1
|
Levy HC, Hulvey D, Adamson-Small L, Jn-Simon N, Prima V, Rivkees S, Hobbs JA. Improved cell-specificity of adeno-associated viral vectors for medullary thyroid carcinoma using calcitonin gene regulatory elements. PLoS One 2020; 15:e0228005. [PMID: 32027681 PMCID: PMC7004351 DOI: 10.1371/journal.pone.0228005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/05/2020] [Indexed: 12/12/2022] Open
Abstract
Targeted gene therapy using recombinant adeno-associated virus (rAAV) vectors is a potential therapeutic strategy for treating cancer, and tissue-specific promoters may help with tissue targeting. Medullary thyroid carcinoma (MTC) is a disease of the calcitonin secreting thyroid C cells, and calcitonin is highly expressed in MTC tumors compared to other cells. To target MTC cells, we evaluated an rAAV serotype 2 vector (rAAV2-pM+104-GFP) containing a modified calcitonin/calcitonin gene related peptide promoter (pM+104) and a green fluorescent protein (GFP) reporter gene. In vitro transduction experiments comparing the MTC TT cell line with non-MTC cell lines demonstrated that rAAV2-pM+104-GFP infection yielded significantly (p < 0.05) higher GFP expression in TT cells than in non-MTC cell lines (HEK293 and HeLa), and significantly higher expression than in TT cells infected with the positive control rAAV2-pCBA-GFP vector. The rAAV2-pCBA-GFP control vector included a well-characterized, ubiquitously expresses control promoter, the chicken beta actin promoter with a cytomegalovirus enhancer (pCBA). In vivo experiments using a TT cell xenograft tumor mouse model showed that tumors directly injected with 2 x 1010 vg of rAAV2-pM+104-GFP vector resulted in GFP expression detected in 21.7% of cells, 48 hours after the injection. Furthermore, GFP expression was significantly higher for rAAV-pM+104-GFP treatments with a longer vector treatment duration and higher vector dose, with up to 52.6% (q < 0.05) GFP cells detected 72 hours after injecting 1x 1011 vg/tumor. These data show that we have developed an rAAV vector with improved selectivity for MTC.
Collapse
Affiliation(s)
- Hazel C. Levy
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Danielle Hulvey
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Laura Adamson-Small
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Natacha Jn-Simon
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Victor Prima
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Scott Rivkees
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jacqueline A. Hobbs
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Messina M, Robinson BG. Technology insight: gene therapy and its potential role in the treatment of medullary thyroid carcinoma. ACTA ACUST UNITED AC 2007; 3:290-301. [PMID: 17315037 DOI: 10.1038/ncpendmet0420] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Accepted: 11/01/2006] [Indexed: 12/25/2022]
Abstract
Metastatic medullary thyroid cancer (MTC) responds poorly to conventional treatments with chemotherapy and radiotherapy. Gene therapy--the transfer of genetic material for therapeutic purposes--might have therapeutic potential for patients with progressive metastatic MTC that is incurable by conventional treatments. To date, a number of gene-therapy strategies have been explored, primarily those that use replication-deficient adenovirus vectors to transfer therapeutic genes to tumor cells. Tissue-specific expression of the promoter for calcitonin and calcitonin-related polypeptide alpha has allowed therapeutic genes to be specifically expressed in calcitonin-secreting cells and in the MTC tumors derived from them; such tissue-specific expression contributes to improved safety of gene therapies and has the potential to increase their therapeutic index. In addition, the identification of an MTC-specific peptide ligand raises the possibility of developing an MTC-selective vector. In this article, we have described the exciting area of gene therapy in the management of MTC with a focus on preclinical in vitro and in vivo MTC models.
Collapse
Affiliation(s)
- Marinella Messina
- Cancer Genetics Unit of Kolling Institute of Medical Research, Royal North Shore Hospital, St Leonards, New South Wales, Australia.
| | | |
Collapse
|
3
|
Dambros M, van Koeveringe GA, Bast A, van Kerrebroeck PEV. Relaxant effects of estradiol through non-genomic pathways in male and female pig bladder smooth muscle. Pharmacology 2005; 72:121-7. [PMID: 15331918 DOI: 10.1159/000080184] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2004] [Accepted: 03/23/2004] [Indexed: 11/19/2022]
Abstract
The precise effect of low estrogen levels on urinary bladder contractility remains controversial. The present study was designed to analyze the effect of 17beta-estradiol in bladder smooth muscle contractility and the involvement of specific estrogen receptor stimulation in this effect. Castrated male and female pig detrusor strips were mounted for tension recording in an organ bath, superfused with Krebs solution at 37 degrees C and stimulated electrically and pharmacologically. In order to verify the acute effect of 17beta-estradiol on muscle contractility, the strips were incubated with different concentrations of the hormone. Muscle contractions were induced by potassium chloride, acetylcholine chloride and electrical field stimulation. The involvement of the estrogen receptor in the effects of 17beta-estradiol was assessed by incubation of some strips with the selective estrogen receptor antagonist ICI 182.780 before estradiol was applied. Estradiol at a dose of 30 micromol/l elicited a lower amplitude of contractions induced by EFS, Ach and KCl in female as well as in castrated male pig bladder smooth muscle strips. The effects of 17beta-estradiol were stronger in contractions induced by potassium chloride than those induced by other forms of stimulation. Pre-treatment with the pure estrogen receptor antagonist had no effect on 17beta-estradiol-induced inhibition of muscle contractility. These observations suggest that 17beta-estradiol induces lower amplitude of contraction of female as well as castrated male pig detrusor which is not mediated by the classic estrogen receptor. Furthermore, we can conclude that estradiol has a stronger inhibitory effect on the depolarization of muscle cell membrane compared to a muscarinic receptor-induced contraction.
Collapse
Affiliation(s)
- Miriam Dambros
- Department of Urology, Maastricht University, Maastricht, The Netherlands
| | | | | | | |
Collapse
|
4
|
Abstract
Thyroid carcinomas are suitable targets for gene therapy because they can be highly lethal on one hand, while being susceptible to specific tumour targeting on the other hand. Several gene therapy modalities have been evaluated so far in experimental models of thyroid cancer, including tumour suppressor gene replacement, oncogene inhibition, suicide gene therapy, immunotherapy, antiangiogenesis, and viral oncolysis. All of these strategies have shown promising results, but clinical studies are lacking. Based on the clinical experience achieved in a pilot study in patients with advanced thyroid cancer and on clinical results in other types of solid cancer, it is suggested that combined gene therapy approaches, as well as multimodality therapeutic regimens, including gene therapy and conventional treatments, should be pursued to achieve clinically significant results.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology and Medical Biotechnologies, University of Padova, Via Gabelli 63, I-35121 Padova, Italy.
| | | | | | | |
Collapse
|
5
|
Abstract
Despite multimodality treatment for thyroid cancer, including surgical resection, radioiodine therapy, thyrotropin (TSH)-suppressive thyroxine treatment, and chemotherapy/radiotherapy, survival rates have not improved over the last decades. Therefore, development and evaluation of novel treatment strategies, including gene therapy, are urgently needed. A variety of gene therapy approaches have been evaluated for the treatment of follicular cell-derived and medullary thyroid cancer, including corrective gene therapy (p53 restoration, expression of a dominant negative RET mutant), cytoreductive gene therapy (suicide gene/prodrug strategy herpes simplex virus-thymidine kinase [HSV-tk]/ganciclovir, antiangiogenic therapy with endostatin) and immunomodulatory gene therapy (expression of interleukin (IL)-2 and IL-12). Furthermore, cloning of the sodium iodide symporter (NIS) gene has paved the way for the development of a novel cytoreductive gene therapy strategy based on NIS gene transfer followed by the application of radioiodine therapy ((131)I). NIS gene delivery into medullary and follicular cell-derived thyroid cancer cells has been shown to be capable of establishing or restoring radioiodine accumulation and might therefore represent an effective therapy for medullary and dedifferentiated thyroid tumors that lack iodide accumulating activity. The data summarized in this review article clearly demonstrate that the currently available strategies represent potentially curative novel therapeutic approaches for future gene therapy of thyroid cancer. The combination of different therapeutic genes has been demonstrated to be very useful to enhance therapeutic efficacy and seems to have a promising role at least as part of a multimodality approach for advanced thyroid cancer.
Collapse
Affiliation(s)
- Christine Spitzweg
- Department of Internal Medicine II, Klinikum Grosshadern, Ludwig-Maximilians-University Munich, Germany.
| | | |
Collapse
|
6
|
Abstract
The field of cancer gene therapy is in continuous expansion, and technology is quickly moving ahead as far as gene targeting and regulation of gene expression are concerned. This review focuses on the endocrine aspects of gene therapy, including the possibility to exploit hormone and hormone receptor functions for regulating therapeutic gene expression, the use of endocrine-specific genes as new therapeutic tools, the effects of viral vector delivery and transgene expression on the endocrine system, and the endocrine response to viral vector delivery. Present ethical concerns of gene therapy and the risk of germ cell transduction are also discussed, along with potential lines of innovation to improve cell and gene targeting.
Collapse
Affiliation(s)
- Luisa Barzon
- Department of Histology, Microbiology, and Medical Biotechnologies, University of Padova, I-35121 Padua, Italy
| | | | | |
Collapse
|
7
|
Yamazaki M, Straus FH, Messina M, Robinson BG, Takeda T, Hashizume K, DeGroot LJ. Adenovirus-mediated tumor-specific combined gene therapy using Herpes simplex virus thymidine/ganciclovir system and murine interleukin-12 induces effective antitumor activity against medullary thyroid carcinoma. Cancer Gene Ther 2003; 11:8-15. [PMID: 14681722 DOI: 10.1038/sj.cgt.7700636] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present treatment of advanced and metastatic medullary thyroid carcinoma (MTC) is unsatisfactory. Tissue-specific cancer gene therapy is a novel alternative approach. We developed a recombinant adenovirus expressing Herpes simplex type 1 thymidine kinase (HSVtk) driven by a modified CALC-I promoter TCP (AdTCPtk). Infection with this virus showed efficient cytotoxic effect on MTC cell lines (rMTC and TT cells) after treatment with ganciclovir (GCV) in vitro. In a syngenic WAG/Rij rat model, the combination of AdTCPtk/GCV treatment with administration of murine interleukin-12 (mIL-12) expressing adenovirus under control of TCP (AdTCPmIL-12) resulted in effective growth suppression of tumor at the treated site and also at a distant untreated site, in comparison to treatment with AdTCPtk/GCV or AdTCPmIL-12 alone. Moreover, intravenous injection of AdTCPtk, or AdTCPtk+AdTCPmIL-12, followed by administration of GCV, did not cause evident toxicity after administration of GCV. These results indicate that this combined system can provide an effective therapy for metastatic MTC with minimal toxicity.
Collapse
Affiliation(s)
- Masanori Yamazaki
- Thyroid Study Unit, Department of Medicine, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Drosten M, Stiewe T, Pützer BM. Antitumor capacity of a dominant-negative RET proto-oncogene mutant in a medullary thyroid carcinoma model. Hum Gene Ther 2003; 14:971-82. [PMID: 12869215 DOI: 10.1089/104303403766682232] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Gain-of-function mutations in the RET proto-oncogene resulting in a constitutively active receptor tyrosine kinase have been identified as responsible for three subtypes of multiple endocrine neoplasia type 2 (MEN-2) and the development of sporadic medullary and papillary thyroid carcinoma. An important strategy in cancer gene therapy is the inhibition of oncogenic signal transduction by interfering with the molecular mechanisms of activation. In the present study, we tested the therapeutic capacity of an adenovirus expressing a dominant-negative (dn) RET mutant, RET(51).flag, under the control of a synthetic C cell-selective calcitonin promoter (TSE2.CP1) against human medullary thyroid cancer (MTC). Infection of human MTC-derived TT cells with Ad-TSE2.CP1-dn-RET(51).flag resulted in the accumulation of immature RET protein in the endoplasmic reticulum and a strong reduction of oncogenic RET receptor on the cell surface, indicating that RET(51).flag exhibits a dominant-negative effect over endogenous oncogenic protein. Analysis of potential downstream mechanisms associated with the inhibition of oncogenic RET signaling by overexpression of mutant RET(51).flag revealed a significant loss of cell viability in TT cells due to the induction of apoptosis. Finally, we examined the antitumor activity of the dominant-negative RET approach in vivo. Inoculation of Ad-TSE2.CP1- dn-RET(51).flag-expressing MTC cells into nude mice led to complete suppression of tumor growth. Moreover, a single intratumoral injection of Ad-TSE2.CP1-dn-RET(51).flag into established thyroid tumors resulted in prolonged survival of treated mice compared with the controls. Our data suggest that adenoviral delivery of dn-RET(51).flag may be a reliable strategy of effective molecular intervention for RET oncogene-related MTC.
Collapse
Affiliation(s)
- M Drosten
- Center for Cancer Research and Cancer Therapy, Institute of Molecular Biology, University of Essen Medical School, 45122 Essen, Germany
| | | | | |
Collapse
|
9
|
Abstract
Cancer gene therapy has been one of the most exciting areas of therapeutic research in the past decade. In this review, we discuss strategies to restrict transcription of transgenes to tumour cells. A range of promoters which are tissue-specific, tumour-specific, or inducible by exogenous agents are presented. Transcriptional targeting should prevent normal tissue toxicities associated with other cancer treatments, such as radiation and chemotherapy. In addition, the specificity of these strategies should provide improved targeting of metastatic tumours following systemic gene delivery. Rapid progress in the ability to specifically control transgenes will allow systemic gene delivery for cancer therapy to become a real possibility in the near future.
Collapse
Affiliation(s)
- Tracy Robson
- School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| | - David G. Hirst
- School of Biomedical Sciences, University of Ulster, Newtownabbey, Co. Antrim, BT37 0QB, Northern Ireland, UK
| |
Collapse
|
10
|
Drosten M, Frilling A, Stiewe T, Pützer BM. A new therapeutic approach in medullary thyroid cancer treatment: inhibition of oncogenic RET signaling by adenoviral vector-mediated expression of a dominant-negative RET mutant. Surgery 2002; 132:991-7; discussion 997. [PMID: 12490846 DOI: 10.1067/msy.2002.128560] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND Mutations in the RET proto-oncogene that result in constitutive tyrosine kinase activity are the underlying cause for the development of medullary thyroid cancer (MTC). To investigate an alternative strategy in MTC treatment, we took advantage of a dominant-negative RET (dn-RET) mutant, Ret(51)HSCR32, which inhibits oncogenic signal transduction by retaining the oncogenic RET protein in the endoplasmic reticulum, thereby reducing the amount of oncogenic RET protein from the cell surface. METHODS; We constructed an adenoviral (Ad) vector expressing dn-RET under control of the C-cell specific synthetic calcitonin promoter TSE2.CP1 (AdTSE2.CP1-RET(51)HSCR32) and investigated the effect of dn-RET on cell growth of MTC-derived TT cells. RESULTS Analysis of the subcellular localization of endogenous oncogenic RET protein showed a significant dominant-negative effect of Ad vector-delivered dn-RET in TT cells, resulting in a strong inhibition of cell viability. The observed effect is partially dependent on growth inhibition and possibly apoptosis induction. CONCLUSIONS In the present study, growth of human MTC cells was successfully inhibited by Ad vector-mediated delivery of RET(51)HSCR32, suggesting that inhibition of oncogenic RET receptor tyrosine kinase expression by a dn-RET mutant might be a powerful approach for in vivo therapy of MTC.
Collapse
Affiliation(s)
- Matthias Drosten
- Center for Cancer Research and Cancer Therapy, Institute of Molecular Biology, University of Essen Medical School, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
11
|
Abstract
Calcitonin was originally discovered as a hypocalcemic factor synthesized by thyroid parafollicular C cells. Early experiments demonstrated that calcitonin inhibited bone resorption and decreased calcium efflux from isolated cat tibiae and subsequent histologic and culture studies confirmed the osteoclast as its major site of action. Its potent antiresorptive effect and analgesic action have led to its clinical use in treatment of Paget's bone disease, osteoporosis, and hypercalcemia of malignancy. This review surveys the cellular and molecular basis of these physiologic and clinical actions.
Collapse
Affiliation(s)
- Angela M Inzerillo
- Mount Sinai Bone Program, Department of Medicine, Mount Sinai School of Medicine, and Bronx Veteran's Affairs Geriatric Research Education and Clinical Center (GRECC), New York, New York 10029, USA
| | | | | |
Collapse
|
12
|
Yamazaki M, Zhang R, Straus FH, Messina M, Robinson BG, Hashizume K, DeGroot LJ. Effective gene therapy for medullary thyroid carcinoma using recombinant adenovirus inducing tumor-specific expression of interleukin-12. Gene Ther 2002; 9:64-74. [PMID: 11850724 DOI: 10.1038/sj.gt.3301617] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2001] [Accepted: 10/17/2001] [Indexed: 11/09/2022]
Abstract
No satisfactory treatment of metastatic medullary thyroid carcinoma (MTC) is available. Cell-specific gene therapy offers a new approach. We have constructed a recombinant replication-defective adenoviral vector expressing murine interleukin-12 (mIL-12), driven by a modified CALC-I promoter (TCP). This vector (AdTCPmIL-12) includes two separate cassettes encoding mIL-12 p35 or p40 subunit controlled by TCP inserted in the E1 region of adenovirus type 5. In vitro and in vivo reporter gene expression using TCP revealed its cell-specific activity. AdTCPmIL-12-infected rat MTC (rMTC) cells produced high amounts of functional mIL-12 cells in vitro, while other cell lines infected with AdTCPmIL-12 did not. AdTCPmIL-12-transduced rMTC cells completely lost their tumorigenicity in syngenic WAG/Rij rats. Direct injection of 1 x 10(9) plaque forming units of AdTCPmIL-12 into subcutaneous rMTC tumors in WAG/Rij rats caused tumor regression in over 60% of animals within 20 days. Rats cured of tumors did not develop tumors after re-injection of naive rMTC cells, demonstrating lasting immunity. Treatment with AdTCPmIL-12 of one tumor resulted in regression of an established tumor at a distant site. Moreover, intratumoral or intravenous injection of AdTCPmIL-12 did not induce evident toxicity. These results indicate AdTCPmIL-12 can contribute to effective and less toxic gene therapy of MTC.
Collapse
Affiliation(s)
- M Yamazaki
- Thyroid Study Unit, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
Four types of thyroid cancer comprise more than 98% of all thyroid malignancies. Papillary thyroid carcinoma (PTC) may have a very benign course while undifferentiated thyroid carcinoma (UTC) belongs to the most aggressive human malignancies. A variety of genes have been identified to be involved in the pathogenesis of thyroid carcinoma. Somatic Ras mutations seem to be an early event and are frequently found in follicular thyroid carcinomas. Somatic rearrangements of RET and TRK are almost exclusively found in PTC and may be found in early stages. Germline RET missense mutations lead to hereditary medullary thyroid carcinoma (MTC). In contrast, the significance of somatic RET mutations in sporadic MTC is unknown. p53 seems to play a crucial role in the dedifferentiation process of thyroid carcinoma. The precise role of PTEN remains to be elucidated. The only clearly identified exogenous factor that may lead to thyroid carcinoma (mainly PTC) is radiation. Of interest, radiation is capable to induce RET rearrangements. In general, early diagnosis is mandatory to enable the chance of cure. Surgery is the treatment of choice. Depending on the tumour type, surgery in combination with either radioiodine, external radiation or chemotherapy often enables the control of local tumour burden. In MTC and UTC, once thyroid cancer is spread to distant organs, efficacious therapeutic agents are almost non-existing. However, our growing knowledge of genes involved in thyroidal oncogenesis may contribute to the development of more effective treatment modalities. Some preliminary data on gene therapy are quite promising.
Collapse
MESH Headings
- Adenocarcinoma, Follicular/epidemiology
- Adenocarcinoma, Follicular/etiology
- Adenocarcinoma, Follicular/pathology
- Adenocarcinoma, Follicular/therapy
- Age Factors
- Biopsy, Needle
- Carcinoma, Papillary/epidemiology
- Carcinoma, Papillary/etiology
- Carcinoma, Papillary/pathology
- Carcinoma, Papillary/therapy
- Genes, Tumor Suppressor/genetics
- Genes, p53/genetics
- Humans
- Iodine Radioisotopes/therapeutic use
- Nuclear Receptor Coactivators
- Oncogene Proteins/genetics
- Radiopharmaceuticals/therapeutic use
- Survival Rate
- Thyroid Gland/pathology
- Thyroid Neoplasms/epidemiology
- Thyroid Neoplasms/etiology
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/therapy
- Thyroidectomy
- Transcription Factors
Collapse
Affiliation(s)
- O Gimm
- Department of General Surgery, Martin-Luther-University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|