 activity and in the presence of FGF2, ITGA11 expression cannot be rescued by TGFβ1, a potent activator of ITGA11. Our results indicate that FGF2 may be redirecting fibroblasts towards an anti-fibrotic phenotype by overriding TGFβ1 mediated ITGA11 expression.
Collapse
Affiliation(s)
- Alexandra Grella
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - Denis Kole
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - William Holmes
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609
| | - Tanja Dominko
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts, 01609.,Center for Biomedical Sciences and Engineering, University of Nova Gorica, Nova Gorica 5000, Slovenia
| |
Collapse
|
14
|
Abstract
The postnatal skeleton undergoes growth, remodeling, and repair. We hypothesized that skeletal progenitor cells active during these disparate phases are genetically and phenotypically distinct. We identified a highly potent regenerative cell type that we term the fracture-induced bone, cartilage, stromal progenitor (f-BCSP) in the fracture callus of adult mice. The f-BCSP possesses significantly enhanced skeletogenic potential compared with BCSPs harvested from uninjured bone. It also recapitulates many gene expression patterns involved in perinatal skeletogenesis. Our results indicate that the skeletal progenitor population is functionally stratified, containing distinct subsets responsible for growth, regeneration, and repair. Furthermore, our findings suggest that injury-induced changes to the skeletal stem and progenitor microenvironments could activate these cells and enhance their regenerative potential.
Collapse
|
15
|
Fathman JW, Fernhoff NB, Seita J, Chao C, Scarfone VM, Weissman IL, Inlay MA. Upregulation of CD11A on hematopoietic stem cells denotes the loss of long-term reconstitution potential. Stem Cell Reports 2014; 3:707-15. [PMID: 25418718 PMCID: PMC4235136 DOI: 10.1016/j.stemcr.2014.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/08/2014] [Accepted: 09/09/2014] [Indexed: 01/20/2023] Open
Abstract
Small numbers of hematopoietic stem cells (HSCs) generate large numbers of mature effector cells through the successive amplification of transiently proliferating progenitor cells. HSCs and their downstream progenitors have been extensively characterized based on their cell-surface phenotype and functional activities during transplantation assays. These cells dynamically lose and acquire specific sets of surface markers during differentiation, leading to the identification of markers that allow for more refined separation of HSCs from early hematopoietic progenitors. Here, we describe a marker, CD11A, which allows for the enhanced purification of mouse HSCs. We show through in vivo transplantations that upregulation of CD11A on HSCs denotes the loss of their long-term reconstitution potential. Surprisingly, nearly half of phenotypic HSCs (defined as Lin−KIT+SCA-1+CD150+CD34−) are CD11A+ and lack long-term self-renewal potential. We propose that CD11A+Lin−KIT+SCA-1+CD150+CD34− cells are multipotent progenitors and CD11A−Lin−KIT+SCA-1+CD150+CD34− cells are true HSCs. CD11A separates phenotypic HSCs (Lin−KIT+SCA-1+CD150+CD34−) into two fractions All long-term reconstitution activity is within the CD11A− fraction of bone marrow CD11A blocking antibodies do not affect BM homing or long-term engraftment of HSCs
Collapse
Affiliation(s)
- John W Fathman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA.
| | - Nathaniel B Fernhoff
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jun Seita
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Connie Chao
- Sue and Bill Gross Stem Cell Research Center, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Irving L Weissman
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Ludwig Center for Cancer Stem Cell Research and Medicine, Stanford University, Stanford, CA 94305, USA
| | - Matthew A Inlay
- Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Sue and Bill Gross Stem Cell Research Center, Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
16
|
Wilk CM, Schildberg FA, Lauterbach MA, Cadeddu RP, Fröbel J, Westphal V, Tolba RH, Hell SW, Czibere A, Bruns I, Haas R. The tissue inhibitor of metalloproteinases-1 improves migration and adhesion of hematopoietic stem and progenitor cells. Exp Hematol 2013; 41:823-831.e2. [PMID: 23660069 DOI: 10.1016/j.exphem.2013.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/22/2013] [Accepted: 04/23/2013] [Indexed: 12/16/2022]
Abstract
Homing and engraftment of hematopoietic stem and progenitor cells (HSPCs) during bone marrow transplantation are critically dependent on integrins such as β1-integrin. In the present study, we show that β1-integrin and the tetraspanin CD63 form a cell surface receptor complex for the soluble serum protein tissue inhibitor of metalloproteinases-1 (TIMP-1) on human CD34⁺ HSPCs. Through binding to this receptor complex, TIMP-1 activates β1-integrin, increases adhesion and migration of human CD34⁺ cells, and protects these cells from induced apoptosis. TIMP-1 stimulation in murine bone marrow mononuclear cells also promotes migration and adhesion; this is associated with augmented homing of murine mononuclear cells and of murine LSK⁺ cells during bone marrow transplantation. These results not only indicate that TIMP-1 is conducive to HSPC homing; they also identify CD63 and β1-integrin as a TIMP-1 receptor complex on HSPCs.
Collapse
Affiliation(s)
- C Matthias Wilk
- Department of Hematology, Oncology and Clinical Immunology, Heinrich-Heine-University, Düsseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Tian DM, Liang L, Zhao XC, Zheng MH, Cao XL, Qin HY, Wang CM, Liang YM, Han H. Endothelium-targeted Delta-like 1 promotes hematopoietic stem cell expansion ex vivo and engraftment in hematopoietic tissues in vivo. Stem Cell Res 2013; 11:693-706. [PMID: 23727445 DOI: 10.1016/j.scr.2013.04.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Notch ligands enhance ex vivo expansion of hematopoietic stem cells (HSCs). But to use Notch ligands in HSC therapies of human diseases, efforts are required to improve ex vivo expansion efficiency and in vivo transplant engraftment. DESIGN AND METHODS We designed and produced an endothelium-targeted soluble Notch ligand, the DSL domain of Delta-like 1 fused with a RGD motif (D1R), and examined the effects of this protein on HSCs ex vivo and in vivo. RESULTS D1R efficiently promoted ex vivo expansion of both mouse bone marrow (BM) and human umbilical cord blood HSCs. HSCs expanded with D1R up-regulated many of the stemness-related genes, and showed high BM engraftment efficacy with long-term repopulation capacity after transplantation. Moreover, in vivo administration of D1R increased the number of BM HSCs in mice, and facilitated BM recovery of mice after irradiation. Injection of D1R significantly improved HSC engraftment and myeloid recovery after BM transplantation in irradiated mice. D1R enhanced HSC engraftment not only in BM, but also in the liver and spleen after BM transplantation in mice. D1R induced the formation of compact cell clusters containing the transplanted HSCs in close contact with endothelial cells, reminiscent of HSC niches, in the liver and spleen. CONCLUSIONS D1R might be applied in improving both HSC expansion ex vivo and HSC engraftment in vivo in transplantation.
Collapse
Affiliation(s)
- Deng-Mei Tian
- Department of Hematology, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 2013; 121:4463-72. [PMID: 23564910 DOI: 10.1182/blood-2012-09-457929] [Citation(s) in RCA: 236] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The hematopoietic stem cell (HSC) compartment is heterogeneous, yet our understanding of the identities of different HSC subtypes is limited. Here we show that platelet integrin CD41 (αIIb), currently thought to only transiently mark fetal HSCs, is expressed on an adult HSC subtype that accumulates with age. CD41+ HSCs were largely quiescent and exhibited myeloerythroid and megakaryocyte gene priming, governed by Gata1, whereas CD41- HSCs were more proliferative and exhibited lymphoid gene priming. When isolated without the use of blocking antibodies, CD41+ HSCs possessed long-term repopulation capacity on serial transplantations and showed a marked myeloid bias compared with CD41- HSCs, which yielded a more lymphoid-biased progeny. CD41-knockout (KO) mice displayed multilineage hematopoietic defects coupled with decreased quiescence and survival of HSCs, suggesting that CD41 is functionally relevant for HSC maintenance and hematopoietic homeostasis. Transplantation experiments indicated that CD41-KO-associated defects are long-term transplantable, HSC-derived and, in part, mediated through the loss of platelet mass leading to decreases in HSC exposure to important platelet released cytokines, such as transforming growth factor β1. In summary, our data provide a novel marker to identify a myeloid-biased HSC subtype that becomes prevalent with age and highlights the dogma of HSC regulation by their progeny.
Collapse
|
19
|
Spinelli V, Guillot PV, De Coppi P. Induced pluripotent stem (iPS) cells from human fetal stem cells (hFSCs). Organogenesis 2013; 9:101-10. [PMID: 23823661 DOI: 10.4161/org.25197] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION (1) Human embryonic stem (ES) cells are pluripotent but are difficult to be used for therapy because of immunological, oncological and ethical barriers. (2) Pluripotent cells exist in vivo, i.e., germ cells and epiblast cells but cannot be isolated without sacrificing the developing embryo. (3) Reprogramming to pluripotency is possible from adult cells using ectopic expression of OKSM and other integrative and non-integrative techniques. (4) Hurdles to overcome include i.e stability of the phenotype in relation to epigenetic memory. SOURCES OF DATA We reviewed the literature related to reprogramming, pluripotency and fetal stem cells. AREAS OF AGREEMENT (1) Fetal stem cells present some advantageous characteristics compared with their neonatal and postnatal counterparts, with regards to cell size, growth kinetics, and differentiation potential, as well as in vivo tissue repair capacity. (2) Amniotic fluid stem cells are more easily reprogrammed to pluripotency than adult fibroblast. (3) The parental population is heterogeneous and present an intermediate phenotype between ES and adult somatic stem cells, expressing markers of both. AREAS OF CONTROVERSY (1) It is unclear whether induced pluripotent stem (iPS) derived from amniotic fluid stem cells are fully or partially reprogrammed. (2) Optimal protocols to ensure highest efficiency and phenotype stability remains to be determined. (3) The "level" of reprogramming, fully vs partial, of iPS derived from amniotic fluid stem cells remain to be determined. GROWING POINTS Banking of fully reprogrammed cells may be important both for (1) autologous and allogenic applications in medicine, and (2) disease modeling.
Collapse
Affiliation(s)
- Valentina Spinelli
- Surgery Unit, Institute of Child Health, University College London and Great Ormond Street Hospital, London, UK.
| | | | | |
Collapse
|
20
|
Papagiannouli F, Lohmann I. Shaping the niche: lessons from the Drosophila testis and other model systems. Biotechnol J 2012; 7:723-36. [PMID: 22488937 DOI: 10.1002/biot.201100352] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/31/2012] [Accepted: 02/27/2012] [Indexed: 11/12/2022]
Abstract
Stem cells are fascinating, as they supply the cells that construct our adult bodies and replenish, as we age, worn out, damaged, and diseased tissues. Stem cell regulation relies on intrinsic signals but also on inputs emanating from the neighbouring niche. The Drosophila testis provides an excellent system for studying such processes. Although recent advances have uncovered several signalling, cytoskeletal and other factors affecting niche homeostasis and testis differentiation, many aspects of niche regulation and maintenance remain unsolved. In this review, we discuss aspects of niche establishment and integrity not yet fully understood and we compare it to the current knowledge in other model systems such as vertebrates and plants. We also address specific questions on stem cell maintenance and niche regulation in the Drosophila testis under the control of Hox genes. Finally, we provide insights on the striking functional conservation of homologous genes in plants and animals and their respective stem cell niches. Elucidating conserved mechanisms of stem cell control in both lineages could reveal the importance underlying this conservation and justify the evolutionary pressure to adapt homologous molecules for performing the same task.
Collapse
Affiliation(s)
- Fani Papagiannouli
- Centre for Organismal Studies (COS) Heidelberg and CellNetworks - Cluster of Excellence, Heidelberg, Germany.
| | | |
Collapse
|
21
|
Fischer U, Ruckert C, Hubner B, Eckermann O, Binder V, Bakchoul T, Schuster FR, Merk S, Klein HU, Führer M, Dugas M, Borkhardt A. CD34+ gene expression profiling of individual children with very severe aplastic anemia indicates a pathogenic role of integrin receptors and the proapoptotic death ligand TRAIL. Haematologica 2012; 97:1304-11. [PMID: 22315490 DOI: 10.3324/haematol.2011.056705] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED BACKGROUND Very severe aplastic anemia is characterized by a hypoplastic bone marrow due to destruction of CD34(+) stem cells by autoreactive T cells. Investigation of the pathomechanism by patient-specific gene expression analysis of the attacked stem cells has previously been impractical because of the scarcity of these cells at diagnosis. DESIGN AND METHODS Employing unbiased RNA amplification, patient-specific gene expression profiling was carried out for CD34(+) cells from patients newly diagnosed with very severe aplastic anemia (n=13), refractory anemia (n=8) and healthy controls (n=10). These data were compared to profiles of myelodysplastic disease (n=55), including refractory anemia (n=18). To identify possible targets of autoimmune attack, presence of autoreactive antibodies was tested in pre-therapeutic sera of patients with very severe aplastic anemia (n=19). RESULTS CD34(+) gene expression profiling distinguished between healthy controls, children with aplastic or refractory anemia and clonal disease. Interferon stimulated genes such as the apoptosis inducing death ligand TRAIL were strongly up-regulated in CD34(+) cells of patients with aplastic anemia, in particular in patients responding to immunosuppressive treatment. In contrast, mRNA expression of integrin GPVI and the integrin complexes GPIa/IIa, GPIIb/IIIa, GPIB/GPIX/GPV was significantly down-regulated and corresponding antibodies were detected in 7 of 11 profiled patients and in 11 of 19 aplastic anemia patients. CONCLUSIONS As a potential diagnostic tool, patient-specific gene expression profiling of CD34(+) stem cells made it possible to make the difficult differential diagnosis of most patients with aplastic and refractory anemia. Profiling indicated a prognostic correlation of TRAIL expression and patient benefit from immunosuppressive therapy. Downregulation of integrin expression and concurrent presence of autoreactive anti-integrin-antibodies suggested a previously unrecognized pathological role of integrins in aplastic anemia.
Collapse
Affiliation(s)
- Ute Fischer
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cook MM, Futrega K, Osiecki M, Kabiri M, Kul B, Rice A, Atkinson K, Brooke G, Doran M. Micromarrows--three-dimensional coculture of hematopoietic stem cells and mesenchymal stromal cells. Tissue Eng Part C Methods 2012; 18:319-28. [PMID: 22082070 DOI: 10.1089/ten.tec.2011.0159] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hematopoietic stem cell (HSC) transplant is a well established curative therapy for some hematological malignancies. However, achieving adequate supply of HSC from some donor tissues can limit both its application and ultimate efficacy. The theory that this limitation could be overcome by expanding the HSC population before transplantation has motivated numerous laboratories to develop ex vivo expansion processes. Pioneering work in this field utilized stromal cells as support cells in cocultures with HSC to mimic the HSC niche. We hypothesized that through translation of this classic coculture system to a three-dimensional (3D) structure we could better replicate the niche environment and in turn enhance HSC expansion. Herein we describe a novel high-throughput 3D coculture system where murine-derived HSC can be cocultured with mesenchymal stem/stromal cells (MSC) in 3D microaggregates--which we term "micromarrows." Micromarrows were formed using surface modified microwells and their ability to support HSC expansion was compared to classic two-dimensional (2D) cocultures. While both 2D and 3D systems provide only a modest total cell expansion in the minimally supplemented medium, the micromarrow system supported the expansion of approximately twice as many HSC candidates as the 2D controls. Histology revealed that at day 7, the majority of bound hematopoietic cells reside in the outer layers of the aggregate. Quantitative polymerase chain reaction demonstrates that MSC maintained in 3D aggregates express significantly higher levels of key hematopoietic niche factors relative to their 2D equivalents. Thus, we propose that the micromarrow platform represents a promising first step toward a high-throughput HSC 3D coculture system that may enable in vitro HSC niche recapitulation and subsequent extensive in vitro HSC self-renewal.
Collapse
Affiliation(s)
- Matthew M Cook
- Stem Cell Therapies Laboratory, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Progenitor cell mobilization and recruitment: SDF-1, CXCR4, α4-integrin, and c-kit. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 111:243-64. [PMID: 22917234 DOI: 10.1016/b978-0-12-398459-3.00011-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progenitor cell retention and release are largely governed by the binding of stromal-cell-derived factor 1 (SDF-1) to CXC chemokine receptor 4 (CXCR4) and by α4-integrin signaling. Both of these pathways are dependent on c-kit activity: the mobilization of progenitor cells in response to either CXCR4 antagonism or α4-integrin blockade is impaired by the loss of c-kit kinase activity; and c-kit-kinase inactivation blocks the retention of CXCR4-positive progenitor cells in the bone marrow. SDF-1/CXCR4 and α4-integrin signaling are also crucial for the retention of progenitor cells in the ischemic region, which may explain, at least in part, why clinical trials of progenitor cell therapy have failed to display the efficacy observed in preclinical investigations. The lack of effectiveness is often attributed to poor retention of the transplanted cells and, to date, most of the trial protocols have mobilized cells with injections of granulocyte colony-stimulating factor (G-CSF), which activates extracellular proteases that irreversibly cleave cell-surface adhesion molecules, including α4-integrin and CXCR4. Thus, the retention of G-CSF-mobilized cells in the ischemic region may be impaired, and the mobilization of agents that reversibly disrupt SDF-1/CXCR4 binding, such as AMD3100, may improve patient response. Efforts to supplement SDF-1 levels in the ischemic region may also improve progenitor cell recruitment and the effectiveness of stem cell therapy.
Collapse
|
24
|
Franco CB, Chen CC, Drukker M, Weissman IL, Galli SJ. Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell 2010; 6:361-8. [PMID: 20362540 DOI: 10.1016/j.stem.2010.02.013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 12/04/2009] [Accepted: 02/01/2010] [Indexed: 01/12/2023]
Abstract
The lineage restriction of prospectively isolated hematopoietic progenitors has been traditionally assessed by bulk in vitro culture and transplantation of large number of cells in vivo. These methods, however, cannot distinguish between homogenous multipotent or heterogeneous lineage-restricted populations. Using clonal assays of 1 or 5 cells in vitro, single-cell quantitative gene expression analyses, and transplantation of mice with low numbers of cells, we show that a common myeloid progenitor (CMP) is Sca-1(lo)lin(-)c-Kit(+)CD27(+)Flk-2(-) (SL-CMP; Sca-1(lo) CMP) and a granulocyte/macrophage progenitor (GMP) is Sca-1(lo)lin(-)c-Kit(+)CD27(+)Flk-2(+)CD150(-/lo) (SL-GMP; Sca-1(lo) GMP). We found that mast cell progenitor potential is present in the SL-CMP fraction, but not in the more differentiated SL-GMP population, and is more closely related to megakaryocyte/erythrocyte specification. Our data provide criteria for the prospective isolation of SL-CMP and SL-GMP and support the conclusion that mast cells are specified during hematopoiesis earlier than and independently from granulocytes.
Collapse
Affiliation(s)
- Christopher B Franco
- Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
25
|
Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood 2010; 116:3185-96. [PMID: 20631378 DOI: 10.1182/blood-2009-12-260703] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hemopoietic stem cells (HSCs) reside within a specified area of the bone marrow (BM) cavity called a "niche" that modulates HSC quiescence, proliferation, differentiation, and migration. Our previous studies have identified the endosteal BM region as the site for the HSC niche and demonstrated that hemopoietic stem and progenitor populations (HSPCs, LSK) isolated from different BM regions exhibit significantly different hemopoietic potential. In this study, we have analyzed subpopulations of LSK cells isolated from different regions of the BM and showed that CD150(+)CD48(-)LSK HSCs within the endosteal BM region have superior proliferative capacity and homing efficiency compared with CD150(+)CD48(-)LSK HSCs isolated from the central BM. Furthermore, we show, for the first time, that a subset of CD150(+)CD48(+)LSK progenitor cells, previously defined as B-lymphoid primed hemopoietic cells, are capable of multilineage reconstitution, however, only when isolated from the endosteal region. In addition, we provide evidence for an unrecognized role of CD48 in HSC homing. Together, our data provide strong evidence that highly purified HSCs show functional differences depending on their origin within the BM and that the most primitive HSCs reside within the endosteal BM region.
Collapse
|
26
|
Ciriza J, García-Ojeda ME. Expression of migration-related genes is progressively upregulated in murine Lineage-Sca-1+c-Kit+ population from the fetal to adult stages of development. Stem Cell Res Ther 2010; 1:14. [PMID: 20637061 PMCID: PMC2905090 DOI: 10.1186/scrt14] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 05/20/2010] [Indexed: 11/23/2022] Open
Abstract
Introduction Hematopoietic stem cells (HSCs) follow a genetically programmed pattern of migration during development. Extracellular matrix and adhesion molecules, as well as chemokines and their receptors, are important in adult HSC migration. However, little is known about the role these molecules play at earlier developmental stages. Methods We have analyzed by quantitative polymerase chain reaction (qPCR) array the expression pattern of extracellular matrix and adhesion molecules as well as chemokines and chemokine receptors in Lineage-Sca-1+c-Kit+ (LSK) cells at different stages of development, in order to characterize the role played by these molecules in LSK. Data were represented by volcano plots to show the differences in expression pattern at the time points studied. Results Our results show marked changes in the expression pattern of extracellular matrix, adhesion molecules, chemokines and their receptors with developmental age, particularly in later stages of development. Ten molecules were significantly increased among the LSK populations studied. Our screen identified the upregulation of Col4a1, as well as molecules involved in its degradation (Mmp2, Timp2), with development. Other genes identified were Sell, Tgfbi, and Entpd1. Furthermore, we show that the expression of the chemokines Ccl4, Ccl9, Il18 and the chemokine receptor Cxcr4 increases in LSK cells during development. Conclusions Several genes are upregulated in the LSK population in their transition to the bone marrow microenvironment, increasing at later stages of development. This gene pattern should be emulated by embryonic stem cell-derived hematopoietic progenitors in order to improve their properties for clinical applications such as engraftment.
Collapse
Affiliation(s)
- Jesús Ciriza
- University of California, Merced, School of Natural Sciences, 5200 North Lake Road, Merced, CA 95343, USA.
| | | |
Collapse
|
27
|
Benveniste P, Frelin C, Janmohamed S, Barbara M, Herrington R, Hyam D, Iscove NN. Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 2010; 6:48-58. [PMID: 20074534 DOI: 10.1016/j.stem.2009.11.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Revised: 10/06/2009] [Accepted: 11/19/2009] [Indexed: 10/20/2022]
Abstract
Sustained blood cell production depends on divisions by hematopoietic stem cells (HSCs) that yield both differentiating progeny as well as new HSCs via self-renewal. Differentiating progeny remain capable of self-renewal, but only HSCs sustain self-renewal through successive divisions securely enough to maintain clones that persist life-long. Until recently, the first identified next stage consisted of "short-term" reconstituting cells able to sustain clones of differentiating cells for only 4-6 weeks. Here we expand evidence for a numerically dominant "intermediate-term" multipotent HSC stage in mice whose clones persist for 6-8 months before becoming extinct and that are separable from both short-term as well as permanently reconstituting "long-term" HSCs. The findings suggest that the first step in stem cell differentiation consists not in loss of initial capacity for serial self-renewal divisions, but rather in loss of mechanisms that stabilize self-renewing behavior throughout successive future stem cell divisions.
Collapse
|
28
|
Papathanasiou P, Attema JL, Karsunky H, Xu J, Smale ST, Weissman IL. Evaluation of the long-term reconstituting subset of hematopoietic stem cells with CD150. Stem Cells 2010; 27:2498-508. [PMID: 19593793 DOI: 10.1002/stem.170] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Blood is a tissue with a high cell turnover rate that is constantly being replenished by bone marrow hematopoietic stem cells (HSCs) seeded during fetal ontogeny from the liver. Here we show that the long-term (LT) reconstituting subset of cKit(+)Thy1.1(lo)Lin(-/lo)Sca1(+)Flk2(-) HSCs is CD150(+). HSCs sourced from the fetal liver show LT, multilineage engraftment from E14.5 onward, and the CD150 cell surface molecule can readily substitute Thy1.1 as a positive marker of LT-HSCs in this tissue. From both fetal liver and adult bone marrow, cKit(+)Thy1.1(lo)Lin(-/lo)Sca1(+)Flk2(-) CD150(+) cells exhibit robust LT competitive engraftment, self-renewal, multilineage differentiation capacity, and an accessible chromatin configuration consistent with high expression of erythroid/megakaryoid genes in purified cell subsets. Our data show that, with appropriate combinations of cell surface markers, stem cells can be accurately isolated to high purity and characterized. This is important for the clarification of lineage relationships and the identification of bona fide regulators of stem cell self-renewal and differentiation both in normal and neoplastic tissues.
Collapse
Affiliation(s)
- Peter Papathanasiou
- Institute of Stem Cell Biology and Regenerative Medicine and Department of Pathology, Stanford University School of Medicine, Stanford, California, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Hinge A, Bajaj M, Limaye L, Surolia A, Kale V. Oral Administration of Insulin Receptor-Interacting Lectins Leads to an Enhancement in the Hematopoietic Stem and Progenitor Cell Pool of Mice. Stem Cells Dev 2010; 19:163-74. [DOI: 10.1089/scd.2009.0128] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Ashwini Hinge
- National Center for Cell Science, Ganeshkhind, University of Pune Campus, Pune, India
| | - Manmohan Bajaj
- National Center for Cell Science, Ganeshkhind, University of Pune Campus, Pune, India
| | - Lalita Limaye
- National Center for Cell Science, Ganeshkhind, University of Pune Campus, Pune, India
| | - Avadhesha Surolia
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, India
| | - Vaijayanti Kale
- National Center for Cell Science, Ganeshkhind, University of Pune Campus, Pune, India
| |
Collapse
|
30
|
Forsberg EC, Smith-Berdan S. Parsing the niche code: the molecular mechanisms governing hematopoietic stem cell adhesion and differentiation. Haematologica 2010; 94:1477-81. [PMID: 19880773 DOI: 10.3324/haematol.2009.013730] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
31
|
Ferraro F, Celso CL, Scadden D. Adult stem cels and their niches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:155-68. [PMID: 21222205 DOI: 10.1007/978-1-4419-7037-4_11] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Stem cells participate in dynamic physiologic systems that dictate the outcome of developmental events and organismal stress, Since these cells are fundamental to tissue maintenance and repair, the signals they receive play a critical role in the integrity of the organism. Much work has focused on stem cell identification and the molecular pathways involved in their regulation. Yet, we understand little about how these pathways achieve physiologically responsive stem cell functions. This chapter will review the state of our understanding of stem cells in the context of their microenvironment regarding the relation between stem cell niche dysfunction, carcinogenesis and aging.
Collapse
|
32
|
Adult stem cel diferentiation and trafficking and their implications in disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 695:169-83. [PMID: 21222206 DOI: 10.1007/978-1-4419-7037-4_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Stem cells are unspecialized precursor cells that mainly reside in the bone marrow and have important roles in the establishment of embryonic tissue. They also have critical functions during adulthood, where they replenish short-lived mature effector cells and regeneration of injured tissue. They have three main characteristics: self-renewal, differentiation and homeostatic control. In order to maintain a pool of stem cells that support the production of blood cells, stromal elements and connective tissue, stem cells must be able to constantly replenish their own number. They must also possess the ability to differentiate and give rise to a heterogeneous group of functional cells. Finally, stem cells must possess the ability to modulate and balance differentiation and self-renewal according to environmental stimuli and whole-organ needs to prevent the production of excessive number of effector cells.(1) In addition to formation of these cells, regulated movement of stem cells is critical for organogenesis, homeostasis and repair in adulthood. Stem cells require specific inputs from particular environments in order to perform their various functions. Some similar trafficking mechanisms are shared by leukocytes, adult and fetal stem cells, as well as cancer stem cells.(1,2) Achieving proper trafficking of stem cells will allow increased efficiency of targeted cell therapy and drug delivery.(2) In addition, understanding similarities and differences in homing and migration of malignant cancer stem cells will also clarify molecular events of tumor progression and metastasis.(2) This chapter focuses on the differentiation, trafficking and homing of the major types of adult bone marrow stem cells: hematopoietic stem cells (HSCs), mesenchymal stem cells (MSCs) and endothelial progenitor cells (EPCs) and the term"stem cell" will refer to "adult stem cells" unless otherwise specified.
Collapse
|
33
|
Qian H, Johansson S, McCourt P, Smedsrød B, Ekblom M, Johansson S. Stabilins are expressed in bone marrow sinusoidal endothelial cells and mediate scavenging and cell adhesive functions. Biochem Biophys Res Commun 2009; 390:883-6. [DOI: 10.1016/j.bbrc.2009.10.068] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 10/13/2009] [Indexed: 12/12/2022]
|
34
|
Jaiswal S, Weissman IL. Hematopoietic Stem and Progenitor Cells and the Inflammatory Response. Ann N Y Acad Sci 2009; 1174:118-21. [DOI: 10.1111/j.1749-6632.2009.04930.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Bonig H, Priestley GV, Wohlfahrt M, Kiem HP, Papayannopoulou T. Blockade of alpha6-integrin reveals diversity in homing patterns among human, baboon, and murine cells. Stem Cells Dev 2009; 18:839-44. [PMID: 18842099 DOI: 10.1089/scd.2008.0269] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Our understanding of the mechanisms by which intravenously transplanted hematopoietic stem/progenitor cells (HSPCs) home to and engraft the bone marrow (BM) remains incomplete, but participation of adhesion molecules has been documented. We here demonstrate that blockade of the alpha6-integrin enhanced BM homing of human and nonhuman primate BM-derived HSPCs by >60% in the xenogeneic transplant model and led to significantly improved engraftment. The effect was limited to BM-derived HSPCs, as granulocyte-colony-stimulating factor mobilized peripheral blood or cord blood HSPCs express little or no alpha6 integrin. By contrast, despite high alpha6 integrin expression, no effect of alpha6 blockade on murine BM-HSPCs homing/engraftment was observed.
Collapse
Affiliation(s)
- Halvard Bonig
- Department of Medicine Division of Hematology, University of Washington, Seattle, Washington, USA
| | | | | | | | | |
Collapse
|
36
|
CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 2009; 138:271-85. [PMID: 19632178 DOI: 10.1016/j.cell.2009.05.046] [Citation(s) in RCA: 1151] [Impact Index Per Article: 76.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 03/04/2009] [Accepted: 05/21/2009] [Indexed: 12/19/2022]
Abstract
Macrophages clear pathogens and damaged or aged cells from the blood stream via phagocytosis. Cell-surface CD47 interacts with its receptor on macrophages, SIRPalpha, to inhibit phagocytosis of normal, healthy cells. We find that mobilizing cytokines and inflammatory stimuli cause CD47 to be transiently upregulated on mouse hematopoietic stem cells (HSCs) and progenitors just prior to and during their migratory phase, and that the level of CD47 on these cells determines the probability that they are engulfed in vivo. CD47 is also constitutively upregulated on mouse and human myeloid leukemias, and overexpression of CD47 on a myeloid leukemia line increases its pathogenicity by allowing it to evade phagocytosis. We conclude that CD47 upregulation is an important mechanism that provides protection to normal HSCs during inflammation-mediated mobilization, and that leukemic progenitors co-opt this ability in order to evade macrophage killing.
Collapse
|
37
|
Ellis SJ, Tanentzapf G. Integrin-mediated adhesion and stem-cell-niche interactions. Cell Tissue Res 2009; 339:121-30. [DOI: 10.1007/s00441-009-0828-4] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Accepted: 06/17/2009] [Indexed: 10/20/2022]
|
38
|
Stiff PJ, Bensinger W, Abidi MH, Gingrich R, Artz AS, Nademanee A, Hansen KS, Sobczak C, Cutler C, Bolwell B, Shore TB, Lazarus HM, Yeager AM, Lovelace W, Guo M, Dreiling L. Clinical and Ultrasonic Evaluation of Spleen Size during Peripheral Blood Progenitor Cell Mobilization by Filgrastim: Results of an Open-Label Trial in Normal Donors. Biol Blood Marrow Transplant 2009; 15:827-34. [DOI: 10.1016/j.bbmt.2009.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 03/17/2009] [Indexed: 10/20/2022]
|
39
|
Expression of AA4.1 marks lymphohematopoietic progenitors in early mouse development. Proc Natl Acad Sci U S A 2009; 106:8953-8. [PMID: 19458045 DOI: 10.1073/pnas.0904090106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The hematopoietic system of mice is established during the early to midgestational stage of development. However, the earliest lymphohematopoietic progenitors that appear during mouse development have been less well characterized compared with the hematopoietic stem cell compartment of fetal liver and bone marrow. We isolated the earliest lymphohematopoietic progenitors by using embryonic stem (ES) cell culture in vitro. Cells with the c-Kit(+)Lin(-) cell surface phenotype were present abundantly in ES cells cocultured with stromal cell lines. We further separated the cells into two distinct cell subsets based on AA4.1 expression. Although AA4.1(+) and AA4.1(-) cells had equivalent potency to generate myeloid cell lineages, the lymphoid potential in ES-cell-derived cells was largely restricted to the cells expressing AA4.1. The same cell type was present abundantly in the early yolk sac and in fewer numbers (approximately 5% of that in the yolk sac) in the caudal half of the developing embryos. These data suggest that AA4.1 is a cell surface marker that can identify the earliest lymphohematopoietic progenitors in mouse development.
Collapse
|
40
|
Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha9beta1 and alpha4beta1 integrins. Blood 2009; 114:49-59. [PMID: 19417209 DOI: 10.1182/blood-2009-01-197988] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Osteopontin (OPN), a multifunctional acidic glycoprotein, expressed by osteoblasts within the endosteal region of the bone marrow (BM) suppresses the proliferation of hemopoietic stem and progenitor cells and also regulates their lodgment within the BM after transplantation. Herein we demonstrate that OPN cleavage fragments are the most abundant forms of this protein within the BM. Studies aimed to determine how hemopoietic stem cells (HSCs) interact with OPN revealed for the first time that murine and human HSCs express alpha(9)beta(1) integrin. The N-terminal thrombin cleavage fragment of OPN through its binding to the alpha(9)beta(1) and alpha(4)beta(1) integrins plays a key role in the attraction, retention, regulation, and release of hemopoietic stem and progenitor cells to, in, and from their BM niche. Thrombin-cleaved OPN (trOPN) acts as a chemoattractant for stem and progenitor cells, mediating their migration in a manner that involves interaction with alpha(9)beta(1) and alpha(4)beta(1) integrins. In addition, in the absence of OPN, there is an increased number of white blood cells and, specifically, stem and progenitor cells in the peripheral circulation.
Collapse
|
41
|
Altered cellular dynamics and endosteal location of aged early hematopoietic progenitor cells revealed by time-lapse intravital imaging in long bones. Blood 2009; 114:290-8. [PMID: 19357397 DOI: 10.1182/blood-2008-12-195644] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aged hematopoietic stem cells (HSCs) are impaired in supporting hematopoiesis. The molecular and cellular mechanisms of stem cell aging are not well defined. HSCs interact with nonhematopoietic stroma cells in the bone marrow forming the niche. Interactions of hematopoietic cells with the stroma/microenvironment inside bone cavities are central to hematopoiesis as they regulate cell proliferation, self-renewal, and differentiation. We recently hypothesized that one underlying cause of altered hematopoiesis in aging might be due to altered interactions of aged stem cells with the microenvironment/niche. We developed time-lapse 2-photon microscopy and novel image analysis algorithms to quantify the dynamics of young and aged hematopoietic cells inside the marrow of long bones of mice in vivo. We report in this study that aged early hematopoietic progenitor cells (eHPCs) present with increased cell protrusion movement in vivo and localize more distantly to the endosteum compared with young eHPCs. This correlated with reduced adhesion to stroma cells as well as reduced cell polarity upon adhesion of aged eHPCs. These data support a role of altered eHPC dynamics and altered cell polarity, and thus altered niche biology in mechanisms of mammalian aging.
Collapse
|
42
|
Cellular therapy for repair of cardiac damage after acute myocardial infarction. Int J Cell Biol 2009; 2009:906507. [PMID: 20130765 PMCID: PMC2809316 DOI: 10.1155/2009/906507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 02/03/2009] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular diseases, particularly acute myocardial infarction, are the leading causes of death worldwide. Important advances have been made in the secondary treatment for cardiovascular diseases such as heart transplantation and medical and surgical therapies. Although these therapies alleviate symptoms, and may even improve survival, none can reverse the disease process and directly repair the lasting damage. Thus, the cure of cardiovascular diseases remains a major unmet medical need. Recently, cellular therapy has been proposed as a candidate treatment for this. Many stem and progenitor cell populations have each been suggested as a potential basis for such therapy. This review assesses some of the more notable exogenous adult cell candidates and provides insights into the mechanisms by which they may mediate improvement in cardiac function following acute myocardial infarction. Research into the cellular therapy field is of great importance for the further planning of clinical trials for cardiac cellular myoplasty.
Collapse
|
43
|
Abstract
The ability to exploit angiogenesis and vascularization as a therapeutic strategy will be of enormous benefit to a wide range of medical and tissue-engineering applications. Angiogenic growth factor and cell-based therapies have thus far failed to produce a robust healing response in clinical trials for a variety of ischemic diseases, while engineered tissue substitutes are still size-limited by a lack of vascularization. The purpose of this review is to investigate current research advances in therapeutic vascularization strategies applied to ischemic disease states, tissue engineering and regenerative medicine. Recent advances are discussed that focus on better regulation of growth factor delivery and attempts to better mimic natural processes by delivering combinations of multiple growth factors, cells and bioactive materials in the right spatial and temporal setting. Some unconventional approaches and novel therapeutic targets that hold significant potential are also discussed.
Collapse
Affiliation(s)
- Edward A Phelps
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | |
Collapse
|
44
|
Wagers AJ, Weissman IL. Differential Expression of α2 Integrin Separates Long-Term and Short-Term Reconstituting Lin−/loThy1.1loc-kit+Sca-1+Hematopoietic Stem Cells. Stem Cells 2009; 24:1087-94. [PMID: 16373693 DOI: 10.1634/stemcells.2005-0396] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-renewing, multipotent hematopoietic stem cells are highly enriched within the Lin- Thy1.1(lo)c-kit+ Sca-1+ subset of mouse bone marrow. However, heterogeneous expression within this population of certain cell surface markers raises the possibility that it may be further fractionated phenotypically and perhaps functionally. We previously identified alpha2-integrin (CD49b) as a surface marker with heterogeneous expression on Lin(-/lo)Thy1.1(lo)c-kit+ Sca-1+ stem cells. To determine whether differences in alpha2 expression were indicative of differences in stem cell function, we purified alpha2- and alpha2hi stem cells by fluorescence-activated cell sorting and analyzed their function in long- and short-term hematopoietic reconstitution assays. Both alpha2- and alpha2hi cells could give rise to mature lymphoid and myeloid cells after transplantation into lethally irradiated congenic recipients. However, alpha2hi cells supported hematopoiesis for only a short time (<4 weeks), whereas alpha2- cells reproducibly yielded robust, long-term (>20 weeks) reconstitution, suggesting that alpha2- cells represent a more primitive population than do alpha2hi cells. Consistent with this idea, alpha2- Lin(-/lo)Thy1.1(lo)c-kit+ Sca-1+ cells exhibited an approximately sixfold decreased frequency of spleen colony-forming units (day 12) versus alpha2hi cells. Furthermore, bone marrow cells isolated from animals transplanted >20 weeks previously with 20 alpha2- Lin(-/lo)Thy1.1(lo)c-kit+ Sca-1+ cells included both alpha2- and alpha2hi stem cells of donor origin, indicating that alpha2hi cells are likely lineal descendents of alpha2- cells. Interestingly, alpha2 integrin expression is significantly reduced on lineage-restricted oligopotent progenitors in the marrow, suggesting that high level expression of alpha2 selectively marks a subset of primitive hematopoietic cells which retains multilineage reconstitution potential but exhibits reduced self-renewal capacity.
Collapse
Affiliation(s)
- Amy J Wagers
- Department of Pathology, Stanford University School of Medicine, California, USA.
| | | |
Collapse
|
45
|
Enrichment of Putative Pancreatic Progenitor Cells from Mice by Sorting for Prominin1 (CD133) and Platelet-Derived Growth Factor Receptor β. Stem Cells 2008; 26:2912-20. [DOI: 10.1634/stemcells.2008-0192] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
46
|
Weissman IL. The E. Donnall Thomas lecture: normal and neoplastic stem cells. Biol Blood Marrow Transplant 2008; 14:849-58. [PMID: 18640567 DOI: 10.1016/j.bbmt.2008.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Accepted: 05/08/2008] [Indexed: 02/07/2023]
Abstract
Dr. Irving Weissman was the honored E. Donnall Thomas lecturer at the Tandem BMT Meetings, held on February 10, 2007, at Keystone, Colorado. Dr. Weissman has been a major player, and has provided us with enormous insight into many areas of biology, dating back to his high school days in Montana. He led an enormously productive career at Stanford University where he has taught us many lessons involving our understanding of lymphocyte homing, stem cell biology, both of the hematopoietic system and other types of stem cells, and also now, about cancer stem cells. Dr. Weissman has made enormous contributions to this burgeoning field that has provided us new insights and new opportunities for treatment strategies. In addition to a very productive laboratory career, he is also currently the director of both the Stem Cell Institute, as well as the Cancer Center at Stanford University. The following text is a modified transcribed version of the presentation made by Dr. Weissman.
Collapse
Affiliation(s)
- Irving L Weissman
- Stanford University School of Medicine, Stanford, California 94305, USA.
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW To provide an overview of the hematopoietic stem cell (HSC) niche in the bone marrow. In addition to highlighting recent advances in the field, we will also discuss components of the niche that may contribute to the development of cancer, or cancer metastases to the bone. RECENT FINDINGS Much progress has been very recently made in the understanding of the cellular and molecular interactions in the HSC microenvironment. These recent findings point out the extraordinary complexity of the HSC microenvironment. Emerging data also suggest convergence of signals important for HSC and for leukemia or metastatic disease support. SUMMARY The HSC niche comprises complex interactions between multiple cell types and molecules requiring cell-cell signaling as well as local secretion. These components can be thought of as therapeutic targets not only for HSC expansion, but also to modify behavior of hematopoietic malignancies and cancer metastases to the bone.
Collapse
|
48
|
Ross EA, Freeman S, Zhao Y, Dhanjal TS, Ross EJ, Lax S, Ahmed Z, Hou TZ, Kalia N, Egginton S, Nash G, Watson SP, Frampton J, Buckley CD. A novel role for PECAM-1 (CD31) in regulating haematopoietic progenitor cell compartmentalization between the peripheral blood and bone marrow. PLoS One 2008; 3:e2338. [PMID: 18523558 PMCID: PMC2394654 DOI: 10.1371/journal.pone.0002338] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Accepted: 04/16/2008] [Indexed: 12/12/2022] Open
Abstract
Although the expression of PECAM-1 (CD31) on vascular and haematopoietic cells within the bone marrow microenvironment has been recognized for some time, its physiological role within this niche remains unexplored. In this study we show that PECAM-1 influences steady state hematopoietic stem cell (HSC) progenitor numbers in the peripheral blood but not the bone marrow compartment. PECAM-1−/− mice have higher levels of HSC progenitors in the blood compared to their littermate controls. We show that PECAM-1 is required on both progenitors and bone marrow vascular cells in order for efficient transition between the blood and bone marrow to occur. We have identified key roles for PECAM-1 in both the regulation of HSC migration to the chemokine CXCL12, as well as maintaining levels of the matrix degrading enzyme MMP-9 in the bone marrow vascular niche. Using intravital microscopy and adoptive transfer of either wild type (WT) or PECAM-1−/− bone marrow precursors, we demonstrate that the increase in HSC progenitors in the blood is due in part to a reduced ability to migrate from blood to the bone marrow vascular niche. These findings suggest a novel role for PECAM-1 as a regulator of resting homeostatic progenitor cell numbers in the blood
Collapse
Affiliation(s)
- Ewan A. Ross
- Rheumatology Research Group, MRC Centre for Immune Regulation, University of Birmingham, Birminham, United Kingdom
| | - Sylvie Freeman
- Division of Immunity and Infection, MRC Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Yan Zhao
- Center for Cardiovascular Studies, University of Birmingham, Birmingham, United Kingdom
| | - Tarvinder S. Dhanjal
- Center for Cardiovascular Studies, University of Birmingham, Birmingham, United Kingdom
| | - Emma J. Ross
- Rheumatology Research Group, MRC Centre for Immune Regulation, University of Birmingham, Birminham, United Kingdom
| | - Sian Lax
- Rheumatology Research Group, MRC Centre for Immune Regulation, University of Birmingham, Birminham, United Kingdom
| | - Zubair Ahmed
- Molecular Neuroscience Group, University of Birmingham, Birmingham, United Kingdom
| | - Tie Zheng Hou
- Rheumatology Research Group, MRC Centre for Immune Regulation, University of Birmingham, Birminham, United Kingdom
| | - Neena Kalia
- Center for Cardiovascular Studies, University of Birmingham, Birmingham, United Kingdom
| | - Stuart Egginton
- Department of Physiology, University of Birmingham, Birmingham, United Kingdom
| | - Gerard Nash
- Center for Cardiovascular Studies, University of Birmingham, Birmingham, United Kingdom
| | - Steve P. Watson
- Center for Cardiovascular Studies, University of Birmingham, Birmingham, United Kingdom
| | - Jon Frampton
- Division of Immunity and Infection, MRC Centre for Immune Regulation, University of Birmingham, Birmingham, United Kingdom
| | - Christopher D. Buckley
- Rheumatology Research Group, MRC Centre for Immune Regulation, University of Birmingham, Birminham, United Kingdom
- * E-mail:
| |
Collapse
|
49
|
Pronk CJH, Rossi DJ, Månsson R, Attema JL, Norddahl GL, Chan CKF, Sigvardsson M, Weissman IL, Bryder D. Elucidation of the phenotypic, functional, and molecular topography of a myeloerythroid progenitor cell hierarchy. Cell Stem Cell 2008; 1:428-42. [PMID: 18371379 DOI: 10.1016/j.stem.2007.07.005] [Citation(s) in RCA: 471] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 06/11/2007] [Accepted: 07/10/2007] [Indexed: 01/26/2023]
Abstract
The major myeloid blood cell lineages are generated from hematopoietic stem cells by differentiation through a series of increasingly committed progenitor cells. Precise characterization of intermediate progenitors is important for understanding fundamental differentiation processes and a variety of disease states, including leukemia. Here, we evaluated the functional in vitro and in vivo potentials of a range of prospectively isolated myeloid precursors with differential expression of CD150, Endoglin, and CD41. Our studies revealed a hierarchy of myeloerythroid progenitors with distinct lineage potentials. The global gene expression signatures of these subsets were consistent with their functional capacities, and hierarchical clustering analysis suggested likely lineage relationships. These studies provide valuable tools for understanding myeloid lineage commitment, including isolation of an early erythroid-restricted precursor, and add to existing models of hematopoietic differentiation by suggesting that progenitors of the innate and adaptive immune system can separate late, following the divergence of megakaryocytic/erythroid potential.
Collapse
Affiliation(s)
- Cornelis J H Pronk
- Lund Strategic Research Center for Stem Cell Biology and Cell Therapy, Lund University, BMC I13, 221 84 Lund, Sweden; Immunology Unit, Institution for Experimental Medical Science, Lund University, BMC I13, 221 84 Lund, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Porter RL, Calvi LM. Communications between bone cells and hematopoietic stem cells. Arch Biochem Biophys 2008; 473:193-200. [PMID: 18410740 DOI: 10.1016/j.abb.2008.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 03/31/2008] [Accepted: 04/01/2008] [Indexed: 12/28/2022]
Abstract
The skeletal system, while characterized by a hard tissue component, is in fact an extraordinarily dynamic system, with disparate functions ranging from structural support, movement and locomotion and soft-organ protection, to the maintenance of calcium homeostasis. Amongst these functions, it has long been known that mammalian bones house definitive hematopoiesis. In fact, several data demonstrate that the bone microenvironment provides essential regulatory cues to the hematopoietic system. In particular, interactions between the bone-forming cells, or osteoblasts, and the most primitive Hematopoietic Stem Cells (HSC) have recently been defined. This review will focus mainly on the role of osteoblasts as HSC regulatory cells, discussing the signaling mechanisms and molecules currently thought to be involved in their modulation of HSC behavior. We will then review additional cellular components of the HSC niche, including endothelial cells and osteoclasts. Finally, we will discuss the potential clinical implications of our emerging understanding of the complex HSC microenvironment.
Collapse
Affiliation(s)
- R L Porter
- Endocrine-Metabolism Division, Department of Medicine, University of Rochester School of Medicine and Dentistry, P.O. Box 693, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|