1
|
van der Weele CM, Hospes KC, Rowe KE, Jeffery WR. Hypoxia-sonic hedgehog axis as a driver of primitive hematopoiesis development and evolution in cavefish. Dev Biol 2024; 516:138-147. [PMID: 39173434 PMCID: PMC11402556 DOI: 10.1016/j.ydbio.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/09/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
The teleost Astyanax mexicanus consists of surface dwelling (surface fish) and cave dwelling (cavefish) forms. Cavefish have evolved in subterranean habitats characterized by reduced oxygen levels (hypoxia) and exhibit a subset of phenotypic traits controlled by increased Sonic hedgehog (Shh) signaling along the embryonic midline. The enhancement of primitive hematopoietic domains, which are formed bilaterally in the anterior and posterior lateral plate mesoderm, are responsible for the development of more larval erythrocytes in cavefish relative to surface fish. In this study, we determine the role of hypoxia and Shh signaling in the development and evolution of primitive hematopoiesis in cavefish. We show that hypoxia treatment during embryogenesis increases primitive hematopoiesis and erythrocyte development in surface fish. We also demonstrate that upregulation of Shh midline signaling by the Smoothened agonist SAG increases primitive hematopoiesis and erythrocyte development in surface fish, whereas Shh downregulation via treatment with the Smoothened inhibitor cyclopamine decreases these traits in cavefish. Together these results suggest that hematopoietic enhancement is regulated by hypoxia and Shh signaling. Lastly, we demonstrate that hypoxia enhances expression of Shh signaling along the midline of surface fish embryos. We conclude that hypoxia-mediated Shh plasticity may be a driving force for the adaptive evolution of primitive hematopoiesis and erythrocyte development in cavefish.
Collapse
Affiliation(s)
| | - Katrina C Hospes
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - Katherine E Rowe
- Department of Biology, University of Maryland, College Park, MD, 20742, USA
| | - William R Jeffery
- Department of Biology, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
2
|
van der Weele CM, Hospes KC, Rowe KE, Jeffery WR. Hypoxia-Sonic Hedgehog Axis as a Driver of Primitive Hematopoiesis Development and Evolution in Cavefish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.598120. [PMID: 38895301 PMCID: PMC11185782 DOI: 10.1101/2024.06.09.598120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
The teleost Astyanax mexicanus consists of surface dwelling (surface fish) and cave dwelling (cavefish) forms. Cavefish have evolved in subterranean habitats characterized by reduced oxygen levels (hypoxia) and show constructive and regressive phenotypic traits controlled by increased Sonic hedgehog (Shh) signaling along the embryonic midline. The enhancement of primitive hematopoietic domains, which are formed bilaterally in the anterior and posterior lateral plate mesoderm, are responsible for the development of more larval erythrocytes in cavefish relative to surface fish. In this study, we determine the role of hypoxia and Shh signaling in the development and evolution of primitive hematopoiesis in cavefish. We show that hypoxia treatment during embryogenesis increases primitive hematopoiesis and erythrocyte development in surface fish. We also demonstrate that upregulation of Shh midline signaling by treatment with the Smoothened agonist SAG increases primitive hematopoiesis and erythrocyte development in surface fish, whereas Shh downregulation via treatment with the Smoothened inhibitor cyclopamine decreases these traits in cavefish. Together these results suggest that hematopoietic enhancement is regulated by hypoxia and the Shh signaling system. Lastly, we demonstrate that hypoxia treatment enhances expression of Shh signaling along the midline of surface fish embryos. Thus, we conclude that a hypoxia-Shh axis may drive the adaptive evolution of primitive hematopoiesis and erythrocyte development in cavefish. Highlights Hypoxia increases hematopoiesis and erythrocytes in surface fishShh upregulation increases hematopoiesis and erythrocytes in surface fishShh inhibition decreases hematopoiesis and erythrocytes in cavefishHypoxia upregulates Shh along the embryonic midline in surface fish.
Collapse
|
3
|
Fechner J, Lausen J. Transcription Factor TAL1 in Erythropoiesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:243-258. [PMID: 39017847 DOI: 10.1007/978-3-031-62731-6_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Lineage-specific transcription factors (TFs) regulate differentiation of hematopoietic stem cells (HSCs). They are decisive for the establishment and maintenance of lineage-specific gene expression programs during hematopoiesis. For this they create a regulatory network between TFs, epigenetic cofactors, and microRNAs. They activate cell-type specific genes and repress competing gene expression programs. Disturbance of this process leads to impaired lineage fidelity and diseases of the blood system. The TF T-cell acute leukemia 1 (TAL1) is central for erythroid differentiation and contributes to the formation of distinct gene regulatory complexes in progenitor cells and erythroid cells. A TAL1/E47 heterodimer binds to DNA with the TFs GATA-binding factor 1 and 2 (GATA1/2), the cofactors LIM domain only 1 and 2 (LMO1/2), and LIM domain-binding protein 1 (LDB1) to form a core TAL1 complex. Furthermore, cell-type-dependent interactions of TAL1 with other TFs such as with runt-related transcription factor 1 (RUNX1) and Kruppel-like factor 1 (KLF1) are established. Moreover, TAL1 activity is regulated by the formation of TAL1 isoforms, posttranslational modifications (PTMs), and microRNAs. Here, we describe the function of TAL1 in normal hematopoiesis with a focus on erythropoiesis.
Collapse
Affiliation(s)
- Johannes Fechner
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany
| | - Jörn Lausen
- Department of Eukaryotic Genetics, Institute of Biomedical Genetics, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
4
|
Quotti Tubi L, Canovas Nunes S, Mandato E, Pizzi M, Vitulo N, D’Agnolo M, Colombatti R, Martella M, Boaro MP, Doriguzzi Breatta E, Fregnani A, Spinello Z, Nabergoj M, Filhol O, Boldyreff B, Albiero M, Fadini GP, Gurrieri C, Vianello F, Semenzato G, Manni S, Trentin L, Piazza F. CK2β Regulates Hematopoietic Stem Cell Biology and Erythropoiesis. Hemasphere 2023; 7:e978. [PMID: 38026791 PMCID: PMC10673422 DOI: 10.1097/hs9.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
The Ser-Thr kinase CK2 plays important roles in sustaining cell survival and resistance to stress and these functions are exploited by different types of blood tumors. Yet, the physiological involvement of CK2 in normal blood cell development is poorly known. Here, we discovered that the β regulatory subunit of CK2 is critical for normal hematopoiesis in the mouse. Fetal livers of conditional CK2β knockout embryos showed increased numbers of hematopoietic stem cells associated to a higher proliferation rate compared to control animals. Both hematopoietic stem and progenitor cells (HSPCs) displayed alterations in the expression of transcription factors involved in cell quiescence, self-renewal, and lineage commitment. HSPCs lacking CK2β were functionally impaired in supporting both in vitro and in vivo hematopoiesis as demonstrated by transplantation assays. Furthermore, KO mice developed anemia due to a reduced number of mature erythroid cells. This compartment was characterized by dysplasia, proliferative defects at early precursor stage, and apoptosis at late-stage erythroblasts. Erythroid cells exhibited a marked compromise of signaling cascades downstream of the cKit and erythropoietin receptor, with a defective activation of ERK/JNK, JAK/STAT5, and PI3K/AKT pathways and perturbations of several transcriptional programs as demonstrated by RNA-Seq analysis. Moreover, we unraveled an unforeseen molecular mechanism whereby CK2 sustains GATA1 stability and transcriptional proficiency. Thus, our work demonstrates new and crucial functions of CK2 in HSPC biology and in erythropoiesis.
Collapse
Affiliation(s)
- Laura Quotti Tubi
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sara Canovas Nunes
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Division of Hematology/Oncology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Elisa Mandato
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Marco Pizzi
- Department of Medicine, Cytopathology and Surgical Pathology Unit, University of Padova, Italy
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, Italy
| | - Mirco D’Agnolo
- Department of Women’s and Child’s Health, University of Padova, Italy
| | | | | | - Maria Paola Boaro
- Department of Women’s and Child’s Health, University of Padova, Italy
| | - Elena Doriguzzi Breatta
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Anna Fregnani
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Zaira Spinello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Mitja Nabergoj
- Hematology Service, Institut Central des Hôpitaux (ICH), Hôpital du Valais, Sion, Switzerland
| | - Odile Filhol
- Institut National de la Santé Et de la Recherche Médicale (INSERM) U1036, Institute de Reserches en Technologies et Sciences pour le Vivant/Biologie du Cancer et de l’Infection, Grenoble, France
| | | | - Mattia Albiero
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Italy
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
| | - Gian Paolo Fadini
- Veneto Institute of Molecular Medicine, Experimental Diabetology Lab, Padova, Italy
- Department of Medicine, University of Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Fabrizio Vianello
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Sabrina Manni
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Livio Trentin
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Francesco Piazza
- Department of Medicine, Division of Hematology, University of Padova, Italy
- Laboratory of Normal and Malignant Hematopoiesis and Pathobiology of Myeloma and Lymphoma. Veneto Institute of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
5
|
Hepatic Ly6C Lo Non-Classical Monocytes Have Increased Nr4a1 (Nur77) in Murine Biliary Atresia. J Clin Med 2022; 11:jcm11185290. [PMID: 36142937 PMCID: PMC9504567 DOI: 10.3390/jcm11185290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 11/17/2022] Open
Abstract
Biliary atresia (BA) is a rapidly progressive perinatal inflammatory disease, resulting in liver failure. Hepatic Ly6CLo non-classical monocytes promote the resolution of perinatal liver inflammation during rhesus rotavirus-mediated (RRV) BA in mice. In this study, we aim to investigate the effects of inflammation on the transcription factor Nr4a1, a known regulator of non-classical monocytes. Nr4a1-GFP reporter mice were injected with PBS for control or RRV within 24 h of delivery to induce perinatal liver inflammation. GFP expression on myeloid immune populations in the liver and bone marrow (BM) was quantified 3 and 14 days after injection using flow cytometry. Statistical significance was determined using a student’s t-test and ANOVA, with a p-value < 0.05 for significance. Our results demonstrate that non-classical monocytes in the neonatal liver exhibit the highest mean fluorescence intensity (MFI) of Nr4a1 (Ly6CLo MFI 6344 vs. neutrophils 3611 p < 0.001; macrophages 2782; p < 0.001; and Ly6CHi classical monocytes 4485; p < 0.0002). During inflammation, hepatic Ly6CLo non-classical monocytes showed a significant increase in Nr4a1 expression intensity from 6344 to 7600 (p = 0.012), while Nr4a1 expression remained unchanged on the other myeloid populations. These findings highlight the potential of using Nr4a1 as a regulator of neonatal hepatic Ly6CLo non-classical monocytes to mitigate perinatal liver inflammation.
Collapse
|
6
|
Exploring the Expression of Cardiac Regulators in a Vertebrate Extremophile: The Cichlid Fish Oreochromis (Alcolapia) alcalica. J Dev Biol 2020; 8:jdb8040022. [PMID: 33020460 PMCID: PMC7712675 DOI: 10.3390/jdb8040022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 01/05/2023] Open
Abstract
Although it is widely accepted that the cellular and molecular mechanisms of vertebrate cardiac development are evolutionarily conserved, this is on the basis of data from only a few model organisms suited to laboratory studies. Here, we investigate gene expression during cardiac development in the extremophile, non-model fish species, Oreochromis (Alcolapia) alcalica. We first characterise the early development of O. alcalica and observe extensive vascularisation across the yolk prior to hatching. We further investigate heart development by identifying and cloning O. alcalica orthologues of conserved cardiac transcription factors gata4, tbx5, and mef2c for analysis by in situ hybridisation. Expression of these three key cardiac developmental regulators also reveals other aspects of O. alcalica development, as these genes are expressed in developing blood, limb, eyes, and muscle, as well as the heart. Our data support the notion that O. alcalica is a direct-developing vertebrate that shares the highly conserved molecular regulation of the vertebrate body plan. However, the expression of gata4 in O. alcalica reveals interesting differences in the development of the circulatory system distinct from that of the well-studied zebrafish. Understanding the development of O. alcalica embryos is an important step towards providing a model for future research into the adaptation to extreme conditions; this is particularly relevant given that anthropogenic-driven climate change will likely result in more freshwater organisms being exposed to less favourable conditions.
Collapse
|
7
|
The Cancer Stem Cell in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12030684. [PMID: 32183251 PMCID: PMC7140091 DOI: 10.3390/cancers12030684] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022] Open
Abstract
The recognition of intra-tumoral cellular heterogeneity has given way to the concept of the cancer stem cell (CSC). According to this concept, CSCs are able to self-renew and differentiate into all of the cancer cell lineages present within the tumor, placing the CSC at the top of a hierarchical tree. The observation that these cells—in contrast to bulk tumor cells—are able to exclusively initiate new tumors, initiate metastatic spread and resist chemotherapy implies that CSCs are solely responsible for tumor recurrence and should be therapeutically targeted. Toward this end, dissecting and understanding the biology of CSCs should translate into new clinical therapeutic approaches. In this article, we review the CSC concept in cancer, with a special focus on hepatocellular carcinoma.
Collapse
|
8
|
Ghersi JJ, Mahony CB, Bertrand JY. bif1, a new BMP signaling inhibitor, regulates embryonic hematopoiesis in the zebrafish. Development 2019; 146:dev.164103. [PMID: 30837221 DOI: 10.1242/dev.164103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/22/2019] [Indexed: 01/17/2023]
Abstract
Hematopoiesis maintains the entire blood system, and dysregulation of this process can lead to malignancies (leukemia), immunodeficiencies or red blood cell diseases (anemia, polycythemia vera). We took advantage of the zebrafish model that shares most of the genetic program involved in hematopoiesis with mammals to characterize a new gene of unknown function, si:ch73-299h12.2, which is expressed in the erythroid lineage during primitive, definitive and adult hematopoiesis. This gene, required during primitive and definitive erythropoiesis, encodes a C2H2 zinc-finger protein that inhibits BMP signaling. We therefore named this gene blood-inducing factor 1 and BMP inhibitory factor 1 (bif1). We identified a bif1 ortholog in Sinocyclocheilus rhinocerous, another fish, and in the mouse genome. Both genes also inhibit BMP signaling when overexpressed in zebrafish. In conclusion, we have deorphanized a new zebrafish gene of unknown function: bif1 codes for a zinc-finger protein that inhibits BMP signaling and also regulates primitive erythropoiesis and definitive hematopoiesis.
Collapse
Affiliation(s)
- Joey J Ghersi
- University of Geneva, School of Medicine, Department of Pathology and Immunology, CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Christopher B Mahony
- University of Geneva, School of Medicine, Department of Pathology and Immunology, CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| | - Julien Y Bertrand
- University of Geneva, School of Medicine, Department of Pathology and Immunology, CMU, University of Geneva, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
9
|
Murthy V, Tebaldi T, Yoshida T, Erdin S, Calzonetti T, Vijayvargia R, Tripathi T, Kerschbamer E, Seong IS, Quattrone A, Talkowski ME, Gusella JF, Georgopoulos K, MacDonald ME, Biagioli M. Hypomorphic mutation of the mouse Huntington's disease gene orthologue. PLoS Genet 2019; 15:e1007765. [PMID: 30897080 PMCID: PMC6445486 DOI: 10.1371/journal.pgen.1007765] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/02/2019] [Accepted: 02/07/2019] [Indexed: 01/08/2023] Open
Abstract
Rare individuals with inactivating mutations in the Huntington's disease gene (HTT) exhibit variable abnormalities that imply essential HTT roles during organ development. Here we report phenotypes produced when increasingly severe hypomorphic mutations in the murine HTT orthologue Htt, (HdhneoQ20, HdhneoQ50, HdhneoQ111), were placed over a null allele (Hdhex4/5). The most severe hypomorphic allele failed to rescue null lethality at gastrulation, while the intermediate, though still severe, alleles yielded recessive perinatal lethality and a variety of fetal abnormalities affecting body size, skin, skeletal and ear formation, and transient defects in hematopoiesis. Comparative molecular analysis of wild-type and Htt-null retinoic acid-differentiated cells revealed gene network dysregulation associated with organ development that nominate polycomb repressive complexes and miRNAs as molecular mediators. Together these findings demonstrate that Htt is required both pre- and post-gastrulation to support normal development.
Collapse
Affiliation(s)
- Vidya Murthy
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Toma Tebaldi
- Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Toshimi Yoshida
- Cutaneous Biology Research Center (CBRC), Mass General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Serkan Erdin
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Teresa Calzonetti
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Frederick Community College, Frederick MD, United States of America
| | - Ravi Vijayvargia
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Takshashila Tripathi
- NeuroEpigenetics Laboratory, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Emanuela Kerschbamer
- NeuroEpigenetics Laboratory, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Ihn Sik Seong
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Alessandro Quattrone
- Laboratory of Translational Genomics, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Michael E. Talkowski
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - James F. Gusella
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Genetics, Harvard Medical School, Boston, MA, United States of America
| | - Katia Georgopoulos
- Cutaneous Biology Research Center (CBRC), Mass General Hospital, Harvard Medical School, Charlestown, MA, United States of America
| | - Marcy E. MacDonald
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- Broad Institute of Harvard and MIT, Cambridge, MA, United States of America
- Department of Neurology, Harvard Medical School, Boston, MA, United States of America
| | - Marta Biagioli
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States of America
- NeuroEpigenetics Laboratory, Centre for Integrative Biology (CIBIO), University of Trento, Trento, Italy
| |
Collapse
|
10
|
RNAi Knockdown of Ape1 Gene in the Differentiation of Mouse Embryonic Stem Cells. Methods Mol Biol 2018. [PMID: 28674806 DOI: 10.1007/978-1-4939-7108-4_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Murine embryonic stem cells (ES) are pluripotent cells and have the potential to become a wide variety of specialized cell types. Mouse ES cell differentiation can be regarded as a valuable biological tool that has led to major advances in our understanding of cell and developmental biology. In vitro differentiation of mouse ES cells can be directed to a specific lineage formation, such as hematopoietic lineage, by appropriate cytokine and/or growth factor stimulation. To study specific gene function in early developmental events, gene knockout approaches have been traditionally used, however, this is a time-consuming and expensive approach. Recently, we have shown that siRNA is an effective strategy to knock down target gene expression, such as Ape1, during ES cell differentiation, and consequently, one can alter cell fates in ES-derived differentiated cells. This approach will be applicable to test the function of a wide variety of gene products using the ES cell differentiation system.
Collapse
|
11
|
Frändberg S, Asp J, Waldner B, Holgersson J, Palmqvist L. Concentration of the CDCP1 protein in human cord plasma may serve as a predictor of hematopoietic stem and progenitor cell content. Stem Cell Res 2018; 29:24-27. [PMID: 29574172 DOI: 10.1016/j.scr.2018.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 11/30/2022] Open
Abstract
Successful hematopoietic stem and progenitor cell (HSPC) transplantation rests upon reliable methods for their enumeration in sources such as cord blood (CB). Methods used today are costly, time consuming and exhaust the limited number of cells needed for transplantation. The aim of this study was to analyze if surplus plasma from CB contains biomarkers that can predict HSPC content in CB. Frozen, surplus plasma from 95 CB units was divided into two groups based on CD34+ cell concentration. Birth weight, gestation age, gender, mode of delivery, collection volume, nucleated cell count and colony forming unit assay results were available. Samples were analyzed with a proximity ligation assay covering 92 different proteins. Two-group t-test with p-values adjusted for false discovery rate (FDR) identified 5 proteins that significantly differed between the two groups. CDCP1 was the most significant (FDR adjusted p-value 0.006). Correlation with CDCP1 concentration was most significant for CD34+ concentration and nucleated cell count. Multivariate analysis showed that CD34 and gender seemed to influence the level of CDCP1. In conclusion, CDCP1 was identified as a potential biomarker of HSPC content in CB. The finding also warrants further investigation for a possible role of CDCP1 in regulating HSPC presence in CB.
Collapse
Affiliation(s)
- Sofia Frändberg
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Julia Asp
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Berit Waldner
- Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Jan Holgersson
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Lars Palmqvist
- Department of Clinical Chemistry and Transfusion Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Sweden; Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden.
| |
Collapse
|
12
|
Wolf A, Aggio J, Campbell C, Wright F, Marquez G, Traver D, Stachura DL. Zebrafish Caudal Haematopoietic Embryonic Stromal Tissue (CHEST) Cells Support Haematopoiesis. Sci Rep 2017; 7:44644. [PMID: 28300168 PMCID: PMC5353684 DOI: 10.1038/srep44644] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
Haematopoiesis is an essential process in early vertebrate development that occurs in different distinct spatial locations in the embryo that shift over time. These different sites have distinct functions: in some anatomical locations specific hematopoietic stem and progenitor cells (HSPCs) are generated de novo. In others, HSPCs expand. HSPCs differentiate and renew in other locations, ensuring homeostatic maintenance. These niches primarily control haematopoiesis through a combination of cell-to-cell signalling and cytokine secretion that elicit unique biological effects in progenitors. To understand the molecular signals generated by these niches, we report the generation of caudal hematopoietic embryonic stromal tissue (CHEST) cells from 72-hours post fertilization (hpf) caudal hematopoietic tissue (CHT), the site of embryonic HSPC expansion in fish. CHEST cells are a primary cell line with perivascular endothelial properties that expand hematopoietic cells in vitro. Morphological and transcript analysis of these cultures indicates lymphoid, myeloid, and erythroid differentiation, indicating that CHEST cells are a useful tool for identifying molecular signals critical for HSPC proliferation and differentiation in the zebrafish. These findings permit comparison with other temporally and spatially distinct haematopoietic-supportive zebrafish niches, as well as with mammalian haematopoietic-supportive cells to further the understanding of the evolution of the vertebrate hematopoietic system.
Collapse
Affiliation(s)
- Anja Wolf
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| | - Julian Aggio
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| | - Clyde Campbell
- Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - Francis Wright
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| | - Gabriel Marquez
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California at San Diego School of Medicine, La Jolla, CA, 92093, USA
| | - David L Stachura
- California State University, Chico, Department of Biological Sciences, Chico, CA, 95929, USA
| |
Collapse
|
13
|
Mao B, Huang S, Lu X, Sun W, Zhou Y, Pan X, Yu J, Lai M, Chen B, Zhou Q, Mao S, Bian G, Zhou J, Nakahata T, Ma F. Early Development of Definitive Erythroblasts from Human Pluripotent Stem Cells Defined by Expression of Glycophorin A/CD235a, CD34, and CD36. Stem Cell Reports 2016; 7:869-883. [PMID: 27720903 PMCID: PMC5106477 DOI: 10.1016/j.stemcr.2016.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/02/2016] [Accepted: 09/05/2016] [Indexed: 12/22/2022] Open
Abstract
The development of human erythroid cells has been mostly examined in models of adult hematopoiesis, while their early derivation during embryonic and fetal stages is largely unknown. We observed the development and maturation of erythroblasts derived from human pluripotent stem cells (hPSCs) by an efficient co-culture system. These hPSC-derived early erythroblasts initially showed definitive characteristics with a glycophorin A+ (GPA+) CD34lowCD36− phenotype and were distinct from adult CD34+ cell-derived ones. After losing CD34 expression, early GPA+CD36− erythroblasts matured into GPA+CD36low/+ stage as the latter expressed higher levels of β-globin along with a gradual loss of mesodermal and endothelial properties, and terminally suppressed CD36. We establish a unique in vitro model to trace the early development of hPSC-derived erythroblasts by serial expression of CD34, GPA, and CD36. Our findings may provide insight into the understanding of human early erythropoiesis and, ultimately, therapeutic potential. The hPSC/AGM-S3 co-culture system generates considerable definitive erythroblasts hPSC-derived erythroblasts initiate from a unique GPA+CD34lowCD36− fraction Human early erythropoiesis can be traced by serial expression of CD34, GPA, and CD36
Collapse
Affiliation(s)
- Bin Mao
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shu Huang
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xulin Lu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Wencui Sun
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Ya Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Xu Pan
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jinfeng Yu
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bo Chen
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Song Mao
- Research Center for Stem Cell and Regenerative Medicine, Sichuan Neo-life Stem Cell Biotech Inc., Chengdu 610036, China
| | - Guohui Bian
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiaxi Zhou
- State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Feng Ma
- Center for Stem Cell Research and Application, Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China; State Key Lab of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, CAMS & PUMC, Tianjin 300020, China; State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
14
|
Gomes C, Boareto AC, Dalsenter PR. Clinical and non-clinical safety of artemisinin derivatives in pregnancy. Reprod Toxicol 2016; 65:194-203. [PMID: 27506918 DOI: 10.1016/j.reprotox.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/03/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Malaria in pregnancy is a clinically wasting infectious disease, where drug therapy has to be promptly initiated. Currently, the treatment of this infection depends on the use of artemisinin derivatives. The World Health Organization does not recommend the use of these drugs in the first trimester of pregnancy due to non-clinical findings that have shown embryolethality and teratogenic effects. Nevertheless, until now, this toxicity has not been proved in humans. Artemisinin derivatives mechanisms of embryotoxicity are related to depletion of circulating embryonic primitive erythroblasts. Species differences in this sensitive period for toxicity and the presence of malaria infection, which could reduce drug distribution to the fetus, are significant to the risk assessment of artemisinin derivatives treatment to pregnant women. In this review we aimed to assess the results of non-clinical and clinical studies with artemisinin derivatives, their mechanisms of embryotoxicity and discuss the safety of their use during pregnancy.
Collapse
Affiliation(s)
- Caroline Gomes
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | - Ana Cláudia Boareto
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil.
| | | |
Collapse
|
15
|
Abstract
Zebrafish as a model system have been instrumental in understanding early vertebrate development, especially of the hematopoietic system. The external development of zebrafish and their genetic amenability have allowed in-depth studies of multiple blood cell types and their respective genetic regulation. This chapter highlights some new data in zebrafish hematopoiesis regarding primitive and definitive hematopoiesis in the embryonic and adult fish, allowing the isolation of prospective progenitor subsets. It also highlights assays developed to examine the function of these progenitors in vivo and in vitro, allowing an evolutionary understanding of the hematopoietic system and how zebrafish can be better utilized as a model system for a multitude of hematopoietic disorders.
Collapse
Affiliation(s)
- D L Stachura
- California State University, Chico, Chico, CA, United States
| | - D Traver
- University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
16
|
Abstract
SCL, a transcription factor of the basic helix-loop-helix family, is a master regulator of hematopoiesis. Scl specifies lateral plate mesoderm to a hematopoietic fate and establishes boundaries by inhibiting the cardiac lineage. A combinatorial interaction between Scl and Vegfa/Flk1 sets in motion the first wave of primitive hematopoiesis. Subsequently, definitive hematopoietic stem cells (HSCs) emerge from the embryo proper via an endothelial-to-hematopoietic transition controlled by Runx1, acting with Scl and Gata2. Past this stage, Scl in steady state HSCs is redundant with Lyl1, a highly homologous factor. However, Scl is haploinsufficient in stress response, when a rare subpopulation of HSCs with very long term repopulating capacity is called into action. SCL activates transcription by recruiting a core complex on DNA that necessarily includes E2A/HEB, GATA1-3, LIM-only proteins LMO1/2, LDB1, and an extended complex comprising ETO2, RUNX1, ERG, or FLI1. These interactions confer multifunctionality to a complex that can control cell proliferation in erythroid progenitors or commitment to terminal differentiation through variations in single component. Ectopic SCL and LMO1/2 expression in immature thymocytes activates of a stem cell gene network and reprogram cells with a finite lifespan into self-renewing preleukemic stem cells (pre-LSCs), an initiating event in T-cell acute lymphoblastic leukemias. Interestingly, fate conversion of fibroblasts to hematoendothelial cells requires not only Scl and Lmo2 but also Gata2, Runx1, and Erg, indicating a necessary collaboration between these transcription factors for hematopoietic reprogramming. Nonetheless, full reprogramming into self-renewing multipotent HSCs may require additional factors and most likely, a permissive microenvironment.
Collapse
Affiliation(s)
- T Hoang
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada.
| | - J A Lambert
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| | - R Martin
- Laboratory of Hematopoiesis and Leukemia, Institute of Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC, Canada
| |
Collapse
|
17
|
Zhou Z, Wan L, Wang C, Zhou K. Integration of Shh and Wnt Signaling Pathways Regulating Hematopoiesis. DNA Cell Biol 2015; 34:710-6. [PMID: 26378473 DOI: 10.1089/dna.2015.2930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Zhigang Zhou
- Department of Intensive Care Unit, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Liping Wan
- Department of Hematology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Chun Wang
- Department of Hematology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| | - Kun Zhou
- Department of Hematology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Deb A. Stem Cells. Atherosclerosis 2015. [DOI: 10.1002/9781118828533.ch14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Shi X, Zirbes KM, Rasmussen TL, Ferdous A, Garry MG, Koyano-Nakagawa N, Garry DJ. The transcription factor Mesp1 interacts with cAMP-responsive element binding protein 1 (Creb1) and coactivates Ets variant 2 (Etv2) gene expression. J Biol Chem 2015; 290:9614-25. [PMID: 25694434 DOI: 10.1074/jbc.m114.614628] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Indexed: 12/31/2022] Open
Abstract
Mesoderm posterior 1 (Mesp1) is well recognized for its role in cardiac development, although it is expressed broadly in mesodermal lineages. We have previously demonstrated important roles for Mesp1 and Ets variant 2 (Etv2) during lineage specification, but their relationship has not been defined. This study reveals that Mesp1 binds to the proximal promoter and transactivates Etv2 gene expression via the CRE motif. We also demonstrate the protein-protein interaction between Mesp1 and cAMP-responsive element binding protein 1 (Creb1) in vitro and in vivo. Utilizing transgenesis, lineage tracing, flow cytometry, and immunostaining technologies, we define the lineage relationship between Mesp1- and Etv2-expressing cell populations. We observe that the majority of Etv2-EYFP(+) cells are derived from Mesp1-Cre(+) cells in both the embryo and yolk sac. Furthermore, we observe that the conditional deletion of Etv2, using a Mesp1-Cre transgenic strategy, results in vascular and hematopoietic defects similar to those observed in the global deletion of Etv2 and that it has embryonic lethality by embryonic day 9.5. In summary, our study supports the hypothesis that Mesp1 is a direct upstream transactivator of Etv2 during embryogenesis and that Creb1 is an important cofactor of Mesp1 in the transcriptional regulation of Etv2 gene expression.
Collapse
Affiliation(s)
- Xiaozhong Shi
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Katie M Zirbes
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Tara L Rasmussen
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Anwarul Ferdous
- the Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Mary G Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Naoko Koyano-Nakagawa
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| | - Daniel J Garry
- From the Lillehei Heart Institute, Medical School, University of Minnesota, Minneapolis, Minnesota 55455 and
| |
Collapse
|
20
|
Abstract
The stem cell paradigm was first demonstrated in hematopoietic stem cells. Whilst classically it was cytokines and chemokines which were believed to control stem cell fate, more recently it has become apparent that the stem cell niche and highly conserved embryonic pathways play a key role in governing stem cell behavior. One of these pathways, the hedgehog signaling pathway, found in all organisms, is vitally important in embryogenesis, performing the function of patterning through early stages of development, and in adulthood, through the control of somatic stem cell numbers. In addition to these roles in health however, it has been found to be deregulated in a number of solid and hematological malignancies, components of the hedgehog pathway being associated with a poor prognosis. Further, these components represent viable therapeutic targets, with inhibition from a drug development perspective being readily achieved, making the hedgehog pathway an attractive potential therapeutic target. However, although the concept of cancer stem cells is well established, how these cells arise and the factors which influence their behavior are not yet fully understood. The role of the hedgehog signaling pathway and its potential as a therapeutic target in hematological malignancies is the focus of this review.
Collapse
Affiliation(s)
- Victoria Campbell
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterninary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Mhairi Copland
- Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterninary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
21
|
Cooperative interaction of Etv2 and Gata2 regulates the development of endothelial and hematopoietic lineages. Dev Biol 2014; 389:208-18. [PMID: 24583263 DOI: 10.1016/j.ydbio.2014.02.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/07/2014] [Accepted: 02/19/2014] [Indexed: 12/31/2022]
Abstract
Regulatory mechanisms that govern lineage specification of the mesodermal progenitors to become endothelial and hematopoietic cells remain an area of intense interest. Both Ets and Gata factors have been shown to have important roles in the transcriptional regulation in endothelial and hematopoietic cells. We previously reported Etv2 as an essential regulator of vasculogenesis and hematopoiesis. In the present study, we demonstrate that Gata2 is co-expressed and interacts with Etv2 in the endothelial and hematopoietic cells in the early stages of embryogenesis. Our studies reveal that Etv2 interacts with Gata2 in vitro and in vivo. The protein-protein interaction between Etv2 and Gata2 is mediated by the Ets and Gata domains. Using the embryoid body differentiation system, we demonstrate that co-expression of Gata2 augments the activity of Etv2 in promoting endothelial and hematopoietic lineage differentiation. We also identify Spi1 as a common downstream target gene of Etv2 and Gata2. We provide evidence that Etv2 and Gata2 bind to the Spi1 promoter in vitro and in vivo. In summary, we propose that Gata2 functions as a cofactor of Etv2 in the transcriptional regulation of mesodermal progenitors during embryogenesis.
Collapse
|
22
|
Posobiec LM, Clark RL, Bushdid PB, Laffan SB, Wang KF, White TEK. Dihydroartemisinin (DHA) Treatment Causes an Arrest of Cell Division and Apoptosis in Rat Embryonic Erythroblasts in Whole Embryo Culture. ACTA ACUST UNITED AC 2014; 98:445-58. [DOI: 10.1002/bdrb.21088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Accepted: 11/14/2013] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Paul B. Bushdid
- Safety Assessment; GlaxoSmithKline; King of Prussia Pennsylvania
| | - Susan B. Laffan
- Safety Assessment; GlaxoSmithKline; King of Prussia Pennsylvania
| | - Kai-Fen Wang
- Safety Assessment; GlaxoSmithKline; King of Prussia Pennsylvania
| | | |
Collapse
|
23
|
Tarafdar A, Dobbin E, Corrigan P, Freeburn R, Wheadon H. Canonical Wnt signaling promotes early hematopoietic progenitor formation and erythroid specification during embryonic stem cell differentiation. PLoS One 2013; 8:e81030. [PMID: 24324557 PMCID: PMC3850021 DOI: 10.1371/journal.pone.0081030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 10/11/2013] [Indexed: 01/08/2023] Open
Abstract
The generation of hematopoietic stem cells (HSCs) during development is a complex process linked to morphogenic signals. Understanding this process is important for regenerative medicine applications that require in vitro production of HSC. In this study we investigated the effects of canonical Wnt/β-catenin signaling during early embryonic differentiation and hematopoietic specification using an embryonic stem cell system. Our data clearly demonstrates that following early differentiation induction, canonical Wnt signaling induces a strong mesodermal program whilst maintaining a degree of stemness potential. This involved a complex interplay between β-catenin/TCF/LEF/Brachyury/Nanog. β-catenin mediated up-regulation of TCF/LEF resulted in enhanced brachyury levels, which in-turn lead to Nanog up-regulation. During differentiation, active canonical Wnt signaling also up-regulated key transcription factors and cell specific markers essential for hematopoietic specification, in particular genes involved in establishing primitive erythropoiesis. This led to a significant increase in primitive erythroid colony formation. β-catenin signaling also augmented early hematopoietic and multipotent progenitor (MPP) formation. Following culture in a MPP specific cytokine cocktail, activation of β-catenin suppressed differentiation of the early hematopoietic progenitor population, with cells displaying a higher replating capacity and a propensity to form megakaryocytic erythroid progenitors. This bias towards erythroid lineage commitment was also observed when hematopoietic progenitors were directed to undergo myeloid colony formation. Overall this study underscores the importance of canonical Wnt/β-catenin signaling in mesodermal specification, primitive erythropoiesis and early hematopietic progenitor formation during hematopoietic induction.
Collapse
Affiliation(s)
- Anuradha Tarafdar
- Paul O’Gorman Leukaemia Research Centre, University of Glasgow, United
Kingdom
- Biomedical Science Institute, University of Ulster, Northern Ireland,
United Kingdom
| | - Edwina Dobbin
- Department of Haematology, Western General Hospital, Edinburgh, United
Kingdom
| | - Pamela Corrigan
- Biomedical Science Institute, University of Ulster, Northern Ireland,
United Kingdom
| | - Robin Freeburn
- School of Science, University of the West of Scotland, Paisley, United
Kingdom
| | - Helen Wheadon
- Paul O’Gorman Leukaemia Research Centre, University of Glasgow, United
Kingdom
| |
Collapse
|
24
|
Frame JM, McGrath KE, Palis J. Erythro-myeloid progenitors: "definitive" hematopoiesis in the conceptus prior to the emergence of hematopoietic stem cells. Blood Cells Mol Dis 2013; 51:220-5. [PMID: 24095199 DOI: 10.1016/j.bcmd.2013.09.006] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 12/31/2022]
Abstract
Erythro-myeloid progenitors (EMP) serve as a major source of hematopoiesis in the developing conceptus prior to the formation of a permanent blood system. In this review, we summarize the current knowledge regarding the emergence, fate, and potential of this hematopoietic stem cell (HSC)-independent wave of hematopoietic progenitors, focusing on the murine embryo as a model system. A better understanding of the temporal and spatial control of hematopoietic emergence in the embryo will ultimately improve our ability to derive hematopoietic stem and progenitor cells from embryonic stem cells and induced pluripotent stem cells to serve therapeutic purposes.
Collapse
Affiliation(s)
- Jenna M Frame
- Center for Pediatric Biomedical Research, Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA; Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | | | | |
Collapse
|
25
|
Behrens AN, Ren Y, Ferdous A, Garry DJ, Martin CM. Nkx2-5 Regulates Tdgf1 (Cripto) Early During Cardiac Development. ACTA ACUST UNITED AC 2013; Suppl 11:1-4. [PMID: 24069547 DOI: 10.4172/2155-9880.s11-003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Congenital Heart Disease (CHD) is the most frequent and deadly birth defect. Patients with CHD that survive the neonatal period often progress to develop advanced heart failure requiring specialized treatment including cardiac transplantation. A full understanding of the transcriptional networks that direct cardiac progenitors during heart development will enhance our understanding of both normal cardiac function and pathological states. These findings will also have important applications for emerging therapies and the treatment of congenital heart disease. Furthermore, a number of shared transcriptional pathways or networks have been proposed to regulate the development and regeneration of tissues such as the heart. We have utilized transgenic technology to isolate and characterize cardiac progenitor cells from the developing mouse heart and have begun to define specific transcriptional networks of cardiovascular development. Initial studies identified Tdgf1 as a potential target of Nkx2-5. To mechanistically dissect the regulation of this molecular program, we utilized an array of molecular biological techniques to confirm that Nkx2-5 is an upstream regulator of the Tdgf1 gene in early cardiac development. These studies further define Nkx2-5 mediated transcriptional networks and enhance our understanding of cardiac morphogenesis.
Collapse
Affiliation(s)
- Ann N Behrens
- Lillehei Heart Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | | | | |
Collapse
|
26
|
Interfering growth of malignant melanoma with Ang2-siRNA. Mol Biol Rep 2012; 40:1463-71. [PMID: 23160899 PMCID: PMC3538013 DOI: 10.1007/s11033-012-2189-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/09/2012] [Indexed: 11/03/2022]
Abstract
To investigate the intervention therapy effect on the growth of malignant melanoma, we have made an observation of expression levels of Ang2 in malignant melanoma cells, which was transduced by small interfering RNA (Ang2-siRNA) of Ang2 in vitro and in vivo. We successfully constructed Ang2-siRNA lent virus, and constructed nude mice model by transplanting malignant melanoma. Ang2-siRNA lent virus inhibited Ang2 mRNA of malignant melanoma in vitro and in vivo, and inhibited malignant melanoma tumor growth at the same time. Ang2-siRNA lent virus can interfere expression levels of Ang2 in malignant melanoma cells, inhibit tumor growth, and silent Ang2 gene expression, which may pave a new way for clinical gene therapy of malignant melanoma.
Collapse
|
27
|
Lack of endothelial diaphragms in fenestrae and caveolae of mutant Plvap-deficient mice. Histochem Cell Biol 2012; 138:709-24. [PMID: 22782339 DOI: 10.1007/s00418-012-0987-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2012] [Indexed: 10/28/2022]
Abstract
Plasmalemmal vesicle-associated protein (PLVAP, PV-1) is specifically expressed in endothelial cells in which it localizes to diaphragms of fenestrae, caveolae, and transendothelial channels. To learn about its function, we generated mutant mice that lack PLVAP. In a C57BL/6N genetic background, homozygous Plvap-deficient embryos die before birth and suffer from subcutaneous edema, hemorrhages, and defects in the vascular wall of subcutaneous capillaries. In addition, hearts of Plvap(-/-) embryos show ventricular septal defects and thinner ventricular walls. In wild-type embryos, PLVAP and caveolae with a stomatal diaphragm are present in endothelial cells of subcutaneous capillaries and endocardium, while a diaphragm is missing in caveolae of Plvap(-/-) littermates. Plvap(-/-) mice in a mixed C57BL/6N/FVB-N genetic background are born and survive at the most for 4 weeks. Capillaries of exocrine and endocrine pancreas and of kidney peritubular interstitium were investigated in more detail as examples of fenestrated capillaries. In these vascular beds, Plvap(-/-) mice show a complete absence of diaphragms in fenestrae, caveolae, and transendothelial channels, findings which are associated with a substantial decrease in the number of endothelial fenestrae. The changes in the capillary phenotype correlate with a considerable retardation of postnatal growth and anemia. Plvap(-/-) mice provide an animal model to clarify the specific functional role of endothelial fenestrae and their contribution to passage of water and solutes in different organs.
Collapse
|
28
|
Gordon SM, Chaix J, Rupp LJ, Wu J, Madera S, Sun JC, Lindsten T, Reiner SL. The transcription factors T-bet and Eomes control key checkpoints of natural killer cell maturation. Immunity 2012; 36:55-67. [PMID: 22261438 DOI: 10.1016/j.immuni.2011.11.016] [Citation(s) in RCA: 576] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 10/24/2011] [Accepted: 11/15/2011] [Indexed: 11/20/2022]
Abstract
Natural killer (NK) cells play critical roles defending against tumors and pathogens. We show that mice lacking both transcription factors Eomesodermin (Eomes) and T-bet failed to develop NK cells. Developmental stability of immature NK cells constitutively expressing the death ligand TRAIL depended on T-bet. Conversely, maturation characterized by loss of constitutive TRAIL expression and induction of Ly49 receptor diversity and integrin CD49b (DX5(+)) required Eomes. Mature NK cells from which Eomes was deleted reverted to phenotypic immaturity if T-bet was present or downregulated NK lineage antigens if T-bet was absent, despite retaining expression of Ly49 receptors. Fetal and adult hepatic hematopoiesis restricted Eomes expression and limited NK development to the T-bet-dependent, immature stage, whereas medullary hematopoiesis permitted Eomes-dependent NK maturation in adult mice. These findings reveal two sequential, genetically separable checkpoints of NK cell maturation, the progression of which is metered largely by the anatomic localization of hematopoiesis.
Collapse
Affiliation(s)
- Scott M Gordon
- Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Bárcena A, Muench MO, Kapidzic M, Gormley M, Goldfien GA, Fisher SJ. Human placenta and chorion: potential additional sources of hematopoietic stem cells for transplantation. Transfusion 2012; 51 Suppl 4:94S-105S. [PMID: 22074633 DOI: 10.1111/j.1537-2995.2011.03372.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Hematopoietic stem cell (HSC) transplantation is an essential element of medical therapy, leading to cures of previously incurable hematological and nonhematological diseases. Many patients do not find matched donors in a timely manner, which has driven efforts to find alternative pools of transplantable HSCs. The use of umbilical cord blood (UCB) as a source of transplantable HSCs began more than two decades ago. However, the use of UCB as a reliable source of HSCs for transplantation still faces crucial challenges: the number of HSCs present in a unit of UCB is usually sufficient for younger children but not for adults, and the persistent delayed engraftment often seen can result in high rates of infection and mortality. STUDY DESIGN AND METHODS We propose a new approach to a solution of these problems: a potential increase of the limited number of UCB-HSCs available by harvesting HSCs contained in the placenta and the fetal chorionic membrane available at birth. RESULTS We investigated the presence of hematopoietic progenitors and HSCs in human placenta and chorion at different gestational ages. The characterization of these cells was performed by flow cytometry and immunolocalization, and their functional status was investigated by transplanting them into immunodeficient mice. CONCLUSION HSCs are present in extraembryonic tissues and could be banked in conjunction to the UCB-HSCs. This novel approach could have a large impact on the field of HSC banking and, more crucially, on the outcome of patients undergoing this treatment by greatly improving the use of life-saving hematopoietic transplants.
Collapse
Affiliation(s)
- Alicia Bárcena
- The Ely and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Center of Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, California 94143-0665, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Maternal quercetin intake during pregnancy results in an adapted iron homeostasis at adulthood. Toxicology 2011; 290:350-8. [DOI: 10.1016/j.tox.2011.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 10/21/2011] [Accepted: 10/22/2011] [Indexed: 11/24/2022]
|
31
|
Ok CY, Singh RR, Vega F. Aberrant activation of the hedgehog signaling pathway in malignant hematological neoplasms. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:2-11. [PMID: 22056910 DOI: 10.1016/j.ajpath.2011.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/01/2011] [Accepted: 09/14/2011] [Indexed: 01/08/2023]
Abstract
The hedgehog (HH) signaling pathway is a highly regulated signaling pathway that is important not only for embryonic development, tissue patterning, and organogenesis but also for tissue repair and the maintenance of stem cells in adult tissues. In the adult hematopoietic system, HH signaling regulates intrathymic T-cell development, and it is one of the survival signals provided by follicular dendritic cells to prevent apoptosis in germinal center B cells. HH signaling is required for primitive hematopoiesis; however, conflicting data have been reported regarding the role of the HH pathway in adult hematopoiesis. Inappropriate activation of the HH signaling pathway occurs in several human cancers, including hematological neoplasms. Emerging data demonstrate abnormal HH pathway activation in chronic lymphocytic leukemia/small lymphocytic lymphoma, plasma cell myeloma, mantle cell lymphoma, diffuse large B-cell lymphoma, ALK-positive anaplastic large cell lymphoma, chronic myelogenous leukemia, and acute leukemias. In these neoplasms, HH signaling promotes proliferation and survival, contributes to the maintenance of cancer stem cells, and enhances tolerance or resistance to chemotherapeutic agents. Here, we review current understanding of HH signaling, its role in the pathobiology of hematological malignancies, and its potential as a therapeutic target to treat malignant hematological neoplasms.
Collapse
Affiliation(s)
- Chi Young Ok
- Department of Pathology, University of Massachusetts Medical Center, Worcester, Massachusetts, USA
| | | | | |
Collapse
|
32
|
Abstract
The Hedgehog signaling pathway is highly conserved and plays an essential role in the embryonic development of a wide variety of organs. In adult tissues, such as the central nervous system, it may also be required for homeostasis and repair following injury. The role of Hedgehog signaling in regulating hematopoiesis is not entirely clear. Evidence has shown that Hedgehog signaling is required for both primitive hematopoiesis in the developing embryo, as well as for definitive hematopoiesis in the adult. However, several studies also suggest that Hedgehog pathway activity is completely dispensable in postnatal hematopoiesis. In this review, we discuss the current understanding of Hedgehog signaling in vertebrate hematopoiesis, as well as the contradictory findings that have been reported.
Collapse
Affiliation(s)
- Yiting Lim
- The Sidney Kimmel Comprehensive Cancer Center and Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | |
Collapse
|
33
|
Wheadon H, Ramsey JM, Dobbin E, Dickson GJ, Corrigan PM, Freeburn RW, Thompson A. Differential Hox expression in murine embryonic stem cell models of normal and malignant hematopoiesis. Stem Cells Dev 2011; 20:1465-76. [PMID: 21083428 DOI: 10.1089/scd.2010.0226] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The Hox family are master transcriptional regulators of developmental processes, including hematopoiesis. The Hox regulators, caudal homeobox factors (Cdx1-4), and Meis1, along with several individual Hox proteins, are implicated in stem cell expansion during embryonic development, with gene dosage playing a significant role in the overall function of the integrated Hox network. To investigate the role of this network in normal and aberrant, early hematopoiesis, we employed an in vitro embryonic stem cell differentiation system, which recapitulates mouse developmental hematopoiesis. Expression profiles of Hox, Pbx1, and Meis1 genes were quantified at distinct stages during the hematopoietic differentiation process and compared with the effects of expressing the leukemic oncogene Tel/PDGFRβ. During normal differentiation the Hoxa cluster, Pbx1 and Meis1 predominated, with a marked reduction in the majority of Hox genes (27/39) and Meis1 occurring during hematopoietic commitment. Only the posterior Hoxa cluster genes (a9, a10, a11, and a13) maintained or increased expression at the hematopoietic colony stage. Cdx4, Meis1, and a subset of Hox genes, including a7 and a9, were differentially expressed after short-term oncogenic (Tel/PDGFRβ) induction. Whereas Hoxa4-10, b1, b2, b4, and b9 were upregulated during oncogenic driven myelomonocytic differentiation. Heterodimers between Hoxa7/Hoxa9, Meis1, and Pbx have previously been implicated in regulating target genes involved in hematopoietic stem cell (HSC) expansion and leukemic progression. These results provide direct evidence that transcriptional flux through the Hox network occurs at very early stages during hematopoietic differentiation and validates embryonic stem cell models for gaining insights into the genetic regulation of normal and malignant hematopoiesis.
Collapse
Affiliation(s)
- Helen Wheadon
- Paul O'Gorman Leukaemia Research Centre, University of Glasgow, Glasgow, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The zebrafish is an excellent model system to study vertebrate blood cell development due to a highly conserved hematopoietic system, optical transparency, and amenability to both forward and reverse genetic approaches. The development of functional assays to analyze the biology of hematopoietic mutants and diseased animals remains a work in progress. Here we discuss recent advances in zebrafish hematology, prospective isolation techniques, cellular transplantation, and culture-based assays that now provide more rigorous tests of hematopoietic stem and progenitor cell function. Together with the proven strengths of the zebrafish, the development and refinement of these assays further enable efforts to better understand the development and evolution of the vertebrate hematopoietic system.
Collapse
Affiliation(s)
- David L Stachura
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | | |
Collapse
|
35
|
Zou GM, Lebron C, Fu Y. RNAi knockdown of redox signaling protein Ape1 in the differentiation of mouse embryonic stem cells. Methods Mol Biol 2010; 650:121-8. [PMID: 20686948 DOI: 10.1007/978-1-60761-769-3_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Murine embryonic stem cells (ES) are pluripotent cells and have the potential to become a wide variety of specialized cell types. Mouse ES cell differentiation can be regarded as a valuable biological tool that has led to major advances in our understanding of cell and developmental biology. In vitro differentiation of mouse ES cells can be directed to a specific lineage formation, such as hematopoietic lineage, by appropriate cytokine and/or growth factor stimulation. To study specific gene function in early developmental events, gene knockout approaches have been traditionally used; however, this is a time-consuming and expensive approach. Recently, we have shown that siRNA is an effective strategy to knockdown target gene expression, such as Ape1, during ES cell differentiation, and consequently, one can alter cell fates in ES-derived differentiated cells. This approach will be applicable to test the function of a wide variety of gene products using the ES cell differentiation system.
Collapse
Affiliation(s)
- Gang-Ming Zou
- Department of Pathology and Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
36
|
Zhou K, Huang L, Zhou Z, Hu C, Liu W, Zhou J, Sun H. Wnt and Notch signaling pathways selectively regulating hematopoiesis. Ann Hematol 2010; 89:749-57. [PMID: 20217087 DOI: 10.1007/s00277-010-0923-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2009] [Accepted: 02/08/2010] [Indexed: 11/30/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are the source of all blood cells in the adult body. The pool of HSPCs is formed during embryogenesis process through a well-characterized succession of intra-embryonic regions and organs. The spatial and temporal restrictions in definitive hematopoietic development and the signaling molecules involved are of great interest as these may prove useful for generating and expanding these clinically important cell populations ex vivo. To elucidate the mechanism by which definitive HSPCs expand during this limited developmental time frame, we analyzed the spatial and temporal programmed gene expression patterns of Wnt and Notch signaling members during hematopoietic development. Genes related to the Wnt signaling pathway were up-regulated in E10.5 aorta-gonad-mesonephros (AGM) and E14.5 fetal liver corresponding to the inherent proliferation potential of hematopoietic progenitors, whereas genes related to the Notch signaling pathway were identified as up-regulated in E10.5 AGM, and bone marrow coincides with the maintenance of undifferentiation state of hematopoietic progenitors. Our findings suggest that Wnt and Notch signalings are integrated and are selectively regulating hematopoiesis. The spatial and temporal balance between Wnt and Notch signaling orchestrates the precise progression of hematopoietic progenitors.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Hematology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|
37
|
Zhou K, Hu C, Zhou Z, Huang L, Liu W, Sun H. Fetal liver stromal cells promote hematopoietic cell expansion. Biochem Biophys Res Commun 2009; 387:596-601. [DOI: 10.1016/j.bbrc.2009.07.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 07/14/2009] [Indexed: 11/27/2022]
|
38
|
Corrigan PM, Dobbin E, Freeburn RW, Wheadon H. Patterns of Wnt/Fzd/LRP gene expression during embryonic hematopoiesis. Stem Cells Dev 2009; 18:759-72. [PMID: 18800919 DOI: 10.1089/scd.2008.0270] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Wnt signaling plays several roles in hematopoiesis, promoting hemopoietic stem cell (HSC) self-renewal, providing proliferative signals for immature progenitors and regulating lineage commitment. To ascertain which Wnt proteins and receptors are important during hematopoietic development, we used two systems; in vitro hematopoietic differentiation of embryonic stem (ES) cells and tissues isolated from sites specific for hematopoiesis during mouse embryogenesis. Initially genes involved in hematopoiesis were profiled and indicate differentiating ES cells undergo a wave of primitive hematopoiesis (Day 3.75) similar to the mouse yolk sac, followed by a wave of more definitive hematopoiesis (Day 7.75) comparable to the aorta-gonad-mesonephros (AGM) and E15.5 liver with lineage commitment by Day 15. A similar biphasic expression pattern occurred for Wnt/Fzd/LRP genes with Wnt 3, 5a, 8a, Fzd4, and LRP5 becoming upregulated during primitive hematopoiesis, followed by Wnt3a, 6, 7b, 10b, and 16 during more definitive hematopoiesis. High expression of Wnt5a, Fzd4, and LRP5 during the first phase of hematopoiesis suggests these genes are involved in early hematopoietic regulation. Wnt3a and 16 were also expressed at specific stages, with Wnt16 detected when the earliest lymphoid progenitors are formed (AGM and 2 degrees BC of ES differentiation). Wnt3a expression corresponded with the induction of definitive hematopoiesis a period, which involves rapid expansion of HSC (Day 7.75 of ES differentiation, AGM and E15.5 liver). Supplementation with Wnt3a during ES hematopoietic differentiation increased proliferation and appeared to promote stem cell expansion. Overall this study provides valuable information on the Wnt/Fzd/LRP involved in supporting embryonic hematopoiesis.
Collapse
Affiliation(s)
- Pamela M Corrigan
- Biomedical Sciences Research Institute, University of Ulster, Cromore Road, Coleraine, Northern Ireland
| | | | | | | |
Collapse
|
39
|
Warga RM, Kane DA, Ho RK. Fate mapping embryonic blood in zebrafish: multi- and unipotential lineages are segregated at gastrulation. Dev Cell 2009; 16:744-55. [PMID: 19460350 DOI: 10.1016/j.devcel.2009.04.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 03/02/2009] [Accepted: 04/17/2009] [Indexed: 10/20/2022]
Abstract
Vertebrate hematopoiesis first produces primitive (embryonic) lineages and ultimately generates the definitive (adult) blood. Whereas definitive hematopoiesis may produce many diverse blood types via a common multipotent progenitor, primitive hematopoiesis has been thought to produce only erythrocytes or macrophages via progenitors that are unipotent for single blood lineages. Using a variety of in vivo cell-tracing techniques, we show that primitive blood in zebrafish derives from two different progenitor types. On the dorsal gastrula, blood progenitors are unipotential cells that divide infrequently, populate the rostral blood islands, and differentiate into macrophages. In contrast, on the ventral gastrula, blood progenitors are multipotential cells with rapid cell cycles; populate the intermediate cell mass; and differentiate into erythrocytes, neutrophils, and thrombocytes. Our results demonstrate the existence of primitive hematopoietic progenitors that are segregated very early in development and that are specified to produce either a unipotent or a multipotent blood cell lineage.
Collapse
Affiliation(s)
- Rachel M Warga
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008, USA.
| | | | | |
Collapse
|
40
|
Deng HB. Inhibitory effects of Feiyanning Decoction on proliferation, migration and tube formation of human umbilical vein endothelial cells in vitro. ACTA ACUST UNITED AC 2009; 7:255-60. [DOI: 10.3736/jcim20090311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
41
|
Ohata S, Nawa M, Kasama T, Yamasaki T, Sawanobori K, Hata S, Nakamura T, Asaoka Y, Watanabe T, Okamoto H, Hara T, Terai S, Sakaida I, Katada T, Nishina H. Hematopoiesis-dependent expression of CD44 in murine hepatic progenitor cells. Biochem Biophys Res Commun 2009; 379:817-23. [DOI: 10.1016/j.bbrc.2008.12.149] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 12/12/2008] [Indexed: 11/16/2022]
|
42
|
Park TS, Zambidis ET, Lucitti JL, Logar A, Keller BB, Péault B. Human embryonic stem cell-derived hematoendothelial progenitors engraft chicken embryos. Exp Hematol 2008; 37:31-41. [PMID: 18954935 DOI: 10.1016/j.exphem.2008.08.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 08/26/2008] [Accepted: 08/26/2008] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To investigate whether human embryonic stem cells (hESC) committed in culture into hematopoietic/endothelial cell progenitors can be further developed into mature blood and vascular cells following transplantation into chicken embryos. MATERIALS AND METHODS The yolk sac of 42- to 44-hour chicken embryos received yolk sac injections of unfractionated human embryoid body (hEB) cells, CD34-positive hEB cells, or CD34+CD45+ granulocyte colony-stimulating factor-mobilized human peripheral blood hematopoietic stem-progenitor cells. Human cells in the host were detected by flow cytometry and immunohistochemistry. RESULTS All injected cell populations engrafted chicken hematopoietic organs, as assessed by detection of CD45+ cells in the spleen, bursa of Fabricius, and thymus. CD34+ day -10 hEB cells showed the highest efficiency for producing human CD45+ cells in the hosts and yielded human glycophorin A+ erythroid, CD13+ myeloid, and CD19+ lymphoid cells in the spleen and bursa of Fabricius. Spleen cells from chimeric embryos also contained human colony-forming units-granulocyte macrophage, as assessed in methylcellulose colony-forming assays. Human endothelial cells expressing vascular endothelial-cadherin, von Willebrand factor, CD31, and the receptor for the Ulex europaeus lectin were also observed in the yolk sac vasculature following injection of either unfractionated or CD34+ day -10 hEB cells. CONCLUSION Primitive angiohematopoietic stem cells (total and CD34+ day -10 hEB cells) as well as adult hematopoietic stem cells could home to intraembryonic blood-forming organs following injection into the yolk sac. These observations demonstrate the utility of the avian embryo as a convenient and reliable host to model the angiohematopoietic development of human embryonic, or other early stem cells.
Collapse
Affiliation(s)
- Tea Soon Park
- Stem Cell Research Center, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15213, USA
| | | | | | | | | | | |
Collapse
|
43
|
Seifert T, Stoelting S, Wagner T, Peters SO. Vasculogeneic maturation of E14 embryonic stem cells with evidence of early vascular endothelial growth factor independency. Differentiation 2008; 76:857-67. [DOI: 10.1111/j.1432-0436.2008.00271.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Cheng X, Huber TL, Chen VC, Gadue P, Keller GM. Numb mediates the interaction between Wnt and Notch to modulate primitive erythropoietic specification from the hemangioblast. Development 2008; 135:3447-58. [PMID: 18799543 DOI: 10.1242/dev.025916] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
During embryonic development, the establishment of the primitive erythroid lineage in the yolk sac is a temporally and spatially restricted program that defines the onset of hematopoiesis. In this report, we have used the embryonic stem cell differentiation system to investigate the regulation of primitive erythroid development at the level of the hemangioblast. We show that the combination of Wnt signaling with inhibition of the Notch pathway is required for the development of this lineage. Inhibition of Notch signaling at this stage appears to be mediated by the transient expression of Numb in the hemangioblast-derived blast cell colonies. Activation of the Notch pathway was found to inhibit primitive erythropoiesis efficiently through the upregulation of inhibitors of the Wnt pathway. Together, these findings demonstrate that specification of the primitive erythroid lineage is controlled, in part, by the coordinated interaction of the Wnt and Notch pathways, and position Numb as a key mediator of this process.
Collapse
Affiliation(s)
- Xin Cheng
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
45
|
RNAi knockdown of transcription factor Pu.1 in the differentiation of mouse embryonic stem cells. Methods Mol Biol 2008. [PMID: 18453253 DOI: 10.1007/978-1-59745-536-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Murine embryonic stem (mES) cells are pluripotent cells derived from the inner cell mass of the preimplantation blastocyst. These cells are primitive and undifferentiated and have the potential to become a wide variety of specialized cell types. Mouse ES cells can be regarded as a versatile biological tool that has led to major advances in our understanding of cell and developmental biology. To study specific gene function in early developmental events, gene knockout approaches have been traditionally used, however, this is a time-consuming and expensive approach. Recently, we have shown that small interfering RNA is an effective strategy to knockdown target gene expression, during ES cell differentiation, and consequently, one can alter cell fates in ES-derived differentiated cells. This method will be useful to test the function of a wide variety of gene products using the ES cell differentiation system.
Collapse
|
46
|
Bertrand JY, Kim AD, Teng S, Traver D. CD41+ cmyb+ precursors colonize the zebrafish pronephros by a novel migration route to initiate adult hematopoiesis. Development 2008; 135:1853-62. [PMID: 18417622 PMCID: PMC2762343 DOI: 10.1242/dev.015297] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Development of the vertebrate blood lineages is complex, with multiple waves of hematopoietic precursors arising in different embryonic locations. Monopotent, or primitive, precursors first give rise to embryonic macrophages or erythrocytes. Multipotent, or definitive, precursors are subsequently generated to produce the adult hematopoietic lineages. In both the zebrafish and the mouse, the first definitive precursors are committed erythromyeloid progenitors (EMPs) that lack lymphoid differentiation potential. We have previously shown that zebrafish EMPs arise in the posterior blood island independently from hematopoietic stem cells (HSCs). In this report, we demonstrate that a fourth wave of hematopoietic precursors arises slightly later in the zebrafish aorta/gonad/mesonephros (AGM) equivalent. We have identified and prospectively isolated these cells by CD41 (itga2b) and cmyb expression. Unlike EMPs, CD41(+) AGM cells colonize the thymus to generate rag2(+) T lymphocyte precursors. Timelapse imaging and lineage tracing analyses demonstrate that AGM-derived precursors use a previously undescribed migration pathway along the pronephric tubules to initiate adult hematopoiesis in the developing kidney, the teleostean equivalent of mammalian bone marrow. Finally, we have analyzed the gene expression profiles of EMPs and AGM precursors to better understand the molecular cues that pattern the first definitive hematopoietic cells in the embryo. Together, these studies suggest that expression of CD41 and cmyb marks nascent HSCs in the zebrafish AGM, and provide the means to further dissect HSC generation and function in the early vertebrate embryo.
Collapse
Affiliation(s)
- Julien Y Bertrand
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | |
Collapse
|
47
|
Roubelakis MG, Martin-Rendon E, Tsaknakis G, Stavropoulos A, Watt SM. The murine ortholog of the SHP-2 binding molecule, PZR accelerates cell migration on fibronectin and is expressed in early embryo formation. J Cell Biochem 2008; 102:955-69. [PMID: 17440960 DOI: 10.1002/jcb.21334] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The human P zero-related protein (hPZR) has a unique function in regulating cell migration. This activity is dependent on both its cytoplasmic immunoreceptor tyrosine inhibitory motif (ITIM) and its interaction with the tyrosine protein phosphatase, src homology phosphatase-2 (SHP-2). Here, using in silico and cDNA cloning approaches, we identify the murine ITIM-containing hPZR ortholog, mPZR, together with its ITIM-less isoform, mPZRb. We demonstrate that, like hPZR, these type 1 integral murine transmembrane isoforms are derived by differential splicing from a single gene transcription unit on mouse chromosome 1, and differ only in the sequence of their cytoplasmic domains. Importantly, mPZR mimicks hPZR functionally by accelerating SHP-2-mediated cell migration on fibronectin. Interestingly, we further demonstrate that although neither mPZR nor mPZRb is expressed in murine pluripotent embryonic stem cells, they first appear at approximately day 3 of blastocyst formation in vivo and of embryoid body formation in vitro. These studies thus provide the basis for defining the function of the mPZR isoforms in vivo, particularly with respect to their roles in regulating SHP-2-dependent cell migration during development.
Collapse
Affiliation(s)
- Maria G Roubelakis
- Stem Cell Research Laboratory, National Blood Service, NHS Blood and Transplant Authority, Oxford OX3 5BG, UK.
| | | | | | | | | |
Collapse
|
48
|
Luong E, Gerecht S. Stem cells and scaffolds for vascularizing engineered tissue constructs. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2008; 114:129-72. [PMID: 19082932 DOI: 10.1007/10_2008_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The clinical impact of tissue engineering depends upon our ability to direct cells to form tissues with characteristic structural and mechanical properties from the molecular level up to organized tissue. Induction and creation of functional vascular networks has been one of the main goals of tissue engineering either in vitro, for the transplantation of prevascularized constructs, or in vivo, for cellular organization within the implantation site. In most cases, tissue engineering attempts to recapitulate certain aspects of normal development in order to stimulate cell differentiation and functional tissue assembly. The induction of tissue growth generally involves the use of biodegradable and bioactive materials designed, ideally, to provide a mechanical, physical, and biochemical template for tissue regeneration. Human embryonic stem cells (hESCs), derived from the inner cell mass of a developing blastocyst, are capable of differentiating into all cell types of the body. Specifically, hESCs have the capability to differentiate and form blood vessels de novo in a process called vasculogenesis. Human ESC-derived endothelial progenitor cells (EPCs) and endothelial cells have substantial potential for microvessel formation, in vitro and in vivo. Human adult EPCs are being isolated to understand the fundamental biology of how these cells are regulated as a population and to explore whether these cells can be differentiated and reimplanted as a cellular therapy in order to arrest or even reverse damaged vasculature. This chapter focuses on advances made toward the generation and engineering of functional vascular tissue, focusing on both the scaffolds - the synthetic and biopolymer materials - and the cell sources - hESCs and hEPCs.
Collapse
Affiliation(s)
- E Luong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, USA
| | | |
Collapse
|
49
|
Bertrand JY, Kim AD, Violette EP, Stachura DL, Cisson JL, Traver D. Definitive hematopoiesis initiates through a committed erythromyeloid progenitor in the zebrafish embryo. Development 2007; 134:4147-56. [PMID: 17959717 DOI: 10.1242/dev.012385] [Citation(s) in RCA: 258] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Shifting sites of blood cell production during development is common across widely divergent phyla. In zebrafish, like other vertebrates, hematopoietic development has been roughly divided into two waves, termed primitive and definitive. Primitive hematopoiesis is characterized by the generation of embryonic erythrocytes in the intermediate cell mass and a distinct population of macrophages that arises from cephalic mesoderm. Based on previous gene expression studies, definitive hematopoiesis has been suggested to begin with the generation of presumptive hematopoietic stem cells (HSCs) along the dorsal aorta that express c-myb and runx1. Here we show, using a combination of gene expression analyses, prospective isolation approaches, transplantation, and in vivo lineage-tracing experiments, that definitive hematopoiesis initiates through committed erythromyeloid progenitors (EMPs) in the posterior blood island (PBI) that arise independently of HSCs. EMPs isolated by coexpression of fluorescent transgenes driven by the lmo2 and gata1 promoters exhibit an immature, blastic morphology and express only erythroid and myeloid genes. Transplanted EMPs home to the PBI, show limited proliferative potential, and do not seed subsequent hematopoietic sites such as the thymus or pronephros. In vivo fate-mapping studies similarly demonstrate that EMPs possess only transient proliferative potential, with differentiated progeny remaining largely within caudal hematopoietic tissue. Additional fate mapping of mesodermal derivatives in mid-somitogenesis embryos suggests that EMPs are born directly in the PBI. These studies provide phenotypic and functional analyses of the first hematopoietic progenitors in the zebrafish embryo and demonstrate that definitive hematopoiesis proceeds through two distinct waves during embryonic development.
Collapse
Affiliation(s)
- Julien Y Bertrand
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abstract
Lymphoid cell development is an ordered process that begins in the embryo in specific sites and progresses through multiple differentiative steps to production of T- and B-cells. Lymphoid cell production is marked by the rearrangement process, which gives rise to mature cells expressing antigen-specific T-cell receptors (TCR) and immunoglobulins (Ig). While most transcripts arising from TCR or Ig loci reflect fully rearranged genes, germline transcripts have been identified, but these have always been thought to have no specific purpose. Germline transcription from either unrearranged TCR or unrearranged Ig loci was commonly associated with an open chromatin configuration during VDJ recombination. Since only early T and B cells undergo rearrangement, the association of germline transcription with the rearrangement process has served as an appropriate explanation for expression of these transcripts in early T- and B-cell progenitors. However, germline TCR-V beta 8.2 transcripts have now been identified in cells from RAG(-/-) mice, in the absence of the VDJ rearrangement event and recombinase activity. Recent data now suggest that germline TCR-V beta transcription is a developmentally regulated lymphoid cell phenomenon. Germline transcripts could also encode a protein that plays a functional role during lymphoid cell development. In the least, germline transcripts serve as markers of early lymphoid progenitors.
Collapse
|