1
|
Dimitrijević D, Savić T, Anđelković M, Prolić Z, Janać B. Extremely low frequency magnetic field (50 Hz, 0.5 mT) modifies fitness components and locomotor activity ofDrosophila subobscura. Int J Radiat Biol 2014; 90:337-43. [DOI: 10.3109/09553002.2014.888105] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
2
|
Ketabi N, Mobasheri H, Faraji-Dana R. Electromagnetic fields (UHF) increase voltage sensitivity of membrane ion channels; possible indication of cell phone effect on living cells. Electromagn Biol Med 2013; 34:1-13. [PMID: 24236537 DOI: 10.3109/15368378.2013.844706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of ultra high frequency (UHF) nonionizing electromagnetic fields (EMF) on the channel activities of nanopore forming protein, OmpF porin, were investigated. The voltage clamp technique was used to study the single channel activity of the pore in an artificial bilayer in the presence and absence of the electromagnetic fields at 910 to 990 MHz in real time. Channel activity patterns were used to address the effect of EMF on the dynamic, arrangement and dielectric properties of water molecules, as well as on the hydration state and arrangements of side chains lining the channel barrel. Based on the varied voltage sensitivity of the channel at different temperatures in the presence and absence of EMF, the amount of energy transferred to nano-environments of accessible groups was estimated to address the possible thermal effects of EMF. Our results show that the effects of EMF on channel activities are frequency dependent, with a maximum effect at 930 MHz. The frequency of channel gating and the voltage sensitivity is increased when the channel is exposed to EMF, while its conductance remains unchanged at all frequencies applied. We have not identified any changes in the capacitance and permeability of membrane in the presence of EMF. The effect of the EMF irradiated by cell phones is measured by Specific Absorption Rate (SAR) in artificial model of human head, Phantom. Thus, current approach applied to biological molecules and electrolytes might be considered as complement to evaluate safety of irradiating sources on biological matter at molecular level.
Collapse
Affiliation(s)
- N Ketabi
- Laboratory of Membrane Biophysics and Macromolecules, Institute of Biochemistry and Biophysics, University of Tehran , Tehran , Iran
| | | | | |
Collapse
|
3
|
Fojt L, Strašák L, Vetterl V. Extremely-low frequency magnetic field effects on sulfate reducing bacteria viability. Electromagn Biol Med 2010; 29:177-85. [PMID: 20923330 DOI: 10.3109/15368378.2010.513304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
50 Hz magnetic fields effects on Sulfate Reducing Bacteria (SRB) viability were studied by colony forming units (CFU) counting. We found a 15% decrease of CFU number after magnetic field exposure (B=7.1 mT, f=50 Hz, t=24 min) compared to the control samples. These results are in good agreement with our previous work on other bacterial strains. The magnetic field effects on SRB are relatively large for small magnetic fields. The data correlations have been subjected to a simple physical chemical analysis, yielding surprisingly large estimates for the characteristic magnetic reaction susceptibility, even when the entire bacterium is assumed to be the direct target of interaction of the magnetic ac fields for the exposures in the time range from 3-24 min.
Collapse
Affiliation(s)
- Lukáš Fojt
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, Brno, Czech Republic.
| | | | | |
Collapse
|
4
|
Emre M, Cetiner S, Zencir S, Unlukurt I, Kahraman I, Topcu Z. Oxidative Stress and Apoptosis in Relation to Exposure to Magnetic Field. Cell Biochem Biophys 2010; 59:71-7. [DOI: 10.1007/s12013-010-9113-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
5
|
Saczko J, Nowak M, Skolucka N, Kulbacka J, Kotulska M. The effects of the electro-photodynamic in vitro treatment on human lung adenocarcinoma cells. Bioelectrochemistry 2010; 79:90-4. [DOI: 10.1016/j.bioelechem.2009.12.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Revised: 11/25/2009] [Accepted: 12/07/2009] [Indexed: 01/25/2023]
|
6
|
Kovacic P, Somanathan R. Electromagnetic fields: mechanism, cell signaling, other bioprocesses, toxicity, radicals, antioxidants and beneficial effects. J Recept Signal Transduct Res 2010; 30:214-26. [DOI: 10.3109/10799893.2010.488650] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Kovacic P, Hall ME. Bioelectrochemistry, reactive oxygen species, receptors, and cell signaling: how interrelated? J Recept Signal Transduct Res 2010; 30:1-9. [DOI: 10.3109/10799890903517939] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Sekine K, Takeda T, Nagaomo K, Matsushima E. Boundary-element calculations for amplification of effects of low-frequency electric fields in a doublet-shaped biological cell. Bioelectrochemistry 2010; 77:106-13. [DOI: 10.1016/j.bioelechem.2009.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 05/18/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
|
9
|
Hristov J. Magnetic field assisted fluidization – a unified approach. Part 8. Mass transfer: magnetically assisted bioprocesses. REV CHEM ENG 2010. [DOI: 10.1515/revce.2010.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Moisescu MG, Leveque P, Bertrand JR, Kovacs E, Mir LM. Microscopic observation of living cells during their exposure to modulated electromagnetic fields. Bioelectrochemistry 2008; 74:9-15. [DOI: 10.1016/j.bioelechem.2007.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/20/2007] [Accepted: 11/06/2007] [Indexed: 12/16/2022]
|
11
|
Effects of Continuous and Intermittent Magnetic Fields on Oxidative Parameters In vivo. Neurochem Res 2008; 34:238-43. [DOI: 10.1007/s11064-008-9760-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 05/22/2008] [Indexed: 10/21/2022]
|
12
|
Erdal N, Gürgül S, Tamer L, Ayaz L. Effects of long-term exposure of extremely low frequency magnetic field on oxidative/nitrosative stress in rat liver. JOURNAL OF RADIATION RESEARCH 2008; 49:181-187. [PMID: 18367817 DOI: 10.1269/jrr.07070] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Thirty-two adult Wistar-Albino female and male rats were used to investigate the long-term (45 days) effects of extremely low frequency magnetic field (ELF-MF; 50Hz, 1mT, 4h/day) exposure on oxidative/nitrosative stress in liver tissues of rats. The rats were divided randomly into four groups: female control (FC; n = 8) and MF-exposed female rats (F-MF; n = 8); male control (MC; n = 8) and MF-exposed male rats (M-MF; n = 8). Liver tissue from each animal was harvested and utilized for malondialdehyde (MDA) and 3-nitrotyrosine (3-NT) detection. MDA levels were measured by MDA-TBA method, while the 3-NT levels were determined by the HPLC-UV system. There were no significant differences between the MDA levels of the control (FC; MC) and MF-exposed (F-MF; M-MF) rats (P > 0.05). In the F-MF rats, 3-NT levels were significantly increased when compared to those of the FC rats (P < 0.05). There were no significant differences between the 3-NT levels of the MC and M-MF rats. In conclusion, our study suggests that the long-term ELF-MF exposure may enhance the oxidative/nitrosative stress in liver tissue of the female rats and could have a deteriorative effect on cellular proteins rather than lipids by enhancing 3-NT formation.
Collapse
Affiliation(s)
- Nurten Erdal
- Department of Biophysics, Faculty of Medicine, Mersin University, Turkey.
| | | | | | | |
Collapse
|
13
|
Xu C, Fan Z, Chao YL, Du L, Zhang FQ. Magnetic fields of 10mT and 120mT change cell shape and structure of F-actins of periodontal ligament cells. Bioelectrochemistry 2007; 72:41-6. [PMID: 18160349 DOI: 10.1016/j.bioelechem.2007.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2007] [Revised: 10/28/2007] [Accepted: 11/16/2007] [Indexed: 01/15/2023]
Abstract
Dental magnetic attachments, usually applied locally to oral cavities, produce stray fields (flux leakage) spreading in adjacent tissues. It has been found that human periodontal ligament (PDL) cells change their geometry and the structure of their cytoskeleton F-actins when the cell cultures are exposed to B-field strengths of B = 10mT and 120mT, respectively, which are similar to those generated by dental magnetic attachments. Analytically, after long-time exposures to B-fields for 12h, 36 h and 60 h, respectively, cytoskeleton F-actins are labeled with a fluorescent dye and observed under a laser scanning confocal microscope. The geometrical cell parameters of cell length and cell width and the fluorescence emission of labeled F-actins, respectively, were determined and subjected to an automatic image analysis using a special software. The results on cell shrinkage and filament reorganizations were statistically analyzed by the program ANOVA (P < 0.05). It was found that only long-time (hours) exposure to high fields in the order of 0.1T may produce tissue irritations during long-time medical treatments using open- and closed-field dental magnetic attachments.
Collapse
Affiliation(s)
- Chun Xu
- Department of Prosthodontics, Affiliated Ninth People's Hospital, Medical School, Shanghai Jiao Tong University, Shanghai 200011, China
| | | | | | | | | |
Collapse
|
14
|
Beneduci A, Chidichimo G, Tripepi S, Perrotta E, Cufone F. Antiproliferative effect of millimeter radiation on human erythromyeloid leukemia cell line K562 in culture: Ultrastructural- and metabolic-induced changes. Bioelectrochemistry 2007; 70:214-20. [DOI: 10.1016/j.bioelechem.2006.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2006] [Revised: 06/19/2006] [Accepted: 07/07/2006] [Indexed: 11/26/2022]
|
15
|
Jia C, Zhou Z, Liu R, Chen S, Xia R. EGF receptor clustering is induced by a 0.4 mT power frequency magnetic field and blocked by the EGF receptor tyrosine kinase inhibitor PD153035. Bioelectromagnetics 2007; 28:197-207. [PMID: 17019730 DOI: 10.1002/bem.20293] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Atomic force microscopy (AFM), transmission electron microscopy (TEM), and confocal laser scanning microscopy were used to investigate the effects of a 50 Hz 0.4 mT magnetic field (MF) on the clustering of purified epidermal growth factor receptors (EGFRs) and EGFRs in Chinese hamster lung (CHL) cell membrane. The results demonstrate that exposing purified EGFRs to the MF for 30 min induces receptor clustering. The peak height of apparent clusters increased from 1.42 +/- 0.18 (sham-exposed) to 3.08 +/- 0.38 nm (exposed) while the mean half-width increased from 21.7 +/- 2.2 to 33.0 +/- 4.0 nm. A similar effect was also observed by TEM. Treatment of purified EGFR with PD153035 (PD), an EGFR-specific tyrosine kinase (TK) inhibitor, inhibited the MF-induced EGFR clustering of the purified proteins, an effect also observed for the receptors in cell membrane in the absence of EGF. These results strongly suggest that the 50 Hz 0.4 mT MF interferes with the EGFR signaling pathway, most likely by interacting with the cytoplasmic TK domain.
Collapse
Affiliation(s)
- Caili Jia
- Biophysics Laboratory, Physics Department, East China Normal University, Shanghai, China
| | | | | | | | | |
Collapse
|
16
|
Ravera S, Falugi C, Calzia D, Pepe IM, Panfoli I, Morelli A. First Cell Cycles of Sea Urchin Paracentrotus lividus Are Dramatically Impaired by Exposure to Extremely Low-Frequency Electromagnetic Field. Biol Reprod 2006; 75:948-53. [PMID: 16957026 DOI: 10.1095/biolreprod.106.051227] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Exposure of fertilized eggs of the sea urchin Paracentrotus lividus to an electromagnetic field of 75-Hz frequency and low amplitudes (from 0.75 to 2.20 mT of magnetic component) leads to a dramatic loss of synchronization of the first cell cycle, with formation of anomalous embryos linked to irregular separation of chromatids during the mitotic events. Because acetylcholinesterase (ACHE) is thought to regulate the embryonic first developmental events of the sea urchin, its enzymatic activity was assayed in embryo homogenates and decreased by 48% when the homogenates were exposed to the same pulsed field. This enzymatic inactivation had a threshold of about 0.75 +/- 0.01 mT. The same field threshold was found for the effect on the formation of anomalous embryos of P. lividus. Moreover, ACHE inhibitors seem to induce the same teratological effects as those caused by the field, while blockers of acetylcholine (ACh) receptors are able to antagonize those effects. We conclude that one of the main causes of these dramatic effects on the early development of the sea urchin by field exposure could be the accumulation of ACh due to ACHE inactivation. The crucial role of the membrane in determining the conditions for enzyme inactivation is discussed.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Biology, University of Genoa, 16132 Genova, Italy
| | | | | | | | | | | |
Collapse
|
17
|
Calota V, Dragoiu S, Meghea A, Giurginca M. Decrease of luminol chemiluminescence upon exposure of human blood serum to 50Hz electric fields. Bioelectrochemistry 2006; 69:126-7. [PMID: 16517219 DOI: 10.1016/j.bioelechem.2005.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Accepted: 12/23/2005] [Indexed: 11/28/2022]
Abstract
The chemiluminescence of luminol, after 1 and 2h in vitro exposure of human serum to 50 Hz electric fields of different intensities, decreases as compared to the controls. This indicates a field-induced decrease in the concentration of the free radicals. The report is limited to the key kinetic and field data, inviting independent kinetic analysis of the data in terms of reaction moments or reaction susceptibilities for the various normal modes indicated by the data.
Collapse
Affiliation(s)
- Violeta Calota
- Institute of Public Health, Occupational Health Department, 1-3 Dr. Leonte Street; Bucharest, Romania.
| | | | | | | |
Collapse
|
18
|
Jelenković A, Janać B, Pesić V, Jovanović DM, Vasiljević I, Prolić Z. Effects of extremely low-frequency magnetic field in the brain of rats. Brain Res Bull 2005; 68:355-60. [PMID: 16377443 DOI: 10.1016/j.brainresbull.2005.09.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2005] [Revised: 09/19/2005] [Accepted: 09/22/2005] [Indexed: 11/16/2022]
Abstract
An extremely low-frequency magnetic field (50 Hz, 0.5 mT) was used to investigate its possible effect on the brain of adult male Wistar rats following a 7-day exposure. The control rats were sham-exposed. Superoxide dismutase activities and production of superoxide radicals, lipid peroxidation, and nitric oxide were examined in the frontal cortex, striatum, basal forebrain, hippocampus, brainstem, and cerebellum. Significantly increased superoxide radical contents were registered in all the structures examined. Production of nitric oxide, which can oppose superoxide radical activities, was significantly increased in some structures: the frontal cortex, basal forebrain, hippocampus, and brainstem. Augmentation of lipid peroxydation was also observed, with significance only in the basal forebrain and frontal cortex, in spite of the significantly increased superoxide dismutase activities and nitric oxide production in the basal forebrain, and increased production of nitric oxide in the frontal cortex. The results obtained indicate that a 7-day exposure to extremely low-frequency magnetic field can be harmful to the brain, especially to the basal forebrain and frontal cortex due to development of lipid peroxidation. Also, high production of superoxide anion in all regions may compromise nitric oxide signaling processes, due to nitric oxide consumption in the reaction with the superoxide radical.
Collapse
Affiliation(s)
- A Jelenković
- Institute for Biological Research Sinisa Stanković, Bulevar Despota Stefana 142, 11000 Beograd, Serbia and Montenegro.
| | | | | | | | | | | |
Collapse
|
19
|
Morelli A, Ravera S, Panfoli I, Pepe IM. Effects of extremely low frequency electromagnetic fields on membrane-associated enzymes. Arch Biochem Biophys 2005; 441:191-8. [PMID: 16126157 DOI: 10.1016/j.abb.2005.07.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2005] [Accepted: 07/23/2005] [Indexed: 10/25/2022]
Abstract
The effects of extremely low frequency electromagnetic fields of 75 Hz were studied on different membrane-associated enzymes. Only the activities of three enzymes out of seven exposed to the field decreased approximately of about 54-61% with field amplitudes above a threshold of 73-151 microT depending on the enzyme. The same field had no effect on the activities of either integral membrane enzymes such as Ca,ATPase, Na/K,ATPase, and succinic dehydrogenase or peripheral membrane enzymes such as photoreceptor PDE. The decrease in enzymatic activity of the field-sensitive enzymes was independent of the time of permanence in the field and was completely reversible. When these enzymes were solubilized with Triton, no effect of the field was obtained on the enzymatic activity, suggesting the crucial role of the membrane in determining the conditions for enzyme inactivation. The role of the particular linkage of the field-sensitive enzymes to the membranes is also discussed.
Collapse
Affiliation(s)
- A Morelli
- Department of DIBISAA, University of Genoa, viale Benedetto XV, 3 Genova 16131, Italy
| | | | | | | |
Collapse
|
20
|
Kindzelskii AL, Petty HR. Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2005; 35:1-26. [PMID: 16044273 DOI: 10.1007/s00249-005-0001-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2005] [Revised: 05/13/2005] [Accepted: 06/23/2005] [Indexed: 10/25/2022]
Abstract
We have tested Galvanovskis and Sandblom's prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K(v)1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca(2+) channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K(+) and Ca(2+) channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K(+) channel blockers act by reducing the neutrophil's membrane potential. Mibefradil and SKF93635, which block T-type Ca(2+) channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca(2+) signaling. Electric fields enhanced Ca(2+) spike amplitude and triggered formation of a second traveling Ca(2+) wave. Mibefradil blocked Ca(2+) spikes and waves. Although 10 microM SKF96365 mimicked mibefradil, 7 microM SKF96365 specifically inhibited electric field-induced Ca(2+) signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-beta-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.
Collapse
Affiliation(s)
- Andrei L Kindzelskii
- Department of Ophthalmology and Visual Sciences, The University of Michigan Medical School, 1000 Wall Street, Ann Arbor, MI 48105, USA
| | | |
Collapse
|
21
|
Ravera S, Repaci E, Morelli A, Pepe IM, Botter R, Beruto D. Effects of extremely low frequency electromagnetic fields on the adenylate kinase activity of rod outer segment of bovine retina. Bioelectromagnetics 2005; 25:545-51. [PMID: 15376242 DOI: 10.1002/bem.20031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Extremely low frequency electromagnetic fields (ELF-EMFs) of 75 Hz with amplitudes above a threshold of about 125 microT have a dramatic effect on the adenylate kinase (AK) activity of the rod outer segment (ROS) membranes. In fact, the ATP production by ROS membranes or by purified disk membranes placed in the field decreased by approximately 54%. The decrease in enzymatic activity was independent of the time of exposure to the field and was completely reversible. When disk membranes were solubilized with Triton or a soluble isoform of AK was used, negligible effects of the field were obtained on the enzymatic activity, suggesting that the membrane has an important role in determining the conditions for the enzyme inactivation.
Collapse
Affiliation(s)
- S Ravera
- Department of DIBISAA, University of Genoa, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Sensitized Photoinactivation of Gramicidin Channels: Technique and Applications. ACTA ACUST UNITED AC 2005. [DOI: 10.1016/s1554-4516(05)01005-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
23
|
Ravera S, Repaci E, Morelli A, Pepe IM, Botter R, Beruto D. Electromagnetic field of extremely low frequency decreased adenylate kinase activity in retinal rod outer segment membranes. Bioelectrochemistry 2004; 63:317-20. [PMID: 15110295 DOI: 10.1016/j.bioelechem.2003.10.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Revised: 09/19/2003] [Accepted: 10/06/2003] [Indexed: 10/26/2022]
Abstract
Adenylate kinase activity in rod outer segment membranes of bovine retina decreased of about 55% when exposed to an extremely low frequency electromagnetic field of 75 Hz and 250 microT. The effect was independent of the time of permanence in the field. Negligible effects of the field were found on the enzymatic activity of a soluble isoform of adenylate kinase or of rod outer segment membranes solubilized with Triton, suggesting the importance of the membrane in determining the conditions of the enzyme inactivation.
Collapse
Affiliation(s)
- S Ravera
- Department of DIBISAA, University of Genoa, Genoa, Italy
| | | | | | | | | | | |
Collapse
|
24
|
Rokitskaya TI, Kotova EA, Antonenko YN. Tandem gramicidin channels cross-linked by streptavidin. J Gen Physiol 2003; 121:463-76. [PMID: 12719486 PMCID: PMC2217381 DOI: 10.1085/jgp.200208780] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2002] [Revised: 03/31/2003] [Accepted: 04/02/2003] [Indexed: 11/20/2022] Open
Abstract
The interaction of biotin-binding proteins with biotinylated gramicidin (gA5XB) was studied by monitoring single-channel activity and sensitized photoinactivation kinetics. It was discovered that the addition of streptavidin or avidin to the bathing solutions of a bilayer lipid membrane (BLM) with incorporated gA5XB induced the opening of a channel characterized by approximately doubled single-channel conductance and extremely long open-state duration. We believe that the deceleration of the photoinactivation kinetics observed here with streptavidin and previously (Rokitskaya, T.I., Y.N. Antonenko, E.A. Kotova, A. Anastasiadis, and F. Separovic. 2000. Biochemistry. 39:13053-13058) with avidin reflects the formation of long-lived channels of this type. Both opening and closing of the double-conductance channels occurred via a transient sub-state of the conductance coinciding with that of the usual single-channel transition. The appearance of the double-conductance channels after the addition of streptavidin was preceded by bursts of fast fluctuations of the current with the open state duration of the individual events of 60 ms. The streptavidin-induced double-conductance channels appeared to be inherent only to the gramicidin analogue with a biotin group linked to the COOH terminus through a long linker arm. Including biotinylated phosphatidylethanolamine into the BLM prevented the formation of the double-conductance channels even with the excess streptavidin. In view of the results obtained here, it is suggested that the double-conductance channel represents a tandem of two neighboring gA5XB channels with their COOH termini being cross-linked by the bound streptavidin at both sides of the BLM. The finding that streptavidin induces the formation of the tandem gramicidin channel comprising two channels functioning in concert is considered to be relevant to the physiologically important phenomenon of ligand-induced receptor oligomerization.
Collapse
|
25
|
Ishizaki Y, Horiuchi S, Okuno K, Ano T, Shoda M. Twelve hours exposure to inhomogeneous high magnetic field after logarithmic growth phase is sufficient for drastic suppression of Escherichia coli death. Bioelectrochemistry 2001; 54:101-5. [PMID: 11694389 DOI: 10.1016/s1567-5394(01)00108-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
When Escherichia coli B was aerobically grown at 43 degrees C in a medium whose concentration was one-fourth that of the Luria-Bertani (LB) medium supplemented with 1.5 g/l of glutamic acid, drastic cell death was observed after the end of the logarithmic growth phase. However, when the same experiment was conducted under inhomogeneous 5.2-6.1 T magnetic field, cell death was extremely suppressed and the ratio of viable cell number under high magnetic field to that under geomagnetic field reached as much as 100,000. When the magnetic field exposure was restricted to 12 h after the logarithmic growth phase, a similar high degree of suppressive effect on the death was observed. The findings that the amount of sigma S protein encoded by the rpoS gene under the high magnetic field was larger than that under the geomagnetic field, and that the magnetic field effect disappeared when the rpoS gene-deficient strain was cultivated under the high magnetic field, suggest the interaction of magnetic field with a stationary phase specific gene.
Collapse
Affiliation(s)
- Y Ishizaki
- Chemical Resources Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | | | | | | | | |
Collapse
|