1
|
Liu L, Tang L, Chen S, Zheng L, Ma X. Decoding the molecular pathways governing trophoblast migration and placental development; a literature review. Front Endocrinol (Lausanne) 2024; 15:1486608. [PMID: 39665023 PMCID: PMC11631628 DOI: 10.3389/fendo.2024.1486608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Placental development is a multifaceted process critical for a fruitful pregnancy, reinforced by a complex network of molecular pathways that synchronize trophoblast migration, differentiation, and overall placental function. This review provides an in-depth analysis of the key signaling pathways, such as Wnt, Notch, TGF-β, and VEGF, which play fundamental roles in trophoblast proliferation, invasion, and the complicated process of placental vascular development. For instance, the Wnt signaling pathway is essential to balance trophoblast stem cell proliferation and differentiation, while Notch signaling stimulates cell fate decisions and invasive behavior. TGF-β signaling plays a critical role in trophoblast invasion and differentiation, predominantly in response to the low oxygen environment of early pregnancy, regulated by hypoxia-inducible factors (HIFs). These factors promote trophoblast adaptation, ensure proper placental attachment and vascularization, and facilitate adequate fetal-maternal exchange. Further, we explore the epigenetic and post-transcriptional regulatory mechanisms that regulate trophoblast function, including DNA methylation and the contribution of non-coding RNAs, which contribute to the fine-tuning of gene expression during placental development. Dysregulation of these pathways is associated with severe pregnancy complications, such as preeclampsia, intrauterine growth restriction, and recurrent miscarriage, emphasizing the critical need for targeted therapeutic strategies. Finally, emerging technologies like trophoblast organoids, single-cell RNA sequencing, and placenta-on-chip models are discussed as innovative tools that hold promise for advancing our understanding of placental biology and developing novel interventions to improve pregnancy outcomes. This review emphasizes the importance of understanding these molecular mechanisms to better address placental dysfunctions and associated pregnancy disorders.
Collapse
Affiliation(s)
- Lianlian Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Lin Tang
- Obstetrics Department, Foshan Maternity and Child Health Care Hospital, Foshan, China
| | - Shuai Chen
- Pathology Department, The Second Hospital of Jilin University, Changchun, China
| | - Lianwen Zheng
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| | - Xiaoyan Ma
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
2
|
Shan Y, Chen Y, Brkić J, Fournier L, Ma H, Peng C. miR-218-5p Induces Interleukin-1β and Endovascular Trophoblast Differentiation by Targeting the Transforming Growth Factor β-SMAD2 Pathway. Front Endocrinol (Lausanne) 2022; 13:842587. [PMID: 35299960 PMCID: PMC8920978 DOI: 10.3389/fendo.2022.842587] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/02/2022] [Indexed: 01/10/2023] Open
Abstract
The acquisition of an endovascular trophoblast (enEVT) phenotype is essential for normal placental development and healthy pregnancy. MicroRNAs (miRNAs) are small noncoding RNAs that play critical roles in regulating gene expression. We have recently reported that miR-218-5p promotes enEVT differentiation and spiral artery remodeling in part by targeting transforming growth factor β2 (TGFβ2). We also identified IL1B, which encodes interleukin 1β (IL1β), as one of the most highly upregulated genes by miR-218-5p. In this study, we investigated how miR-218-5p regulates IL1B expression and IL1β secretion and the potential role of IL1β in enEVT differentiation. Using two cell lines derived from extravillous trophoblasts (EVTs), HTR-8/SVneo and Swan 71, we found that stable overexpression of miR-218-5p precursor, mir-218-1, or transient transfection of miR-218-5p mimic, significantly increased IL1B mRNA and IL1β protein levels in cells and conditioned media. We also showed that miR-218-5p directly interacted with SMAD2 3'UTR and reduced SMAD2 at mRNA and protein levels. Knockdown of SMAD2 induced IL1B expression and attenuated the inhibitory effect of TGFβ2 on IL1B expression. On the other hand, overexpression of SMAD2 reduced IL1β levels and blocked the stimulatory effects of miR-218-5p on IL1B expression, trophoblast migration and endothelial-like network formation. In addition, treatment of trophoblasts with IL1β induced the formation of endothelial-like networks and the expression of enEVT markers in a dose-dependent manner. These results suggest that miR-218-5p inhibits the TGFβ/SMAD2 pathway to induce IL1β and enEVT differentiation. Finally, low doses of IL1β also inhibited the expression of miR-218-5p, suggesting the existence of a negative feedback regulatory loop. Taken together, our findings suggest a novel interactive miR-218-5p/TGFβ/SMAD2/IL1β signaling nexus that regulates enEVT differentiation.
Collapse
Affiliation(s)
- Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | - Jelena Brkić
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Haiying Ma
- Department of Biology, York University, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
3
|
Chuva de Sousa Lopes SM, Alexdottir MS, Valdimarsdottir G. The TGFβ Family in Human Placental Development at the Fetal-Maternal Interface. Biomolecules 2020; 10:biom10030453. [PMID: 32183218 PMCID: PMC7175362 DOI: 10.3390/biom10030453] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/10/2020] [Accepted: 03/10/2020] [Indexed: 02/06/2023] Open
Abstract
Emerging data suggest that a trophoblast stem cell (TSC) population exists in the early human placenta. However, in vitro stem cell culture models are still in development and it remains under debate how well they reflect primary trophoblast (TB) cells. The absence of robust protocols to generate TSCs from humans has resulted in limited knowledge of the molecular mechanisms that regulate human placental development and TB lineage specification when compared to other human embryonic stem cells (hESCs). As placentation in mouse and human differ considerably, it is only with the development of human-based disease models using TSCs that we will be able to understand the various diseases caused by abnormal placentation in humans, such as preeclampsia. In this review, we summarize the knowledge on normal human placental development, the placental disease preeclampsia, and current stem cell model systems used to mimic TB differentiation. A special focus is given to the transforming growth factor-beta (TGFβ) family as it has been shown that the TGFβ family has an important role in human placental development and disease.
Collapse
Affiliation(s)
- Susana M. Chuva de Sousa Lopes
- Dept. Anatomy and Embryology, Leiden University Medical Center, 2300 Leiden, The Netherlands;
- Dept. Reproductive Medicine Anatomy and Embryology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marta S. Alexdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
| | - Gudrun Valdimarsdottir
- Department of Anatomy, BioMedical Center, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland;
- Correspondence: ; Tel.: +354-5254797
| |
Collapse
|
4
|
Brkić J, Dunk C, Shan Y, O'Brien JA, Lye P, Qayyum S, Yang P, Matthews SG, Lye SJ, Peng C. Differential Role of Smad2 and Smad3 in the Acquisition of an Endovascular Trophoblast-Like Phenotype and Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:436. [PMID: 32733385 PMCID: PMC7362585 DOI: 10.3389/fendo.2020.00436] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
During placental development, cytotrophoblast progenitor cells differentiate into the syncytiotrophoblast and invasive extravillous trophoblasts (EVTs). Some EVTs further differentiate into endovascular trophoblasts (enEVTs) which exhibit endothelial-like properties. Abnormal placental development, including insufficient enEVT-mediated remodeling of the uterine spiral arteries, is thought to be a precipitating factor in the onset of preeclampsia (PE), a pregnancy-related hypertensive disorder. Several members of the transforming growth factor-β (TGF-β) superfamily, such as TGF-βs, Nodal, and Activin have been reported to either promote or inhibit the invasive EVT pathway. These ligands signal through serine/threonine receptor complexes to activate downstream signaling mediators, Smad2 and Smad3. In this study, we determined Smad2 and Smad3 expression pattern in placenta and their effects on trophoblast invasion and differentiation. Total Smad2/3 levels were relatively constant across gestation while the ratio of active phosphorylated forms to their total levels varied with gestational stages, with a higher pSmad2/total Smad2 in later gestation and a higher pSmad3/total Smad3 in early gestation. Immunofluorescent staining revealed that pSmad3 was localized in nuclei of EVTs in anchoring villi. On the other hand, pSmad2 was mostly absent in this invasive EVT population. In addition, pSmad3/total Smad3, but not pSmad2/total Smad2, was significantly lower in both early onset and late onset PE cases, as compared to gestational age-matched controls. Functional studies carried out using a first trimester trophoblast cell line, HTR-8/SVneo, and first trimester human placental explants showed that Smad2 and Smad3 had differential roles in the invasive pathway. Specifically, siRNA-mediated knockdown of Smad2 resulted in an increase in trophoblast invasion and an upregulation of mRNA levels of enEVT markers while the opposite was observed with Smad3 knockdown. In addition, Smad2 siRNA accelerated the EVT outgrowth in first trimester placental explants while the Smad3 siRNA reduced the outgrowth of EVTs when compared to the control. Furthermore, knockdown of Smad2 enhanced, whereas overexpression of Smad2 suppressed, the ability of trophoblasts to form endothelial-like networks. Conversely, Smad3 had opposite effects as Smad2 on network formation. These findings suggest that Smad2 and Smad3 have opposite functions in the acquisition of an enEVT-like phenotype and defects in Smad3 activation are associated with PE.
Collapse
Affiliation(s)
- Jelena Brkić
- Department of Biology, York University, Toronto, ON, Canada
| | - Caroline Dunk
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Phetcharawan Lye
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Sheza Qayyum
- Department of Biology, York University, Toronto, ON, Canada
| | - Peifeng Yang
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Stephen J. Lye
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research in Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng
| |
Collapse
|
5
|
MicroRNA-218-5p Promotes Endovascular Trophoblast Differentiation and Spiral Artery Remodeling. Mol Ther 2018; 26:2189-2205. [PMID: 30061037 DOI: 10.1016/j.ymthe.2018.07.009] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 11/20/2022] Open
Abstract
Preeclampsia (PE) is the leading cause of maternal and neonatal morbidity and mortality. Defects in trophoblast invasion, differentiation of endovascular extravillous trophoblasts (enEVTs), and spiral artery remodeling are key factors in PE development. There are no markers clinically available to predict PE, leaving expedited delivery as the only effective therapy. Dysregulation of miRNA in clinical tissues and maternal circulation have opened a new avenue for biomarker discovery. In this study, we investigated the role of miR-218-5p in PE development. miR-218-5p was highly expressed in EVTs and significantly downregulated in PE placentas. Using first-trimester trophoblast cell lines and human placental explants, we found that miR-218-5p overexpression promoted, whereas anti-miR-218-5p suppressed, trophoblast invasion, EVT outgrowth, and enEVT differentiation. Furthermore, miR-218-5p accelerated spiral artery remodeling in a decidua-placenta co-culture. The effect of miR-218-5p was mediated by the suppression of transforming growth factor (TGF)-β2 signaling. Silencing of TGFB2 mimicked, whereas treatment with TGF-β2 partially reversed, the effects of miR-218-5p. Taken together, these findings demonstrate that miR-218-5p promotes trophoblast invasion and enEVT differentiation through a novel miR-218-5p-TGF-β2 pathway. This study elucidates the role of an miRNA in enEVT differentiation and spiral artery remodeling and suggests that downregulation of miR-218-5p contributes to PE development.
Collapse
|
6
|
Transforming growth factor β1 promotes invasion of human JEG-3 trophoblast cells via TGF-β/Smad3 signaling pathway. Oncotarget 2018; 8:33560-33570. [PMID: 28432277 PMCID: PMC5464890 DOI: 10.18632/oncotarget.16826] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 03/26/2017] [Indexed: 11/28/2022] Open
Abstract
Transforming growth factor (TGF)-β1 is involved invasion of human trophoblasts. However, the underlying mechanisms remain unclear. In this study, we performed Transwell assay and found that TGF-β1 promoted the invasion of trophoblast cell line JEG-3. Treatment with TGF-β1 up-regulated the expression of receptor-regulated Smad transcription factors Smad2 and Smad3, and two invasive-associated genes, namely, matrix metallopeptidase (MMP)-9 and MMP-2, in JEG-3 cells. Over-expressing activin receptor-like kinase (ALK) 5, the TGF-β type I receptor (TβRI) enhanced the up-regulation of Smad2, Smad3, MMP-9, and MMP-2 induced by TGF-β1, whereas application of TβRI inhibitor SB431542 diminished the stimulatory effects of TGF-β1 on these genes. Furthermore, transfection of Smad3 and ALK-5 seperately or in combination into JEG-3 cells before TGF-β1 treatment significantly increased the expression of MMP-9 and MMP-2. By contrast, silencing Smad3 and Smad2 by siRNAs significantly decreased the expression of MMP-9 and MMP-2, with Smad3 silence having a more potent inhibitory effect. Inhibiting TβRI with SB431542 or knockdown of Smad3, but not Smad2, abolished the stimulatory effect of TGF-β1 on the invasion of JEG-3 cells. Taken together, the results indicate that TGF-β1 activates the Smads signaling pathway in JEG-3 trophoblast cells and Smad3 play a key role in TGF-β1-induced invasion of JEG-3 and up-regulation of MMP-9 and MMP-2 expression.
Collapse
|
7
|
Wang J, Xie C, Pan S, Liang Y, Han J, Lan Y, Sun J, Li K, Sun B, Yang G, Shi H, Li Y, Song R, Liu X, Zhu M, Yin D, Wang H, Song X, Lu Z, Jiang H, Zheng T, Liu L. N-myc downstream-regulated gene 2 inhibits human cholangiocarcinoma progression and is regulated by leukemia inhibitory factor/MicroRNA-181c negative feedback pathway. Hepatology 2016; 64:1606-1622. [PMID: 27533020 DOI: 10.1002/hep.28781] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/18/2016] [Indexed: 12/19/2022]
Abstract
UNLABELLED Increasing evidence supports a role for N-myc downstream-regulated gene 2 (NDRG2) deregulation in tumorigenesis. We investigated the roles and mechanisms of NDRG2 in human cholangiocarcinoma (CCA) progression. In the present study, expression of NDRG2, microRNA (miR)-181c and leukemia inhibitory factor (LIF) in human CCA and adjacent nontumor tissues were examined. The effects of NDRG2 on CCA tumor growth and metastasis were determined both in vivo and in vitro. The role of the NDRG2/LIF/miR-181c signaling pathway in cholangiocarcinogenesis and metastasis were investigated both in vivo and in vitro. The results showed that human CCA tissues exhibited decreased levels of NDRG2 and increased levels of miR-181c and LIF compared with nontumor tissues. NDRG2 could inhibit CCA cell proliferation, chemoresistance, and metastasis both in vitro and in vivo. We found that NDRG2 is a target gene of miR-181c, and the down-regulation of NDRG2 was attributed to miR-181c overexpression in CCA. Furthermore, miR-181c can be activated by LIF treatment, whereas NDRG2 could inhibit LIF transcription through disrupting the binding between Smad, small mothers against decapentaplegic complex and LIF promoter. Down-regulation of NDRG2 and overexpression of miR-181c or LIF are significantly associated with a poorer overall survival (OS) in CCA patients. Finally, we found that a combination of NDRG2, miR-181c, and LIF expression is a strong predictor of prognosis in CCA patients. CONCLUSION These results establish the counteraction between NDRG2 and LIF/miR-181c as a key mechanism that regulates cholangiocarcinogenesis and metastasis. Our results elucidated a novel pathway in NDRG2-mediated inhibition of cholangiocarcinogenesis and metastasis and suggest new therapeutic targets, including NDRG2, LIF, miR-181c, and transforming growth factor beta, in CCA prevention and treatment. (Hepatology 2016;64:1606-1622).
Collapse
Affiliation(s)
- Jiabei Wang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Changming Xie
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Shangha Pan
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingjian Liang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Jihua Han
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yaliang Lan
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Jing Sun
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Keyu Li
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Boshi Sun
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Guangchao Yang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Huawen Shi
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yuejin Li
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Ruipeng Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Xirui Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Mingxi Zhu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Dalong Yin
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Huanlai Wang
- Department of General Surgery, Qiqihaer City Hospital of Traditional Chinese Medicine, Qiqihaer, China
| | - Xuan Song
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zhaoyang Lu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Hongchi Jiang
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, The Affiliated Tumour Hospital of Harbin Medical University, Harbin, China.
| | - Lianxin Liu
- Department of Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China. .,Department of Pharmacology (the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Human Cytomegalovirus Modulates Expression of Noncanonical Wnt Receptor ROR2 To Alter Trophoblast Migration. J Virol 2015; 90:1108-15. [PMID: 26559837 DOI: 10.1128/jvi.02588-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/03/2015] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal injury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic damage to the CMV-infected fetus but also from indirect effects through placental infection and dysfunction. CMV alters Wingless (Wnt) signaling, an essential cellular pathway involved in placentation, as evidenced by reduced transcription of canonical Wnt target genes and decreased Wnt3a-induced trophoblast migration. Whether CMV affects the noncanonical Wnt signaling pathway has been unclear. This study demonstrates for the first time that CMV infection inhibits Wnt5a-stimulated migration of human SGHPL-4 trophoblasts and that inhibition of the pathway restores normal migration of CMV-infected cells. Western blot and real-time PCR analyses show increased expression of noncanonical Wnt receptor ROR2 in CMV-infected trophoblasts. Mimicking the CMV-induced ROR2 protein expression via ectopic expression inhibited Wnt5a-induced trophoblast migration and reduced T cell-specific factor (TCF)/lymphoid enhancer-binding factor (LEF)-mediated transcription as measured using luciferase reporter assays. Gene silencing using small interfering RNA (siRNA) duplexes decreased ROR2 transcript and protein levels. In contrast, proliferation of SGHPL-4 trophoblasts, measured by 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay was not affected. The siRNA-mediated downregulation of ROR2 in trophoblasts rescued CMV-induced reduction in trophoblast migration. These data suggest a mechanism where CMV alters the expression of the Wnt receptor ROR2 to alter Wnt5a-mediated signaling and inhibit trophoblast motility. Inhibition of this mechanism may be a target for therapeutic intervention for CMV-induced placental damage and consequent fetal damage in congenital CMV infections. IMPORTANCE Maternal primary cytomegalovirus (CMV) infection, reactivation, or reinfection with a different viral strain may cause fetal injury and adverse pregnancy outcomes. Increasing evidence indicates that fetal injury results not only from direct viral cytopathic damage to the CMV-infected fetus but also from indirect effects through placental infection and placental dysfunction. No effective therapy is currently proven to prevent or treat congenital CMV infection. Understanding the molecular underpinnings of CMV infection of the placenta is essential for therapeutic innovations and vaccine design. CMV alters canonical Wingless (Wnt) signaling, an essential cellular pathway involved in placental development. This study suggests a mechanism in which CMV alters the expression of noncanonical Wnt receptor ROR2 to alter motility of placental cells, which has important implications in the pathogenesis of CMV-induced placental dysfunction. Inhibition of this mechanism may be a target for therapeutic intervention for CMV-induced placental damage and consequent fetal damage in congenital CMV infection.
Collapse
|
9
|
Cabrera-Sharp V, Read JE, Richardson S, Kowalski AA, Antczak DF, Cartwright JE, Mukherjee A, de Mestre AM. SMAD1/5 signaling in the early equine placenta regulates trophoblast differentiation and chorionic gonadotropin secretion. Endocrinology 2014; 155:3054-64. [PMID: 24848867 PMCID: PMC4183921 DOI: 10.1210/en.2013-2116] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 05/14/2014] [Indexed: 12/18/2022]
Abstract
TGFβ superfamily proteins, acting via SMAD (Sma- and Mad-related protein)2/3 pathways, regulate placental function; however, the role of SMAD1/5/8 pathway in the placenta is unknown. This study investigated the functional role of bone morphogenetic protein (BMP)4 signaling through SMAD1/5 in terminal differentiation of primary chorionic gonadotropin (CG)-secreting trophoblast. Primary equine trophoblast cells or placental tissues were isolated from day 27-34 equine conceptuses. Detected by microarray, RT-PCR, and quantitative RT-PCR, equine chorionic girdle trophoblast showed increased gene expression of receptors that bind BMP4. BMP4 mRNA expression was 20- to 60-fold higher in placental tissues adjacent to the chorionic girdle compared with chorionic girdle itself, suggesting BMP4 acts primarily in a paracrine manner on the chorionic girdle. Stimulation of chorionic girdle-trophoblast cells with BMP4 resulted in a dose-dependent and developmental stage-dependent increase in total number and proportion of terminally differentiated binucleate cells. Furthermore, BMP4 treatment induced non-CG-secreting day 31 chorionic girdle trophoblast cells to secrete CG, confirming a specific functional response to BMP4 stimulation. Inhibition of SMAD2/3 signaling combined with BMP4 treatment further enhanced differentiation of trophoblast cells. Phospho-SMAD1/5, but not phospho-SMAD2, expression as determined by Western blotting was tightly regulated during chorionic girdle trophoblast differentiation in vivo, with peak expression of phospho-SMAD1/5 in vivo noted at day 31 corresponding to maximal differentiation response of trophoblast in vitro. Collectively, these experiments demonstrate the involvement of BMP4-dependent pathways in the regulation of equine trophoblast differentiation in vivo and primary trophoblast differentiation in vitro via activation of SMAD1/5 pathway, a previously unreported mechanism of TGFβ signaling in the mammalian placenta.
Collapse
Affiliation(s)
- Victoria Cabrera-Sharp
- Comparative Biomedical Sciences (V.C-S., J.E.R., S.R., A.A.K., A.M., A.M.d.M.), The Royal Veterinary College, London NW1 0TU, United Kingdom; Baker Institute for Animal Health (D.F.A.), College of Veterinary Medicine, Cornell University, Ithaca, New York 14853; and Biomedical Sciences (J.E.C.), St George's University of London SW17 0RE, London, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Placental trophoblast cell differentiation: Physiological regulation and pathological relevance to preeclampsia. Mol Aspects Med 2013; 34:981-1023. [DOI: 10.1016/j.mam.2012.12.008] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 12/01/2012] [Accepted: 12/19/2012] [Indexed: 12/11/2022]
|
11
|
Wu Z, Xu Z, Zou X, Zeng F, Shi J, Liu D, Urschitz J, Moisyadi S, Li Z. Pig transgenesis by piggyBac transposition in combination with somatic cell nuclear transfer. Transgenic Res 2013; 22:1107-18. [PMID: 23857557 DOI: 10.1007/s11248-013-9729-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 06/19/2013] [Indexed: 02/02/2023]
Abstract
The production of animals by somatic cell nuclear transfer (SCNT) is inefficient, with approximately 2% of micromanipulated oocytes going to term and resulting in live births. However, it is the most commonly used method for the generation of cloned transgenic livestock as it facilitates the attainment of transgenic animals once the nuclear donor cells are stably transfected and more importantly as alternatives methods of transgenesis in farm animals have proven even less efficient. Here we describe piggyBac-mediated transposition of a transgene into porcine primary cells and use of these genetically modified cells as nuclear donors for the generation of transgenic pigs by SCNT. Gene transfer by piggyBac transposition serves to provide an alternative approach for the transfection of nuclear donor cells used in SCNT.
Collapse
Affiliation(s)
- Zhenfang Wu
- Department of Animal Genetics, Breeding and Reproduction, South China Agricultural University, The New Building of College of Animal Science, Room 315, Guangzhou, 510642, Guangdong, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Zhou H, Fu G, Yu H, Peng C. Transforming growth factor-beta inhibits aromatase gene transcription in human trophoblast cells via the Smad2 signaling pathway. Reprod Biol Endocrinol 2009; 7:146. [PMID: 20003198 PMCID: PMC2797513 DOI: 10.1186/1477-7827-7-146] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Accepted: 12/09/2009] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Transforming growth factor-beta (TGF-beta) is known to exert multiple regulatory functions in the human placenta, including inhibition of estrodial production. We have previously reported that TGF-beta1 decreased aromatase mRNA levels in human trophoblast cells. The objective of this study was to investigate the molecular mechanisms underlying the regulatory effect of TGF-beta1 on aromatase expression. METHODS To determine if TGF-beta regulates aromatase gene transcription, several reporter constructs containing different lengths of the placental specific promoter of the human aromatase gene were generated. JEG-3 cells were transiently transfected with a promoter construct and treated with or without TGF-beta1. The promoter activity was measured by luciferase assays. To examine the downstream signaling molecule mediating the effect of TGF-beta on aromatase transcription, cells were transiently transfected with dominant negative mutants of TGF-beta type II (TbetaRII) and type I receptor (ALK5) receptors before TGF-beta treatment. Smad2 activation was assessed by measuring phophorylated Smad2 protein levels in cytosolic and nuclear fractions. Smad2 expression was silenced using a siRNA expression construct. Finally, aromatase mRNA half-life was determined by treating cells with actinomycin D together with TGF-beta1 and measuring aromatase mRNA levels at various time points after treatment. RESULTS AND DISCUSSION TGF-beta1 inhibited the aromatase promoter activity in a time- and dose-dependent manner. Deletion analysis suggests that the TGF-beta1 response element resides between -422 and -117 nucleotides upstream from the transcription start site where a Smad binding element was found. The inhibitory effect of TGF-beta1 was blocked by dominant negative mutants of TbetaRII and ALK5. TGF-beta1 treatment induced Smad2 phosphorylation and translocation into the nucleus. On the other hand, knockdown of Smad2 expression reversed the inhibitory effect of TGF-beta1 on aroamtase transcription. Furthermore, TGF-beta1 accelerated the degradation of aromatase mRNA. CONCLUSION Our results demonstrate that TGF-beta1 exerts regulatory effects on aromatase gene at both transcriptional and post-transcriptional levels. The transcriptional regulation of aromatase gene by TGF-beta1 is mediated by the canonical TGF-beta pathway involving TbetaRII, ALK5 and Smad2. These findings further support the role of TGF-beta1 in regulating human placental functions and pregnancy.
Collapse
Affiliation(s)
- Hong Zhou
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Guodong Fu
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Hui Yu
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Chun Peng
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| |
Collapse
|
13
|
Chae J, Yu K, Cho S, Kim J, Koo D, Lee K, Han Y. Aberrant expression of developmentally important signaling molecules in cloned porcine extraembryonic tissues. Proteomics 2008; 8:2724-34. [DOI: 10.1002/pmic.200701134] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Yang Q, Lin HY, Wang HX, Zhang H, Zhang X, Wang HM, Zhu C. Expression of Smad ubiquitin regulatory factor 2 (Smurf2) in rhesus monkey endometrium and placenta during early pregnancy. J Histochem Cytochem 2006; 55:453-60. [PMID: 17189523 DOI: 10.1369/jhc.6a7069.2006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Smad ubiquitin regulatory factor 2 (Smurf2) is an E3 ubiquitin ligase that is involved in the Smad-mediated TGF-beta signaling. TGF-beta has been shown to play an important role during normal embryo implantation, but whether Smurf2 is involved in this process has not been reported. This study was first conducted to investigate the expression of Smurf2 transcript and protein in different compartments of the rhesus monkey uteri and placenta during early pregnancy. The results showed that both the cloned partial sequence of Smurf2 gene and the corresponding amino acid residues shared 99% identity with those of human homologs. On day 12 (D12) of pregnancy, strong signals of Smurf2 mRNA were found in basalis glandular epithelium and luminal epithelium, and moderate expressions were detected in functionalis glandular epithelium. During early villi stage and villi placental stage, Smurf2 mRNAs were mainly localized in the placenta villi, trophoblastic column, trophoblastic shell, and basalis glandular epithelium. There appeared strong staining signals in the arterioles on D26 of pregnancy, but faint staining signals on D18 of pregnancy. No specific staining of Smurf2 mRNA was observed in stromal cells and myometrium. The expression pattern of Smurf2 protein was generally similar to that of its mRNA. These results provide the first evidence that Smurf2 may play specific roles in glandular secretion, trophoblastic cell invasion, and placentation through mediating the expression of the related proteins of TGF-beta signaling pathway during early pregnancy.
Collapse
Affiliation(s)
- Qing Yang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Haidian District, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhao MR, Qiu W, Li YX, Zhang ZB, Li D, Wang YL. Dual effect of transforming growth factor β1 on cell adhesion and invasion in human placenta trophoblast cells. Reproduction 2006; 132:333-41. [PMID: 16885541 DOI: 10.1530/rep.1.01112] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Transforming growth factor β (TGFβ) has been shown to be a multifunctional cytokine required for embryonic development and regulation of trophoblast cell behaviors. In the present study, a non-transformed cell-line representative of normal human trophoblast (NPC) was used to examine the effect of TGFβ1 on trophoblast cell adhesion and invasion.In vitroassay showed that TGFβ1 could significantly promote intercellular adhesion, while inhibiting cell invasion across the collagen I-coated filter. Reverse transcription (RT)-PCR and gelatin zymography demonstrated that TGFβ1 evidently repressed the mRNA expression and proenzyme production of matrix metalloproteinase (MMP)-9, but exerted no effect on mRNA expression and secretion of MMP-2. On the other hand, both the mRNA and protein expression of epithelial-cadherin and β-catenin were obviously upregulated by TGFβ1 in dose-dependent fashion, as revealed by RT-PCR and western-blot analysis. What is more, one of the critical TGFβ signaling molecules – Smad2 was notably phosphorylated in TGFβ1-treated NPC cells. The data indicates that cell invasion and adhesion are coordinated processes in human trophoblasts and that there exists paracrine regulation on adhesion molecules and invasion-associated enzymes in human placenta.
Collapse
Affiliation(s)
- Mei-rong Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Road, Beijing 100080, People's Republic of China
| | | | | | | | | | | |
Collapse
|
16
|
Koklanaris N, Nwachukwu JC, Huang SJ, Guller S, Karpisheva K, Garabedian M, Lee MJ. First-trimester trophoblast cell model gene response to hypoxia. Am J Obstet Gynecol 2006; 194:687-93. [PMID: 16522398 DOI: 10.1016/j.ajog.2006.01.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 01/09/2006] [Accepted: 01/17/2006] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Trophoblast invasion, which sets the stage for placentation and pregnancy outcome, likely occurs in a hypoxic environment. We used microarray technology in a trophoblast cell line to identify hypoxia-responsive genes that may impact placentation. STUDY DESIGN An immortalized extravillous cytotrophoblast cell line, HTR-8/SVneo, was exposed to normoxia (20% oxygen) or hypoxia (1% oxygen) for 6 hours. Total RNA was harvested and prepared for microarray study. Quantitative reverse transcriptase polymerase chain reaction was performed for array confirmation. RESULTS We confirmed the up- and down-regulation of 10 hypoxia-responsive genes using quantitative reverse transcriptase polymerase chain reaction. Ontologic gene categories that were found to be hypoxia-responsive included motility/migration, angiogenesis, and apoptosis. CONCLUSION Specific genes that were found to be up-regulated in this first-trimester array (such as plasminogen activator inhibitor-1 and tissue inhibitor of metalloproteinase 3) have been described in preeclampsia. The hypoxia-responsive genes that we identified may be physiologic in early pregnancy. However, up-regulation of these same genes in later pregnancy augurs poorly.
Collapse
Affiliation(s)
- Nikki Koklanaris
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Pollheimer J, Knöfler M. Signalling pathways regulating the invasive differentiation of human trophoblasts: a review. Placenta 2005; 26 Suppl A:S21-30. [PMID: 15837062 DOI: 10.1016/j.placenta.2004.11.013] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/23/2004] [Indexed: 01/22/2023]
Abstract
The invasive differentiation pathway of trophoblasts is an indispensable physiological process of early human placental development. Formation of anchoring villi, proliferation of cell columns and invasion of extravillous cytotrophoblasts into maternal decidual stroma and vessels induce vascular changes ensuring an adequate blood supply to the growing fetus. Extravillous trophoblast differentiation is regulated by numerous growth factors as well as by extracellular matrix proteins and adhesion molecules expressed at the fetal-maternal interface. These regulatory molecules control cell invasion by modulating activities of matrix-degrading protease systems and ECM adhesion. The differentiation process involves numerous signalling cascades/proteins such as the GTPases RhoA, the protein kinases ROCK, ERK1, ERK2, FAK, PI3K, Akt/protein kinase B and mTOR as well as TGF-beta-dependent SMAD factors. While an increasing number of signalling pathways regulating trophoblast differentiation are being unravelled, downstream effectors such as executing transcription factors remain largely elusive. Here, we summarise our current knowledge on signal transduction cascades regulating invasive trophoblast differentiation. We will focus on cell model systems which are used to study the particular differentiation process and discuss signalling pathways which regulate trophoblast proliferation and motility.
Collapse
Affiliation(s)
- J Pollheimer
- Department of Obstetrics and Gynecology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | |
Collapse
|
18
|
Lau MT, Ge W. Cloning of Smad2, Smad3, Smad4, and Smad7 from the goldfish pituitary and evidence for their involvement in activin regulation of goldfish FSHbeta promoter activity. Gen Comp Endocrinol 2005; 141:22-38. [PMID: 15707600 DOI: 10.1016/j.ygcen.2004.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2004] [Revised: 10/19/2004] [Accepted: 10/29/2004] [Indexed: 11/16/2022]
Abstract
Follicle-stimulating hormone (FSH), a glycoprotein consisting of an alpha subunit and a unique beta subunit, is essential for gonadal development and function in vertebrates including teleosts. FSH is regulated by a variety of neuroendocrine and endocrine factors, and its biosynthesis is primarily determined by the expression of the beta subunit. Although the regulation of FSH biosynthesis has been well documented in mammals, the molecular mechanisms underlying the regulation are poorly understood. Our previous studies demonstrated that activin stimulated goldfish FSHbeta expression in the primary pituitary cell culture and enhanced its promoter activity in the mouse gonadotrope cell line LbetaT-2 cells. However, little is known about the signal transduction pathway involved in the transcriptional activation of this gene by activin. To assess the involvement of intracellular signaling protein Smads in regulating goldfish FSHbeta promoter, we first cloned full-length cDNAs for goldfish Smad2, Smad3, Smad4, and Smad7 from the pituitary. All Smads cloned show high sequence conservation with their mammalian counterparts. The spatial expression of these Smads overlapped with that of activin subunits and its receptors in various tissues examined. In addition, we demonstrated that activin induced Smad3 and Smad7 expression, but not Smad2 and Smad4. Co-transfection of Smad2 or Smad3 cDNA into the LbetaT-2 cells with the reporter construct of goldfish FSHbeta promoter significantly enhanced basal and activin-stimulated reporter (SEAP, secreted alkaline phosphatase) expression, while Smad7 completely blocked basal and Smad2/3-stimulated FSHbeta activity. Interestingly, the effect of Smad3 was much higher than that of Smad2, suggesting that Smad3 is likely the principal signal transducing molecule involved in activin stimulation of FSHbeta expression in the goldfish. This work lays a foundation for further analysis of goldfish FSHbeta promoter for the cis-regulatory elements involved in activin signaling.
Collapse
Affiliation(s)
- Man-Tat Lau
- Department of Biology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | |
Collapse
|
19
|
Qian D, Lin HY, Wang HM, Zhang X, Liu DL, Li QL, Zhu C. Involvement of ERK1/2 pathway in TGF-beta1-induced VEGF secretion in normal human cytotrophoblast cells. Mol Reprod Dev 2005; 68:198-204. [PMID: 15095341 DOI: 10.1002/mrd.20061] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) plays a pivotal role in the angiogenesis during the development of placenta, but the intracellular signaling mechanism by which TGF-beta1 stimulates this process remains poorly understood. In this article, we demonstrated that exposure of normal human cytotrophoblast cells to TGF-beta1 stimulated the secretion of the VEGF gene encoding vascular endothelial growth factor, which is a key factor in angiogenesis. Meanwhile, treatment of normal human cytotrophoblast cells with TGF-beta1-induced expression of HIF-1a, the regulated subunit of hypoxia-inducible factor 1, a known transactivator of the VEGF gene. Our data indicated that TGF-beta1 induced extracellular signal- regulated kinase (ERK) 1/2 phosphorylation in normal human cytotrophoblast cells. Moreover, treating cells with PD98059, an inhibitor of ERK1/2 signaling, inhibited TGF-beta1 stimulation of VEGF secretion and HIF-1a protein expression. These data indicated that in normal human cytotrophoblast cells, TGF-beta1 induced HIF-1a-mediated VEGF secretion, and TGF-beta1-stimulated-ERK1/2 activation may be involved in this process.
Collapse
Affiliation(s)
- Dong Qian
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 25 Bei Si Huan Xi Lu, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Munir S, Xu G, Wu Y, Yang B, Lala PK, Peng C. Nodal and ALK7 inhibit proliferation and induce apoptosis in human trophoblast cells. J Biol Chem 2004; 279:31277-86. [PMID: 15150278 DOI: 10.1074/jbc.m400641200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nodal, a member of the transforming growth factor-beta superfamily, is known to play critical roles in early vertebrate development, but its functions in extraembryonic tissues are unclear. ALK7 is a type I receptor for Nodal. Recently, we demonstrated that Nodal mRNA and several ALK7 transcripts are expressed in human placenta throughout pregnancy (Roberts, H. J., Hu, S., Qiu, Q., Leung, P. C. K., Cannigia, I., Gruslin, A., Tsang, B., and Peng, C. (2003) Biol. Reprod. 68, 1719-1726). In this study, we determined the role of Nodal and ALK7 in trophoblast cell proliferation and apoptosis. Overexpression of Nodal in normal trophoblast cells (HTR8/SVneo) and several choriocarcinoma cell lines resulted in a significant decrease in the number of metabolically active cells. The effect of Nodal could be mimicked by constitutively active ALK7 (ALK7-ca), but was blocked by kinase-deficient ALK7. The growth inhibitory effect of Nodal was also blocked by dominant-negative Smad2/3. Overexpression of Nodal and ALK7-ca induced apoptosis in trophoblast cells as determined by Hoechst staining, flow cytometry, and caspase-3 Western blotting. In addition, Nodal and ALK7-ca decreased the number of proliferating cells as measured by bromodeoxyuridine assays. Furthermore, overexpression of Nodal or ALK7-ca increased p27 expression, but reduced the levels of Cdk2 and cyclin D(1). Taken together, this study demonstrates for the first time that Nodal, acting through ALK7 and Smad2/3, inhibits proliferation and induces apoptosis in human trophoblast cells. Our findings also suggest that the Nodal-ALK7 pathway inhibits cell proliferation by inducing G(1) cell cycle arrest and that this effect is mediated in part by the p27-cyclin E/Cdk2 pathway.
Collapse
Affiliation(s)
- Sadia Munir
- Department of Biology, York University, Toronto, Ontario M3J 1P3, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Qian D, Lin HY, Wang HM, Zhang X, Liu DL, Li QL, Zhu C. Normoxic induction of the hypoxic-inducible factor-1 alpha by interleukin-1 beta involves the extracellular signal-regulated kinase 1/2 pathway in normal human cytotrophoblast cells. Biol Reprod 2004; 70:1822-7. [PMID: 14960485 DOI: 10.1095/biolreprod.103.025031] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
During early pregnancy, an environment of relative low oxygen tension is essential for normal embryonic and placental vasculature. In low-oxygen conditions, the hypoxic-inducible factor-1 (HIF-1), composed of alpha and beta subunits, controls the expression of a number of genes such as vascular endothelial growth factor (VEGF), a key angiogenic factor. The recent studies in some tumor cells have found that the labile component, HIF-1 alpha, is not only activated by hypoxia but also by peptides such as interleukin-1 (IL-1) in normoxia. In this article, we demonstrated that exposure of normal human cytotrophoblast cells to IL-1 beta stimulated the expression of HIF-1 alpha protein. Meanwhile, IL-1 beta also induced the secretion of VEGF in normal human cytotrophoblast cells. Our data indicated that IL-1 beta induced extracellular signal-regulated kinase (ERK) 1/2 phosphorylation. Moreover, treatment of cells with PD98059, an inhibitor of ERK1/2 signaling, inhibited the stimulation of HIF-1 alpha protein expression and VEGF secretion by IL-1 beta. These data indicate that, in normal human cytotrophoblast cells, IL-1 beta induces HIF- 1 alpha-mediated VEGF secretion and that IL-1 beta-stimulated ERK1/2 activation may be involved in this process.
Collapse
Affiliation(s)
- Dong Qian
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | | | | | | | |
Collapse
|
22
|
Peng C. The TGF-beta superfamily and its roles in the human ovary and placenta. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2004; 25:834-44. [PMID: 14532952 DOI: 10.1016/s1701-2163(16)30674-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The transforming growth factor-beta (TGF-beta) superfamily consists of a large group of growth and differentiation factors, such as TGF-betas, activins, inhibins, growth and differentiation factors (GDFs), and bone morphogenetic proteins (BMPs). These molecules act through specific receptor complexes that are composed of type I and type II serine/threonine receptor kinases. The receptor kinases subsequently activate Smad proteins, which then propagate the signals into the nucleus to regulate target gene expression. Several ligands in this family, such as TGF-betas, activins, inhibins, BMP-15, and GDF-9, play important roles in regulating human ovarian functions, including follicle development and maturation. Activin and TGF-beta are also involved in regulating placental development and functions. Abnormal expression or function of these ligands has been found in several pathological conditions. This review summarizes the role of the TGF-beta superfamily in human ovarian and placental regulation and function, and the potential clinical implications.
Collapse
Affiliation(s)
- Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
23
|
Rogers PD, Thornton J, Barker KS, McDaniel DO, Sacks GS, Swiatlo E, McDaniel LS. Pneumolysin-dependent and -independent gene expression identified by cDNA microarray analysis of THP-1 human mononuclear cells stimulated by Streptococcus pneumoniae. Infect Immun 2003; 71:2087-94. [PMID: 12654830 PMCID: PMC152049 DOI: 10.1128/iai.71.4.2087-2094.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pneumolysin is an important virulence factor of Streptococcus pneumoniae, interacting with the membranes of host cells to elicit a multitude of inflammatory responses. We used cDNA microarrays to identify genes which are responsive to S. pneumoniae in a pneumolysin-dependent and -independent fashion. The THP-1 human monocytic cell line was coincubated for 3 h with medium alone, with the virulent type 2 S. pneumoniae strain D39, or with the isogenic strain PLN, which does not express pneumolysin. RNA was isolated from the monocytes and hybridized on cDNA microarrays. Of 4,133 genes evaluated, 142 were found to be responsive in a pneumolysin-dependent fashion, whereas 40 were found to be responsive independent of pneumolysin. Genes that were up-regulated in cells exposed to D39 relative to those exposed to PLN included genes encoding proteins such as mannose binding lectin 1, lysozyme, alpha-1 catenin, cadherin 17, caspases 4 and 6, macrophage inflammatory protein 1beta (MIP-1beta), interleukin 8 (IL-8), monocyte chemotactic protein 3 (MCP-3), IL-2 receptor beta (IL-2Rbeta), IL-15 receptor alpha (IL-15Ralpha), interferon receptor 2, and prostaglandin E synthase. Down-regulated genes included those encoding complement component receptor 2/CD21, platelet-activating factor acetylhydrolase, and oxidized low-density lipoprotein receptor 1 (OLR1). Pneumolysin-independent responses included down-regulation of the genes encoding CD68, CD53, CD24, transforming growth factor beta2, and signal transducers and activators of transcription 1. These results demonstrate the striking effects of pneumolysin on the host cell upon exposure to S. pneumoniae.
Collapse
Affiliation(s)
- P David Rogers
- Departments of Clinical Pharmacy and Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | | | | | | | | | | | | |
Collapse
|
24
|
Liu C, Gaça MDA, Swenson ES, Vellucci VF, Reiss M, Wells RG. Smads 2 and 3 are differentially activated by transforming growth factor-beta (TGF-beta ) in quiescent and activated hepatic stellate cells. Constitutive nuclear localization of Smads in activated cells is TGF-beta-independent. J Biol Chem 2003; 278:11721-8. [PMID: 12547835 DOI: 10.1074/jbc.m207728200] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hepatic stellate cells are the primary cell type responsible for matrix deposition in liver fibrosis, undergoing a process of transdifferentiation into fibrogenic myofibroblasts. These cells, which undergo a similar transdifferentiation process when cultured in vitro, are a major target of the profibrogenic agent transforming growth factor-beta (TGF-beta). We have studied activation of the TGF-beta downstream signaling molecules Smads 2, 3, and 4 in hepatic stellate cells (HSC) cultured in vitro for 1, 4, and 7 days, with quiescent, intermediate, and fully transdifferentiated phenotypes, respectively. Total levels of Smad4, common to multiple TGF-beta superfamily signaling pathways, do not change as HSC transdifferentiate, and the protein is found in both nucleus and cytoplasm, independent of treatment with TGF-beta or the nuclear export inhibitor leptomycin B. TGF-beta mediates activation of Smad2 primarily in early cultured cells and that of Smad3 primarily in transdifferentiated cells. The linker protein SARA, which is required for Smad2 signaling, disappears with transdifferentiation. Additionally, day 7 cells demonstrate constitutive phosphorylation and nuclear localization of Smad 2, which is not affected by pretreatment with TGF-beta-neutralizing antibodies, a type I TGF-beta receptor kinase inhibitor, or activin-neutralizing antibodies. These results demonstrate essential differences between TGF-beta-mediated signaling pathways in quiescent and in vitro transdifferentiated hepatic stellate cells.
Collapse
Affiliation(s)
- Chenghai Liu
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | |
Collapse
|
25
|
Chen VTS, Peng C, Leung PCK. Activin-A up-regulates type I activin receptor mRNA levels in human immortalized extravillous trophoblast cells. Reprod Biol Endocrinol 2003; 1:29. [PMID: 12702211 PMCID: PMC153493 DOI: 10.1186/1477-7827-1-29] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2003] [Accepted: 03/24/2003] [Indexed: 11/10/2022] Open
Abstract
Activin is known to play an important regulatory role in reproduction, including pregnancy. To further examine the role and signaling mechanism of activin in regulating placental function, the steady-state level of activin type I receptor (ActRI) mRNA in immortalized extravillous trophoblasts (IEVT) cells was measured using competitive PCR (cPCR). An internal standard of ActRI cDNA for cPCR was constructed for the quantification of ActRI mRNA levels in IEVT cells. ActRI mRNA levels were increased in a dose-dependent manner by activin-A with the maximal effect observed at the dose of 10 ng/ml. Time course studies revealed that activin-A had maximal effects on ActRI mRNA levels at 6 hours after treatment. The effects of activin-A on ActRI mRNA levels was blocked by follistatin, an activin binding protein, in a dose-dependent manner. In addition, inhibin-A inhibited basal, as well as activin-A-induced ActRI mRNA levels. These findings provide evidence, for the first time, that activin-A modulates ActRI mRNA levels in human trophoblast cells.
Collapse
Affiliation(s)
- Victor T S Chen
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, BC, Canada.
| | | | | |
Collapse
|
26
|
Xu G, Chakraborty C, Lala PK. Expression of TGF-beta signaling genes in the normal, premalignant, and malignant human trophoblast: loss of smad3 in choriocarcinoma cells. Biochem Biophys Res Commun 2001; 287:47-55. [PMID: 11549251 DOI: 10.1006/bbrc.2001.5533] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We had earlier shown that TGF-beta controls proliferation, migration, and invasiveness of normal human trophoblast cells, whereas premalignant and malignant trophoblast cells are resistant to TGF-beta. To identify signaling defects responsible for TGF-beta resistance in premalignant and malignant trophoblasts, we have compared the expression of TGF-beta signaling molecules in a normal trophoblast cell line (HTR-8), its premalignant derivative (RSVT2/C), and two choriocarcinoma cell lines (JAR and JEG-3). RT-PCR analysis revealed that all these cell lines expressed the mRNA of TGF-beta1, -beta2, and -beta3, TGF-beta receptors type I, II, and III, and post-receptor signaling genes smad2, smad3, smad4, smad6, and smad7 with the exception that TGF-beta2 and smad3 were undetectable in JAR and JEG-3 cells. Immunoblot analysis confirmed the absence of smad3 protein in choriocarcinoma cells. Treatment with TGF-beta1 induced smad3 phosphorylation and smad3 translocation to the nucleus in the normal and premalignant trophoblast cells. These results suggest that loss of smad3 may account for a functional disruption in the TGF-beta signaling pathway in choriocarcinomas, but not in the premalignant trophoblast.
Collapse
Affiliation(s)
- G Xu
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada N6A 5C1
| | | | | |
Collapse
|