1
|
Korbelik M. Photodynamic Therapy Supported by Antitumor Lipids. Pharmaceutics 2023; 15:2723. [PMID: 38140064 PMCID: PMC10747669 DOI: 10.3390/pharmaceutics15122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Photodynamic therapy (PDT) destroys tumors by generating cytotoxic oxidants that induce oxidative stress in targeted cancer cells. Antitumor lipids developed for cancer therapy act also by inflicting similar stress. The present study investigated whether tumor response to PDT can be improved by adjuvant treatment with such lipids using the prototype molecule edelfosine. Cellular stress intensity following Photofrin-based PDT, edelfosine treatment, or their combination was assessed by the expression of heat shock protein 70 (HSP70) on the surface of treated SCCVII tumor cells by FITC-conjugated anti-HSP70 antibody staining and flow cytometry. Surface HSP70 levels that became elevated after either PDT or edelfosine rose much higher after their combined treatment. The impact of Photofrin-PDT-plus-edelfosine treatment was studied with three types of tumor models grown in syngeneic mice. With both SCCVII squamous cell carcinomas and MCA205 fibrosarcoma, the greatest impact was with edelfosine peritumoral injection at 24 h after PDT, which substantially improved tumor cure rates. With Lewis lung carcinomas, edelfosine was highly effective in elevating PDT-mediated tumor cure rates even when injected peritumorally immediately after PDT. Edelfosine used before PDT was ineffective as adjuvant with all tumor models. The study findings provide proof-in-principle for use of cancer lipids with tumor PDT.
Collapse
Affiliation(s)
- Mladen Korbelik
- Department of Integrative Oncology, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| |
Collapse
|
2
|
Membrane-Associated Heat Shock Proteins in Oncology: From Basic Research to New Theranostic Targets. Cells 2020; 9:cells9051263. [PMID: 32443761 PMCID: PMC7290778 DOI: 10.3390/cells9051263] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock proteins (HSPs) constitute a large family of conserved proteins acting as molecular chaperones that play a key role in intracellular protein homeostasis, regulation of apoptosis, and protection from various stress factors (including hypoxia, thermal stress, oxidative stress). Apart from their intracellular localization, members of different HSP families such as small HSPs, HSP40, HSP60, HSP70 and HSP90 have been found to be localized on the plasma membrane of malignantly transformed cells. In the current article, the role of membrane-associated molecular chaperones in normal and tumor cells is comprehensively reviewed with implications of these proteins as plausible targets for cancer therapy and diagnostics.
Collapse
|
3
|
Hromadnikova I, Li S, Kotlabova K, Dickinson AM. Influence of In Vitro IL-2 or IL-15 Alone or in Combination with Hsp 70 Derived 14-Mer Peptide (TKD) on the Expression of NK Cell Activatory and Inhibitory Receptors on Peripheral Blood T Cells, B Cells and NKT Cells. PLoS One 2016; 11:e0151535. [PMID: 26982331 PMCID: PMC4794217 DOI: 10.1371/journal.pone.0151535] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/28/2016] [Indexed: 11/26/2022] Open
Abstract
Previous studies from Multhoff and colleagues reported that plasma membrane Hsp70 acts as a tumour-specific recognition structure for activated NK cells, and that the incubation of NK cells with Hsp70 and/or a 14-mer peptide derived from the N-terminal sequence of Hsp70 (TKDNNLLGRFELSG, TKD, aa 450–463) plus a low dose of IL-2 triggers NK cell proliferation and migration, and their capacity to kill cancer cells expressing membrane Hsp70. Herein, we have used flow cytometry to determine the influence of in vitro stimulation of peripheral blood mononuclear cells from healthy individuals with IL-2 or IL-15, either alone or in combination with TKD peptide on the cell surface expression of CD94, NK cell activatory receptors (CD16, NK2D, NKG2C, NKp30, NKp44, NKp46, NKp80, KIR2DL4, DNAM-1 and LAMP1) and NK cell inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2 and NKR-P1A) by CD3+CD56+ (NKT), CD3+CD4+, CD3+CD8+ and CD19+ populations. NKG2D, DNAM-1, LAMP1 and NKR-P1A expression was upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD in NKT, CD8+ T cells and B cells. CD94 was upregulated in NKT and CD8+ T cells. Concurrently, an increase in a number of CD8+ T cells expressing LIR1/ILT-2 and CD4+ T cells positive for NKR-P1A was observed. The proportion of CD8+ T cells that expressed NKG2D was higher after IL-2/TKD treatment, when compared with IL-2 treatment alone. In comparison with IL-15 alone, IL-15/TKD treatment increased the proportion of NKT cells that were positive for CD94, LAMP1 and NKRP-1A. The more potent effect of IL-15/TKD on cell surface expression of NKG2D, LIR1/ILT-2 and NKRP-1A was observed in B cells compared with IL-15 alone. However, this increase was not of statistical significance. IL-2/TKD induced significant upregulation of LAMP1 in CD8+ T cells compared with IL-2 alone. Besides NK cells, other immunocompetent cells present within the fraction of peripheral blood mononuclear cells were influenced by the treatment with low-dose interleukins themselves or in combination with hsp70 derived (TKD) peptide.
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Ruska 87, 10 000 Prague 10, Czech Republic
- * E-mail:
| | - Shuang Li
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Ruska 87, 10 000 Prague 10, Czech Republic
| | - Katerina Kotlabova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University, Prague, Ruska 87, 10 000 Prague 10, Czech Republic
| | - Anne M. Dickinson
- Haematological Sciences, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
4
|
Gehrmann MK, Kimm MA, Stangl S, Schmid TE, Noël PB, Rummeny EJ, Multhoff G. Imaging of Hsp70-positive tumors with cmHsp70.1 antibody-conjugated gold nanoparticles. Int J Nanomedicine 2015; 10:5687-700. [PMID: 26392771 PMCID: PMC4572731 DOI: 10.2147/ijn.s87174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Real-time imaging of small tumors is still one of the challenges in cancer diagnosis, prognosis, and monitoring of clinical outcome. Targeting novel biomarkers that are selectively expressed on a large variety of different tumors but not normal cells has the potential to improve the imaging capacity of existing methods such as computed tomography. Herein, we present a novel technique using cmHsp70.1 monoclonal antibody-conjugated spherical gold nanoparticles for quantification of the targeted uptake of gold nanoparticles into membrane Hsp70-positive tumor cells. Upon binding, cmHsp70.1-conjugated gold nanoparticles but not nanoparticles coupled to an isotype-matched IgG1 antibody or empty nanoparticles are rapidly taken up by highly malignant Hsp70 membrane-positive mouse tumor cells. After 24 hours, the cmHsp70.1-conjugated gold nanoparticles are found to be enriched in the perinuclear region. Specificity for membrane Hsp70 was shown by using an Hsp70 knockout tumor cell system. Toxic side effects of the cmHsp70.1-conjugated nanoparticles are not observed at a concentration of 1–10 µg/mL. Experiments are ongoing to evaluate whether cmHsp70.1 antibody-conjugated gold nanoparticles are suitable for the detection of membrane-Hsp70-positive tumors in vivo.
Collapse
Affiliation(s)
- Mathias K Gehrmann
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Melanie A Kimm
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Peter B Noël
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
5
|
Murakami N, Kühnel A, Schmid TE, Ilicic K, Stangl S, Braun IS, Gehrmann M, Molls M, Itami J, Multhoff G. Role of membrane Hsp70 in radiation sensitivity of tumor cells. Radiat Oncol 2015. [PMID: 26197988 PMCID: PMC4511458 DOI: 10.1186/s13014-015-0461-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The major stress-inducible heat shock protein 70 (Hsp70) is frequently overexpressed in the cytosol and integrated in the plasma membrane of tumor cells via lipid anchorage. Following stress such as non-lethal irradiation Hsp70 synthesis is up-regulated. Intracellular located Hsp70 is known to exert cytoprotective properties, however, less is known about membrane (m)Hsp70. Herein, we investigate the role of mHsp70 in the sensitivity towards irradiation in tumor sublines that differ in their cytosolic and/or mHsp70 levels. METHODS The isogenic human colon carcinoma sublines CX(+) with stable high and CX(-) with stable low expression of mHsp70 were generated by fluorescence activated cell sorting, the mouse mammary carcinoma sublines 4 T1 (4 T1 ctrl) and Hsp70 knock-down (4 T1 Hsp70 KD) were produced using the CRISPR/Cas9 system, and the Hsp70 down-regulation in human lung carcinoma sublines H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD was achieved by small interfering (si)RNA against Heat shock factor 1 (HSF-1). Cytosolic and mHsp70 was quantified by Western blot analysis/ELISA and flow cytometry; double strand breaks (DSBs) and apoptosis were measured by flow cytometry using antibodies against γH2AX and real-time PCR (RT-PCR) using primers and antibodies directed against apoptosis related genes; and radiation sensitivity was determined using clonogenic cell surviving assays. RESULTS CX(+)/CX(-) tumor cells exhibited similar cytosolic but differed significantly in their mHsp70 levels, 4 T1 ctrl/4 T1 Hsp70 KD cells showed significant differences in their cytosolic and mHsp70 levels and H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/EPLC-272H HSF-1 KD lung carcinoma cell sublines had similar mHsp70 but significantly different cytosolic Hsp70 levels. γH2AX was significantly up-regulated in irradiated CX(-) and 4 T1 Hsp70 KD with low basal mHsp70 levels, but not in their mHsp70 high expressing counterparts, irrespectively of their cytosolic Hsp70 content. After irradiation γH2AX, Caspase 3/7 and Annexin V were up-regulated in the lung carcinoma sublines, but no significant differences were observed in H1339 ctrl/H1339 HSF-1 KD, and EPLC-272H ctrl/EPLC-272H HSF-1 KD that exhibit identical mHsp70 but different cytosolic Hsp70 levels. Clonogenic cell survival was significantly lower in CX(-) and 4 T1 Hsp70 KD cells with low mHsp70 expression, than in CX+ and 4 T1 ctrl cells, whereas no difference in clonogenic cell survival was observed in H1339 ctrl/H1339 HSF-1 KD and EPLC-272H ctrl/ EPLC-272H HSF-1 KD sublines with identical mHsp70 but different cytosolic Hsp70 levels. CONCLUSION In summary, our results indicate that mHsp70 has an impact on radiation resistance.
Collapse
Affiliation(s)
- Naoya Murakami
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany.,Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Annett Kühnel
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Thomas E Schmid
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Katarina Ilicic
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan Stangl
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Isabella S Braun
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Mathias Gehrmann
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Michael Molls
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Jun Itami
- Department of Radiation Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany. .,Clinical Cooperation Group - Innate Immunity in Tumor Biology, Institute of Biomedical Imaging (IBMI), Helmholtz Zentrum München, Munich, Germany.
| |
Collapse
|
6
|
Hromadnikova I, Pirkova P, Sedlackova L. Influence of in vitro IL-2 or IL-15 alone or in combination with Hsp-70-derived 14-mer peptide (TKD) on the expression of NK cell activatory and inhibitory receptors. Mediators Inflamm 2013; 2013:405295. [PMID: 23476104 PMCID: PMC3588175 DOI: 10.1155/2013/405295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 01/14/2013] [Indexed: 12/11/2022] Open
Abstract
NK cells represent a potential tool for adoptive immunotherapy against tumors. Membrane-bound Hsp70 acts as a tumor-specific marker enhancing NK cell activity. Using flow cytometry the effect of in vitro stimulation with IL-2 or IL-15 alone or in combination with Hsp70-derived 14-mer peptide (TKD) on cell surface expression of NK activatory receptors (CD16, NKG2D, NKG2C, NKp46, NKp44, NKp30, KIR2DL4, DNAM-1, and LAMP1) and NK inhibitory receptors (NKG2A, KIR2DL2/L3, LIR1/ILT-2, and NKR-P1A) in healthy individuals was studied. Results were expressed as the percentage of receptor expressing cells and the amount of receptor expressed by CD3(-)CD56(+) cellular population. CD94, NKG2D, NKp44, NKp30, KIR2DL4, DNAM-1, LAMP1, NKG2A, and NKR-P1A were upregulated after the stimulation with IL-2 or IL-15 alone or in combination with TKD. KIR2DL2/L3 was upregulated only by IL-15 and IL-15/TKD. Concurrently, an increase in a number of NK cells positive for CD94, NKp44, NKp30, KIR2DL4, and LAMP1 was observed. IL-15 and IL-15/TKD caused also cell number rise positive for KIR2DL2/L3 and NKR-P1A. Cell number positive for NKG2C and NKG2A was increased only by IL-2 and IL-2/TKD. The diverse effect of IL-2 or IL-15 w or w/o TKD on cell surface expression was observed in CD16, NKp46, and LIR1/ILT-2.
Collapse
MESH Headings
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cells, Cultured
- HSP70 Heat-Shock Proteins/chemistry
- Humans
- Interleukin-15/pharmacology
- Interleukin-2/pharmacology
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/metabolism
- Leukocytes, Mononuclear/drug effects
- Leukocytes, Mononuclear/metabolism
- Lysosomal Membrane Proteins/metabolism
- NK Cell Lectin-Like Receptor Subfamily B/metabolism
- NK Cell Lectin-Like Receptor Subfamily C/metabolism
- NK Cell Lectin-Like Receptor Subfamily K/metabolism
- Natural Cytotoxicity Triggering Receptor 1/metabolism
- Natural Cytotoxicity Triggering Receptor 2/metabolism
- Natural Cytotoxicity Triggering Receptor 3/metabolism
- Peptides/chemistry
- Peptides/pharmacology
- Receptors, IgG/metabolism
- Receptors, KIR2DL2
- Receptors, KIR2DL4/metabolism
Collapse
Affiliation(s)
- Ilona Hromadnikova
- Department of Molecular Biology and Cell Pathology, Third Faculty of Medicine, Charles University in Prague, Ruska 87, 100 00 Prague, Czech Republic.
| | | | | |
Collapse
|
7
|
Milani V, Stangl S, Issels R, Gehrmann M, Wagner B, Hube K, Mayr D, Hiddemann W, Molls M, Multhoff G. Anti-tumor activity of patient-derived NK cells after cell-based immunotherapy--a case report. J Transl Med 2009; 7:50. [PMID: 19549307 PMCID: PMC2714296 DOI: 10.1186/1479-5876-7-50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 06/23/2009] [Indexed: 11/10/2022] Open
Abstract
Background Membrane-bound heat shock protein 70 (Hsp70) serves as a tumor-specific recognition structure for Hsp70-peptide (TKD) plus IL-2 activated NK cells. A phase I clinical trial has shown that repeated re-infusions of ex vivo TKD/IL-2-activated, autologous leukapheresis product is safe. This study investigated the maintenance of the cytolytic activity of NK cells against K562 cells and autologous tumor after 6 plus 3 infusions of TKD/IL-2-activated effector cells. Methods A stable tumor cell line was generated from the resected anastomotic relapse of a patient with colon carcinoma (pT3, N2, M0, G2). Two months after surgery, the patient received the first monthly i.v. infusion of his ex vivo TKD/IL-2-activated peripheral blood mononuclear cells (PBMNC). After 6 infusions and a pause of 3 months, the patient received another 3 cell infusions. The phenotypic characteristics and activation status of tumor and effector cells were determined immediately before and at times after each infusion. Results The NK cell ligands Hsp70, MICA/B, and ULBP-1,2,3 were expressed on the patient's anastomotic relapse. An increased density of activatory NK cell receptors following ex vivo stimulation correlated with an enhanced anti-tumoricidal activity. After 4 re-infusion cycles, the intrinsic cytolytic activity of non-stimulated PBMNC was significantly elevated and this heightened responsiveness persisted for up to 3 months after the last infusion. Another 2 re-stimulations with TKD/IL-2 restored the cytolytic activity after the therapeutic pause. Conclusion In a patient with colon carcinoma, repeated infusions of ex vivo TKD/IL-2-activated PBMNC initiate an intrinsic NK cell-mediated cytolytic activity against autologous tumor cells.
Collapse
Affiliation(s)
- Valeria Milani
- Department of Internal Medicine, University Medical Center Grosshadern, Ludwig-Maximilians-Universität München, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Jensen H, Andresen L, Hansen KA, Skov S. Cell-surface expression of Hsp70 on hematopoietic cancer cells after inhibition of HDAC activity. J Leukoc Biol 2009; 86:923-32. [DOI: 10.1189/jlb.0209056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
9
|
Romanova SG, Shtil' AA, Serebrennikova GA. [Synthesis and cytotoxicity of novel phosphorusless analogues of edelfosine]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2008; 34:827-30. [PMID: 19088758 DOI: 10.1134/s1068162008060150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Modified series of phosphorusless edelfosine analogues bearing the polar heads of aliphatic bases, N,N-dimethylethanolamine and N,N,N(1),N(1)-tetramethylethylenediamine, were synthesized, with the length of the spacer varying from three to four methylene units. The cytotoxic characteristics of the compounds synthesized were studied.
Collapse
Affiliation(s)
- S G Romanova
- Lomonosov State Academy of Fine Chemical Technology, pr. Vernadskogo 86, Moscow, 117571 Russia.
| | | | | |
Collapse
|
10
|
Gehrmann M, Radons J, Molls M, Multhoff G. The therapeutic implications of clinically applied modifiers of heat shock protein 70 (Hsp70) expression by tumor cells. Cell Stress Chaperones 2008; 13:1-10. [PMID: 18347936 PMCID: PMC2666213 DOI: 10.1007/s12192-007-0006-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 11/24/2022] Open
Abstract
Evidence that membrane-bound and extracellular heat shock proteins (HSPs) with molecular weights of 70 and 90 kDa are potent stimulators of the immune responses has accumulated over the last decade. In this review, we discuss the modulation of Hsp70 expression, a major stress-inducible member of the HSP70 family, in the cytoplasm and on the plasma membrane of tumor cells by clinically applied interventions such as radio- and chemotherapy.
Collapse
Affiliation(s)
- Mathias Gehrmann
- Department of Radiotherapy and Radiooncology and Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)–Institute of Pathology, Clinical Cooperation Group “Innate Immunity in Tumor Biology”, University Hospital rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - Jürgen Radons
- Institute of Medical Biochemistry and Molecular Biology, University of Greifswald, Clinical Center, Ferdinand-Sauerbruch-Strasse, 17487 Greifswald, Germany
| | - Michael Molls
- Department of Radiotherapy and Radiooncology and Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)–Institute of Pathology, Clinical Cooperation Group “Innate Immunity in Tumor Biology”, University Hospital rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| | - Gabriele Multhoff
- Department of Radiotherapy and Radiooncology and Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH)–Institute of Pathology, Clinical Cooperation Group “Innate Immunity in Tumor Biology”, University Hospital rechts der Isar, Technische Universität München, Ismaningerstr. 22, 81675 Munich, Germany
| |
Collapse
|
11
|
Melendez K, Wallen ES, Edwards BS, Mobarak CD, Bear DG, Moseley PL. Heat shock protein 70 and glycoprotein 96 are differentially expressed on the surface of malignant and nonmalignant breast cells. Cell Stress Chaperones 2007; 11:334-42. [PMID: 17278882 PMCID: PMC1712681 DOI: 10.1379/csc-187.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Heat shock proteins (HSPs), which are important for a number of different intracellular functions, are occasionally found on the surface of cells. The function of heat shock protein on the cell surface is not understood, although it has been shown to be greater in some tumor cells and some virally infected cells. Surface expression of both glycoprotein 96 (gp96) and Hsp70 occurs on tumor cells, and this expression correlates with natural killer cell killing of the cells. We examined the surface expression of gp96 and Hsp70 on human breast cell lines MCF7, MCF10A, AU565, and HS578, and in primary human mammary epithelial cells by immunofluorescence microscopy and flow cytometry. The nonmalignant cell lines HS578, MCF10A, and HMEC showed no surface expression of gp96, whereas malignant cell lines MCF7 and AU565 were positive for gp96 surface expression. All of the breast cell lines examined showed Hsp70 surface expression. These results also confirm previous studies, demonstrating that Hsp70 is on the plasma membrane of tumor cell lines. Given the involvement of heat shock proteins, gp96 and Hsp70, in innate and adaptive immunity, these observations may be important in the immune response to tumor cells.
Collapse
Affiliation(s)
- Karla Melendez
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | | | | | | | | | | |
Collapse
|
12
|
Milani V, Noessner E. Effects of thermal stress on tumor antigenicity and recognition by immune effector cells. Cancer Immunol Immunother 2006; 55:312-9. [PMID: 16151807 PMCID: PMC11030255 DOI: 10.1007/s00262-005-0052-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Accepted: 06/21/2005] [Indexed: 12/26/2022]
Abstract
The primary rationale for the application of clinical hyperthermia in the therapy of cancer is based on the direct cytotoxic effect of heat and the radio-chemosensitization of tumor cells. More recently, additional attention is given to the observation that heat and heat-shock proteins can activate the host's immune system. The expression of heat-shock genes and proteins provides an adaptive mechanism for stress tolerance, allowing cells to survive non-physiologic conditions. However, the same adaptive mechanism can ultimately favor malignant transformation by interfering with pathways that regulate cell growth and apoptosis. Cytoprotection and thermotolerance raised the concern that heat-treated tumor cells might also be resistant to attack by immune effector mechanisms. Many studies, including those from our group, address this concern and document that heat-exposure, although transiently modulating sensitivity to CTL, do not hinder CTL attack. Moreover, there are promising reports of heat-related upregulation of NK-activating ligands, rendering those tumors which have lost MHC class I molecules target for NK cell attack. Heat-induced cytoprotection, therefore, does not necessarily extend protection from cytotoxic immune mechanisms. When interpreting the effects of heat, it is important to keep in mind that thermal effects on cell physiology are strongly dependent on the thermal dose, which is a function of the magnitude of change in temperature and the duration of heat exposure. The thermal dose required to induce cell death in vitro strongly varies from cell type to cell type and depends on microenvironmental factors (Dewey 1994). Therefore, to dissect the immunological behaviour of a given tumor and its micro-environment at different thermal doses, it is essential to characterize the thermosensitivity of every single tumor type and assess the proportion of cells surviving a given heat treatment. In this review, we summarize the pleiotropic effects that heat exposure has on tumor cells. In particular, we focus on the effects of heat on the antigen presentation of tumor cells and their susceptibility to immune effector mechanisms. We emphasize that the response to thermal stress is not a one-time point event, but rather a time period starting with the heat exposure and extending over several days of recovery. In addition, the response of tumor cells and their susceptibility to immune effector cells is strongly dependent on the model system, on the magnitude and duration of the thermal stress and on the time of recovery after heat exposure. Consideration of these aspects might help to explain some of the conflicting results that are reported in the field of thermal stress response.
Collapse
Affiliation(s)
- Valeria Milani
- Clinical Cooperation Group on Hyperthermia, Internal Medicine Department III, Klinikum Grosshadern, Ludwig-Maximilians-University, Marchioninistrasse 15, 81377, Munich, Germany.
| | | |
Collapse
|
13
|
Gehrmann M, Marienhagen J, Eichholtz-Wirth H, Fritz E, Ellwart J, Jäättelä M, Zilch T, Multhoff G. Dual function of membrane-bound heat shock protein 70 (Hsp70), Bag-4, and Hsp40: protection against radiation-induced effects and target structure for natural killer cells. Cell Death Differ 2005; 12:38-51. [PMID: 15592361 DOI: 10.1038/sj.cdd.4401510] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
CX+/CX- and Colo+/Colo- tumor sublines with stable heat shock protein 70 (Hsp70) high and low membrane expression were generated by fluorescence activated cell sorting of the parental human colon (CX2) and pancreas (Colo357) carcinoma cell lines, using an Hsp70-specific antibody. Two-parameter flow cytometry revealed that Hsp70 colocalizes with Bag-4, also termed silencer of death domain, not only in the cytosol but also on the plasma membrane. After nonlethal gamma-irradiation, the percentage of membrane-positive cells and the protein density of Hsp70 and Bag-4 were found to be strongly upregulated in carcinoma sublines with initially low expression levels (CX-, Colo-). Membrane expression of Hsp70 was also elevated in Bag-4 overexpressing HeLa cervix carcinoma cells when compared to neo-transfected cells. In response to gamma-irradiation, neo-transfected HeLa cells behaved like Hsp70/Bag-4 low-expressing CX- and Colo-, and Bag-4-transfected HeLa cells like Hsp70/Bag-4 high-expressing carcinoma sublines CX+ and Colo+. Immunoprecipitation studies further confirmed colocalization of Hsp70 and Bag-4 but also point to an association of Hsp70 and Hsp40 on the plasma membrane of CX+ and Colo+ cells; on CX- and Colo- tumor sublines, Hsp40 was detectable in the absence of Hsp70 and Bag-4. Other co-chaperones including Hsp60 and Hsp90 were neither found on the cell surface of CX+/CX-, Colo+/Colo- nor on HeLa neo-/HeLa Bag-4-transfected tumor cells. Functionally, Hsp70/Bag-4 and Hsp70/Hsp40 membrane-positive tumor cells appeared to be better protected against radiation-induced effects, including G2/M arrest and growth inhibition, on the one hand. On the other hand, membrane-bound Hsp70, but neither Bag-4 nor Hsp40, served as a recognition site for the cytolytic attack mediated by natural killer cells.
Collapse
Affiliation(s)
- M Gehrmann
- Department of Hematology and Internistic Oncology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, 93053 Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Korbelik M, Sun J, Cecic I. Photodynamic Therapy–Induced Cell Surface Expression and Release of Heat Shock Proteins: Relevance for Tumor Response. Cancer Res 2005. [DOI: 10.1158/0008-5472.1018.65.3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Almost instantaneously after the treatment of mouse SCCVII tumor cells with Photofrin-based photodynamic therapy (PDT), a fraction (15-25%) of total cellular heat shock protein 70 (HSP70) became exposed at the cell surface. The level of this surface-expressed HSP70 then remained unchanged for the next 6 hours and persisted at lower levels even at 18 hours after PDT. A similar induction of surface HSP70 expression was found with PDT-treated human umbilical vein endothelial cells. The same analysis for several other HSPs revealed the induced surface expression of HSP60 and GRP94, but not GRP78, on PDT-treated SCCVII cells. A fraction of total HSP70 existing in SCCVII cells at the time of PDT treatment was promptly (within 1 hour) released from cells after high treatment doses, whereas even lower PDT doses induced a substantial HSP70 release at later time intervals. Macrophages coincubated with PDT-treated SCCVII cells displayed elevated levels of both HSP70 and GRP94 on their surface and were stimulated to produce tumor necrosis factor α, whose production was inhibited by the presence of antibodies against either HSP70, Toll-like receptors 2 and 4, or specific NF-κB inhibitor in the coincubation medium. The induction of cell surface expression and release of HSPs by PDT may represent an important event in the response of tumors to this treatment modality with a critical role in the induced inflammatory and immune responses that contribute to the therapeutic outcome.
Collapse
Affiliation(s)
- Mladen Korbelik
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Jinghai Sun
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Ivana Cecic
- British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Gehrmann M, Schönberger J, Zilch T, Rossbacher L, Thonigs G, Eilles C, Multhoff G. Retinoid- and sodium-butyrate-induced decrease in heat shock protein 70 membrane-positive tumor cells is associated with reduced sensitivity to natural killer cell lysis, growth delay, and altered growth morphology. Cell Stress Chaperones 2005; 10:136-46. [PMID: 16038410 PMCID: PMC1176472 DOI: 10.1379/csc-88r1.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/11/2005] [Accepted: 02/17/2005] [Indexed: 11/24/2022] Open
Abstract
Human tumors frequently present heat shock protein 70 (Hsp70) on their cell membranes, whereas corresponding normal tissues fail to do so. Therefore, an Hsp70 membrane-positive phenotype provided a tumor-specific marker. Moreover, membrane-bound Hsp70 provides a target structure for the cytolytic attack mediated by natural killer (NK) cells. Vitamin A derivatives 13-cis retinoic acid (13-RA) and all-trans retinoic acid (ATRA) and sodium-butyrate (SBU) are known for their redifferentiating capacity. Therefore, we asked the question whether loss in tumorigenicity might be associated with a reduced Hsp70 membrane expression. For our studies we used epithelial colon (CX+/CX-) and thyroid (ML-1) cancer cells, with initially different Hsp70 cell surface expression pattern. After treatment up to 7 weeks with freshly prepared 13-RA, ATRA, and SBU at nonlethal concentrations of 10 microM, 1 microM, and 0.5 mM, respectively, growth morphology, Hsp70 levels, and sensitivity toward Hsp70-specific NK cells were compared with that of untreated tumor cells. Significant growth delay was determined in CX+ tumor cells after 6 weeks treatment with 13-RA. Concomitantly, growth morphology changed from spheroid cell clusters to monolayers. Despite a weak increase in cytosolic Hsp70, the percentage of Hsp70 membrane-positive cells dropped significantly after repeated treatments with 13-RA and ATRA in CX+ and ML-1 but not in CX- tumor cells. Similar results were observed with SBU. Functionally, the decrease in Hsp70 membrane-positive CX+ and ML-1 cells correlated with a reduced sensitivity to lysis mediated by NK cells. In summary, redifferentiating agents predominantly affected Hsp70 membrane-positive tumors. The decrease in Hsp70 membrane positivity correlated with a lower sensitivity to NK lysis, growth delay, and altered growth morphology.
Collapse
Affiliation(s)
- Mathias Gehrmann
- Department of Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, D-93053 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Geromin D, Bourge JF, Soulié A, Pawliuk R, Fleet C, Michel E, Denizot Y, Berthou C, Leboulch P, Sigaux F, Sasportes M. Glycoprotein 170 induces platelet-activating factor receptor membrane expression and confers tumor cell hypersensitivity to NK-dependent cell lysis. THE JOURNAL OF IMMUNOLOGY 2004; 172:3604-11. [PMID: 15004162 DOI: 10.4049/jimmunol.172.6.3604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Multidrug resistance (MDR) confers resistance to anticancer drugs and reduces therapeutic efficiency. It is often characterized by the expression of the MDR1 gene product P-glycoprotein (or gp170) at the membrane of tumor cells. To further propose a potential complementary tool in cancer treatment, the sensitivity of gp170 tumor cells to NK-dependent lysis was investigated. Two kinds of cells were generated from wild-type K562 erythroleukemic cells: the first were derived from Taxol-selected cells and cloned, whereas the second were retrovirally transduced by the cDNA of the MDR1 gene. The last process was also applied to the human embryonal carcinoma cells called Tera-2 cells. First, both cloned and MDR-1 K562 cells appeared highly susceptible to naive NK cell killing. Interestingly, in addition, Tera-2 cells that were not sensitive to NK lysis could be killed when they expressed gp170 at their membranes. In previous data, we demonstrated that NK cell release of bimolecular complexes composed of perforin and platelet-activating factor (PAF) interacting with the PAF-R, which has to be expressed on the target cell membranes, were components of NK tumor cell killing. In the present study, we show that gp170 has the capacity to drive constitutive PAF-R expression on tumor cells, which could be responsible for hypersensitivity to NK lysis and accelerated cell death.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B
- Carcinoma, Embryonal/immunology
- Carcinoma, Embryonal/metabolism
- Carcinoma, Embryonal/pathology
- Cell Line, Tumor
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cell Membrane/pathology
- Clone Cells
- Cytotoxicity, Immunologic/drug effects
- Drug Resistance, Neoplasm/immunology
- Genes, MDR/immunology
- Glycoproteins/biosynthesis
- Glycoproteins/physiology
- Humans
- Hydrogen-Ion Concentration
- K562 Cells
- Killer Cells, Natural/drug effects
- Killer Cells, Natural/immunology
- Leukemia, Erythroblastic, Acute/immunology
- Leukemia, Erythroblastic, Acute/metabolism
- Leukemia, Erythroblastic, Acute/pathology
- Paclitaxel/pharmacology
- Platelet Activating Factor/metabolism
- Platelet Membrane Glycoproteins/biosynthesis
- Receptors, G-Protein-Coupled/biosynthesis
- Retroviridae/genetics
- Teratoma/immunology
- Teratoma/metabolism
- Teratoma/pathology
- Transduction, Genetic
- Transfection
Collapse
Affiliation(s)
- Daniela Geromin
- Institut National de la Santé et de la Recherche Médicale, Unité 462, Hôpital Saint Louis, Paris, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Gehrmann M, Brunner M, Pfister K, Reichle A, Kremmer E, Multhoff G. Differential Up-Regulation of Cytosolic and Membrane-Bound Heat Shock Protein 70 in Tumor Cells by Anti-Inflammatory Drugs. Clin Cancer Res 2004; 10:3354-64. [PMID: 15161689 DOI: 10.1158/1078-0432.ccr-03-0382] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Modulation of the heat shock protein (HSP) response affects sensitivity to therapeutic agents in cancer. Here, drugs with anti-inflammatory potential (cyclooxygenase 1/2 inhibitors) and peroxidase proliferator-activated receptor-gamma agonists were analyzed for their capacity to affect Hsp70 expression in human cancer cells with a divergent Hsp70 membrane expression pattern. EXPERIMENTAL DESIGN In dose kinetics, the nonlethal concentration of acetyl-salicyl acid, celecoxib, rofecoxib, and the insulin-sensitizer pioglitazone was identified for the human adenocarcinoma cell line CX-. With the exception of CLX, which was diluted in DMSO, all reagents were dissolved in water. After treatment with the different compounds at nontoxic concentrations for 6 h, followed by a 1-h recovery period, the cytosolic Hsp70 levels were measured in CX-2 and CX- tumor cells by Western blot analysis. Fold increase was calculated in relation to the housekeeping protein tubulin. Membrane-bound Hsp70 was analyzed by flow cytometry using a FITC-labeled Hsp70-specific monoclonal antibody. Untreated cells and cells incubated with equivalent amounts of the diluting agents served as controls. The immunological function was tested in granzyme B apoptosis assays, standard (51)Cr release assays, and antibody blocking studies. RESULTS Compared with aqua dest, the cytoplasmic amount of Hsp70 was equally enhanced in CX-2 and CX- cells by all compounds. An increase in membrane-bound Hsp70, detected selectively in CX- cells, corresponded to an enhanced sensitivity to granzyme B- and natural killer cell-mediated kill that was blockable by using a Hsp70-specific antibody. CONCLUSIONS Although increase in cytosolic Hsp70 levels conferred resistance to further stress, membrane-bound Hsp70 rendered tumor cells more sensitive to the immunological attack mediated by granzyme B and natural killer cells. Our data provide a biological rational for combining anti-inflammatory drugs with immunotherapy in cancer therapy.
Collapse
Affiliation(s)
- Mathias Gehrmann
- Department of Hematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G. Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 2003; 278:41173-81. [PMID: 12874291 DOI: 10.1074/jbc.m302644200] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface-bound heat shock protein 70 (Hsp70) renders tumor cells more sensitive to the cytolytic attack mediated by natural killer (NK) cells. A 14-amino acid Hsp70 sequence, termed TKD (TKDNNLLGRFELSG, aa450-463) could be identified as the extracellular localized recognition site for NK cells. Here, we show by affinity chromatography that both, full-length Hsp70-protein and Hsp70-peptide TKD, specifically bind a 32-kDa protein derived from NK cell lysates. The serine protease granzyme B was uncovered as the 32-kDa Hsp70-interacting protein using matrix-assisted laser desorption ionization time-of-flight mass peptide fingerprinting. Incubation of tumor cells with increasing concentrations of perforin-free, isolated granzyme B shows specific binding and uptake in a dose-dependent manner and results in initiation of apoptosis selectively in tumor cells presenting Hsp70 on the cell surface. Remarkably, Hsp70 cation channel activity was also determined selectively in purified phospholipid membranes of Hsp70 membrane-positive but not in membrane-negative tumor cells. The physiological role of our findings was demonstrated in primary NK cells showing elevated cytoplasmic granzyme B levels following contact with TKD. Furthermore, an increased lytic activity of Hsp70 membrane-positive tumor cells could be associated with granzyme B release by NK cells. Taken together we propose a novel perforin-independent, granzyme B-mediated apoptosis pathway for Hsp70 membrane-positive tumor cells.
Collapse
Affiliation(s)
- Catharina Gross
- University Hospital Regensburg, Department of Hematology, 93053 Regensburg, Germany
| | | | | | | | | |
Collapse
|
19
|
Gehrmann M, Pfister K, Hutzler P, Gastpar R, Margulis B, Multhoff G. Effects of antineoplastic agents on cytoplasmic and membrane-bound heat shock protein 70 (Hsp70) levels. Biol Chem 2002; 383:1715-25. [PMID: 12530536 DOI: 10.1515/bc.2002.192] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Here we report on the study of the effects of different antineoplastic agents, including cytarabine, 4-hydroperoxyifosfamide, the activated form of ifosfamide, vincristine, and paclitaxel, with regard to their capacity to modulate the amount of cytoplasmic and membrane-bound heat shock protein 70 (Hsp70). Hsp70 levels were measured in the myelogenous leukemic cell line K562, in the human colon carcinoma cell line CX2, and in peripheral blood lymphocytes (PBL) under physiological conditions (37 degrees C), and following non-lethal heat shock at 41.8 degrees C. A concentration of 1 microM and an incubation period of 2 h were determined as non-lethal, since none of the different antineoplastic agents induced necrosis or apoptosis in untreated or heat-shocked cells under these conditions. Our results show that tubulin-interacting agents, including vincristine and paclitaxel, but not DNA-interacting agents, including cytarabine and ifosfamide, selectively increase the amount of cytoplasmic Hsp70 in tumor and normal cells, as measured by semi-quantitative Western blot analysis. Mechanistically, a vincristine- and paclitaxel-induced tubulin assembly, as demonstrated by immunofluorescence microscopy, might be responsible for the elevated cytoplasmic Hsp70 levels. Interestingly, an increased membrane expression of Hsp70 following treatment with vincristine or paclitaxel was selectively observed on tumor cells, but not on normal cells.
Collapse
Affiliation(s)
- Mathias Gehrmann
- Department of Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauss Allee 11, D-93053 Regensburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Feng H, Zeng Y, Whitesell L, Katsanis E. Stressed apoptotic tumor cells express heat shock proteins and elicit tumor-specific immunity. Blood 2001; 97:3505-12. [PMID: 11369644 DOI: 10.1182/blood.v97.11.3505] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In attempting to develop effective anticancer immunotherapies, the relative ability of apoptotic cells to induce an immune response remains an important but controversial consideration. A novel gene-transfer approach was used by which rapid induction of pure apoptosis can be selectively achieved in a transfected tumor cell population following exposure to a semisynthetic dimerizing ligand, AP20187. Inoculation of BALB/c mice with apoptotic and viable 12B1-D1 leukemia cells, at a 12:1 ratio subcutaneously, led to early tumor growth. Heat stress up-regulated the expression of membrane heat shock proteins (HSP72 and HSP60) on apoptotic 12B1-D1 cells, and stressed apoptotic cells were capable of generating a T-cell–mediated specific antitumor response. Pulsing of stressed apoptotic leukemia cells onto syngeneic dendritic cells resulted largely in rejection of coinjected viable 12B1-D1 cells. Mice rejecting the primary 12B1-D1 inoculum were immune to the same but not to a different leukemia challenge. Our findings indicate that tumor immunogenicity is dependent on whether cells are stressed before apoptosis induction and suggest that the immune system is capable of distinguishing between stressed and nonstressed cells undergoing programmed cell death.
Collapse
Affiliation(s)
- H Feng
- Department of Pediatrics, Steele Memorial Children's Research Center, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
21
|
Ibrahim EC, Morange M, Dausset J, Carosella ED, Paul P. Heat shock and arsenite induce expression of the nonclassical class I histocompatibility HLA-G gene in tumor cell lines. Cell Stress Chaperones 2001. [PMID: 11005379 DOI: 10.1379/1466-1268(2000)005<0207:hsaaie>2.0.co;2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nonclassical histocompatibility class I gene HLA-G has a tissue-restricted expression. To explore mechanisms involved in HLA-G transcriptional regulation, we have investigated the effect of stress, including heat shock and arsenite treatment, on HLA-G expression in tumor cell lines. We show that stress induces an increase of the level of the different HLA-G alternative transcripts without affecting other MHC class I HLA-A, -B, -E, and -F transcripts. A heat shock element (HSE) that binds to heat shock factor 1 (HSF1) on stress conditions was further identified within the HLA-G promoter. Considering the ability of HLA-G to modulate the function of immunocompetent cells, we hypothesize a new feature of HLA-G as a signal regulating the immune response to stress.
Collapse
Affiliation(s)
- E C Ibrahim
- CEA, Service de Recherches en Hémato-Immunologie, DSV/DRM, Hôpital Saint-Louis, Centre Hayem, Paris, France
| | | | | | | | | |
Collapse
|
22
|
Rabinovich BA, Shannon J, Su RC, Miller RG. Stress renders T cell blasts sensitive to killing by activated syngeneic NK cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2390-7. [PMID: 10946262 DOI: 10.4049/jimmunol.165.5.2390] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Exposure of primary T cell blasts to stress in the forms of heat, hydrogen peroxide, or high-density growth conditions resulted in a state of enhanced susceptibility to killing by syngeneic IL-2-activated NK cells or lymphokine-activated killer cells, but not to killing by CTL. Cytotoxicity was perforin mediated and was not due to decreased target expression of total MHC class I. The levels of stress used had little effect on cell viability. For thermal stress, sensitization increased with temperature, required a minimum exposure time, and disappeared when cells were given a long enough recovery time. Our data support a model that predicts that activated NK cells play a role in the immunosurveillance of nontransformed stressed cells in normal animals.
Collapse
MESH Headings
- Animals
- Binding, Competitive
- Cell Count
- Cells, Cultured
- Cytotoxicity Tests, Immunologic/methods
- Cytotoxicity, Immunologic
- H-2 Antigens/immunology
- H-2 Antigens/metabolism
- Histocompatibility Testing
- Hot Temperature
- Immunity, Innate
- Interleukin-2/pharmacology
- Isoantigens/immunology
- Killer Cells, Natural/immunology
- Lymphocyte Activation
- Male
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Nude
- Oxidative Stress/immunology
- Peptides/immunology
- Perforin
- Pore Forming Cytotoxic Proteins
- Stress, Physiological/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes, Cytotoxic/immunology
- Temperature
- Time Factors
Collapse
Affiliation(s)
- B A Rabinovich
- Department of Medical Biophysics, Ontario Cancer Institute, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
23
|
Ibrahim EC, Morange M, Dausset J, Carosella ED, Paul P. Heat shock and arsenite induce expression of the nonclassical class I histocompatibility HLA-G gene in tumor cell lines. Cell Stress Chaperones 2000; 5:207-18. [PMID: 11005379 PMCID: PMC312887 DOI: 10.1379/1466-1268(2000)005<0207:hsaaie>2.0.co;2] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The nonclassical histocompatibility class I gene HLA-G has a tissue-restricted expression. To explore mechanisms involved in HLA-G transcriptional regulation, we have investigated the effect of stress, including heat shock and arsenite treatment, on HLA-G expression in tumor cell lines. We show that stress induces an increase of the level of the different HLA-G alternative transcripts without affecting other MHC class I HLA-A, -B, -E, and -F transcripts. A heat shock element (HSE) that binds to heat shock factor 1 (HSF1) on stress conditions was further identified within the HLA-G promoter. Considering the ability of HLA-G to modulate the function of immunocompetent cells, we hypothesize a new feature of HLA-G as a signal regulating the immune response to stress.
Collapse
Affiliation(s)
- El Chérif Ibrahim
- CEA, Service de Recherches en Hémato-Immunologie, DSV/DRM, Hôpital Saint-Louis, Centre Hayem, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Michel Morange
- Unité de Génétique Moléculaire, Département de Biologie, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France
| | - Jean Dausset
- Fondation Jean Dausset, CEPH, 27 rue Juliette-Dodu, 75010 Paris, France
| | - Edgardo D Carosella
- CEA, Service de Recherches en Hémato-Immunologie, DSV/DRM, Hôpital Saint-Louis, Centre Hayem, 1 avenue Claude Vellefaux, 75010 Paris, France
| | - Pascale Paul
- CEA, Service de Recherches en Hémato-Immunologie, DSV/DRM, Hôpital Saint-Louis, Centre Hayem, 1 avenue Claude Vellefaux, 75010 Paris, France
- Correspondence to: Pascale Paul, Tel: 33 (0)1 53 72 21 42; Fax: 33 (0)1 48 03 19 60; .
| |
Collapse
|
24
|
Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J. Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 1999; 27:1627-36. [PMID: 10560910 DOI: 10.1016/s0301-472x(99)00104-6] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We previously demonstrated that lysis of tumor cells that express Hsp70, the highly stress-inducible member of the HSP70 family, on their plasma membrane is mediated by natural killer (NK) cells. Here, we studied the effects of different proteins of the HSP70 family in combination with interleukin 2 (IL-2) on the proliferation and cytotoxic activity of human NK cells in vitro. Proliferation of NK cells was significantly enhanced by human recombinant Hsp70 (rHsp70) and to a lesser extent by rHsp70homC, the recombinant C-terminal peptide-binding domain derived from Hsp70hom, but not by the constitutive Hsc70 or DnaK, the Escherichia coli analogue of human Hsp70. Even rHsp70 protein alone moderately enhances proliferation and cytolytic activity of NK cells, thus indicating that the stimulatory effect is not strictly dependent on IL-2. NK cells stimulated with rHsp70 protein also exhibit an increased secretion of interferon gamma (IFN-gamma). The phenotypic characterization of NK cells with specificity for Hsp70-expressing tumor cells revealed a CD16dim/CD56bright and increased CD57 and CD94 expression. The cytolytic activity of NK cells also was significantly reduced when a CD94-specific antibody or rHsp70 was added directly before the cytotoxicity assay, whereas other antibodies directed against CD57 and major histocompatibility complex class I molecules or Hsp70 proteins, including Hsc70 and DnaK, did not affect the NK-mediated killing. However, long-term incubation of NK cells with rHsp70 protein enhances not only the proliferative but also the cytolytic response against Hsp70-expressing tumor cells. Our results indicate that the C-terminal domain of Hsp70 protein affects not only the proliferative but also the cytolytic activity of a phenotypically distinct NK cell population with specificity for Hsp70-expressing tumor cells. 1999 International Society for Experimental Hematology.
Collapse
Affiliation(s)
- G Multhoff
- Department of Hematology/Internistic Oncology, University Hospital Regensburg, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|