1
|
Palermo JC, Carllinni Colombo M, Semelak JA, Scocozza MF, Boubeta FM, Murgida DH, Estrin DA, Bari SE. Autocatalytic Mechanism in the Anaerobic Reduction of Metmyoglobin by Sulfide Species. Inorg Chem 2023; 62:11304-11317. [PMID: 37439562 DOI: 10.1021/acs.inorgchem.3c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
The mechanism of the metal centered reduction of metmyoglobin (MbFeIII) by sulfide species (H2S/HS-) under an argon atmosphere has been studied by a combination of spectroscopic, kinetic, and computational methods. Asymmetric S-shaped time-traces for the formation of MbFeII at varying ratios of excess sulfide were observed at pH 5.3 < pH < 8.0 and 25 °C, suggesting an autocatalytic reaction mechanism. An increased rate at more alkaline pHs points to HS- as relevant reactive species for the reduction. The formation of the sulfanyl radical (HS•) in the slow initial phase was assessed using the spin-trap phenyl N-tert-butyl nitrone. This radical initiates the formation of S-S reactive species as disulfanuidyl/ disulfanudi-idyl radical anions and disulfide (HSSH•-/HSS•2- and HSS-, respectively). The autocatalysis has been ascribed to HSS-, formed after HSSH•-/HSS•2- disproportionation, which behaves as a fast reductant toward the intermediate complex MbFeIII(HS-). We propose a reaction mechanism for the sulfide-mediated reduction of metmyoglobin where only ferric heme iron initiates the oxidation of sulfide species. Beside the chemical interest, this insight into the MbFeIII/sulfide reaction under an argon atmosphere is relevant for the interpretation of biochemical aspects of ectopic myoglobins found on hypoxic tissues toward reactive sulfur species.
Collapse
Affiliation(s)
- Juan Cruz Palermo
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Melisa Carllinni Colombo
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Jonathan A Semelak
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Magalí F Scocozza
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Fernando M Boubeta
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Daniel H Murgida
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Darío A Estrin
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| | - Sara E Bari
- Instituto de Química Física de Los Materiales, Medio Ambiente y Energía (INQUIMAE), CONICET-Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina
| |
Collapse
|
3
|
Hendgen-Cotta UB, Flögel U, Kelm M, Rassaf T. Unmasking the Janus face of myoglobin in health and disease. J Exp Biol 2010; 213:2734-40. [DOI: 10.1242/jeb.041178] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
SUMMARY
For more than 100 years, myoglobin has been among the most extensively studied proteins. Since the first comprehensive review on myoglobin function as a dioxygen store by Millikan in 1939 and the discovery of its structure 50 years ago, multiple studies have extended our understanding of its occurrence, properties and functions. Beyond the two major roles, the storage and the facilitation of dioxygen diffusion, recent physiological studies have revealed that myoglobin acts as a potent scavenger of nitric oxide (NO•) representing a control system that preserves mitochondrial respiration. In addition, myoglobin may also protect the heart against reactive oxygen species (ROS), and, under hypoxic conditions, deoxygenated myoglobin is able to reduce nitrite to NO• leading to a downregulation of the cardiac energy status and to a decreased heart injury after reoxygenation. Thus, by controlling the NO• bioavailability via scavenging or formation, myoglobin serves as part of a sensitive dioxygen sensory system. In this review, the physiological relevance of these recent findings are delineated for pathological states where NO• and ROS bioavailability are known to be critical determinants for the outcome of the disease, e.g. ischemia/reperfusion injury. Detrimental and beneficial effects of the presence of myoglobin are discussed for various states of tissue oxygen tension within the heart and skeletal muscle. Furthermore, the impact of myoglobin on parasite infection, rhabdomyolysis, hindlimb and liver ischemia, angiogenesis and tumor growth are considered.
Collapse
Affiliation(s)
- U. B. Hendgen-Cotta
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - U. Flögel
- Department of Cardiovascular Physiology, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - M. Kelm
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| | - T. Rassaf
- Department of Medicine, Division of Cardiology, Pulmonary Diseases and Angiology, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany
| |
Collapse
|
4
|
Zhang Y, Straub JE. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. II. The ν4 and ν7 modes of iron-protoporphyrin IX and iron porphine. J Chem Phys 2009; 130:095102. [DOI: 10.1063/1.3086080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
5
|
Zhang Y, Fujisaki H, Straub JE. Direct evidence for mode-specific vibrational energy relaxation from quantum time-dependent perturbation theory. I. Five-coordinate ferrous iron porphyrin model. J Chem Phys 2009; 130:025102. [DOI: 10.1063/1.3055277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
6
|
Marković D, Pröll S, Bubenzer C, Scheer H. Myoglobin with chlorophyllous chromophores: influence on protein stability. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2007; 1767:897-904. [PMID: 17490605 DOI: 10.1016/j.bbabio.2007.03.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Revised: 03/15/2007] [Accepted: 03/19/2007] [Indexed: 11/24/2022]
Abstract
The stabilities of myoglobin, apo-myoglobin, and of two myoglobins with chlorophyllous chromophores (Zn-pheophorbide a and Zn-bacteriopheophorbide a), have been studied by thermal and chemical denaturation. With guanidinium chloride, the stability order is myoglobin>Zn-pheophorbide-myoglobin>Zn-bacteriopheophorbide-myoglobin approximately apo-myoglobin. The thermal behavior is more complex. The transition temperature of thermal unfolding of the apoprotein (62.4 degrees C) is increased by Zn-pheophorbide a (83.9 degrees C) and Zn-bacteriopheophorbide a (82.6 degrees C) to a similar degree as by the native chromophore, heme (83.5 degrees C). The recovery with Zn-pheophorbide (92-98%) is even higher than with heme (74-76%), while with Zn-bacteriopheophorbide (40%) it is as low as with the apoprotein (42%). Recovery also depends on the rates of heating, and in particular the time spent at high temperatures. It is concluded that irreversibility of unfolding is related to loss of the chromophores, which are required for proper re-folding.
Collapse
Affiliation(s)
- Dejan Marković
- Department of Biologie I, Botanik, Menzinger Str. 67, D-80638 München, Germany
| | | | | | | |
Collapse
|
7
|
Garry DJ, Mammen PPA. Molecular Insights into the Functional Role of Myoglobin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 618:181-93. [DOI: 10.1007/978-0-387-75434-5_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Hill JJ, Shalaev EY, Zografi G. Thermodynamic and dynamic factors involved in the stability of native protein structure in amorphous solids in relation to levels of hydration. J Pharm Sci 2005; 94:1636-67. [PMID: 15965985 DOI: 10.1002/jps.20333] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The internal, dynamical fluctuations of protein molecules exhibit many of the features typical of polymeric and bulk small molecule glass forming systems. The response of a protein's internal molecular mobility to temperature changes is similar to that of other amorphous systems, in that different types of motions freeze out at different temperatures, suggesting they exhibit the alpha-beta-modes of motion typical of polymeric glass formers. These modes of motion are attributed to the dynamic regimes that afford proteins the flexibility for function but that also develop into the large-scale collective motions that lead to unfolding. The protein dynamical transition, T(d), which has the same meaning as the T(g) value of other amorphous systems, is attributed to the temperature where protein activity is lost and the unfolding process is inhibited. This review describes how modulation of T(d) by hydration and lyoprotectants can determine the stability of protein molecules that have been processed as bulk, amorphous materials. It also examines the thermodynamic, dynamic, and molecular factors involved in stabilizing folded proteins, and the effects typical pharmaceutical processes can have on native protein structure in going from the solution state to the solid state.
Collapse
Affiliation(s)
- John J Hill
- ICOS Corporation, 22021 20th Avenue SE, Bothell, WA 98021, USA.
| | | | | |
Collapse
|
9
|
Bu L, Straub JE. Vibrational frequency shifts and relaxation rates for a selected vibrational mode in cytochrome C. Biophys J 2003; 85:1429-39. [PMID: 12944260 PMCID: PMC1303319 DOI: 10.1016/s0006-3495(03)74575-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The vibrational energy relaxation of a selected vibrational mode in cytochrome c--a C-D stretch in the terminal methyl group of Met80--has been studied using equilibrium molecular dynamics simulation and normal mode analysis methods. As demonstrated in the pioneering work of Romesberg and co-workers, isotopic labeling of the C-H (to C-D) stretch in alkyl side chains shifts the stretching frequency to the transparent region of the protein's density of states, making it an effective and versatile probe of protein structure and dynamics. Molecular dynamics trajectories of solvated cytochrome c were run at 300 K, and vibrational population relaxation times were estimated using the classical Landau-Teller-Zwanzig model and a number of semiclassical theories of resonant and two-phonon vibrational relaxation processes. The C-D stretch vibrational population relaxation time is estimated to be T(1) = 14-40 ps; the relatively close agreement between various semiclassical estimates of T(1) lends support to the applicability of those expressions. Normal mode calculations were used to identify the dominant coupling between the protein and C-D oscillator. All bath modes strongly coupled to the C-D stretch are in close proximity. Angle bending modes in the terminal methyl group of Met80 appear to be the most likely acceptor modes defining the mechanism of population relaxation of the C-D vibration.
Collapse
Affiliation(s)
- Lintao Bu
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, USA
| | | |
Collapse
|
10
|
Abstract
Myoglobin (Mb) is an intensely studied hemoprotein that is restricted mainly to the heart and oxidative myofibers in skeletal muscle. Previous physiologic and pharmacologic studies have supported a role for Mb in facilitated oxygen transport or as an oxygen reservoir in striated muscle. Transgenic and gene disruption technologies have been utilized to produce mice that lack Mb. Studies utilizing these transgenic mouse models support the notion that Mb may have multiple, diverse functions in the heart. Future studies using these emerging technologies will further enhance the understanding of the role of Mb and other hemoproteins in cardiovascular biology.
Collapse
Affiliation(s)
- Daniel J Garry
- Department of Internal Medicine, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8573, USA.
| | | | | |
Collapse
|