1
|
Mayra PR, Rosalina VL, López G, Iruretagoyena J, Magness R. [Regulation of uterine blood flow. II. Functions of estrogen and estrogen receptor α/β in genomic and non-genomic actions of the uterine endothelium]. ACTA ACUST UNITED AC 2014; 79:218-228. [PMID: 26113751 DOI: 10.4067/s0717-75262014000300011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pregnancy is marked by changes and cardiovascular adaptations that are important for the maintenance and growth of the placenta and fetus. During this period, the uterine vascular adaptations manifest changes that can be classified as short or long term and they related to adaptations for vasodilation, angiogenic or remodeling. Estrogen and the classical estrogen receptors (ERs), ER-α and ER-β, have been shown to be partially responsible for facilitating this dramatic increase in uterine blood flow needed during pregnancy. This literature review discusses the basis for structural diversity and functional selectivity of ERs by estrogen, the role of ERs on the genomic and non-genomic effects in endothelial cells of uterine arteries (UAEC). These themes integrate scientific knowledge about the molecular regulation of UAEC to maintain the physiological increase in uteroplacental perfusion observed during normal pregnancy.
Collapse
Affiliation(s)
- Pastore R Mayra
- Programa de Endocrinología y Fisiología Reproductiva, Universidad de Wisconsin-Madison, Wisconsin, USA ; Laboratorio de Investigación Perinatal, Departamento de Obstetricia y Ginecología y División de Ciencias de la Reproducción, Universidad de Wisconsin-Madison, Wisconsin, USA
| | - Villalón L Rosalina
- Programa de Endocrinología y Fisiología Reproductiva, Universidad de Wisconsin-Madison, Wisconsin, USA ; Laboratorio de Investigación Perinatal, Departamento de Obstetricia y Ginecología y División de Ciencias de la Reproducción, Universidad de Wisconsin-Madison, Wisconsin, USA
| | - Gladys López
- Laboratorio de Investigación Perinatal, Departamento de Obstetricia y Ginecología y División de Ciencias de la Reproducción, Universidad de Wisconsin-Madison, Wisconsin, USA ; Departamento Perinatal, Universidad de Wisconsin-Madison, Wisconsin, USA
| | - Jesús Iruretagoyena
- Departamento Perinatal, Universidad de Wisconsin-Madison, Wisconsin, USA ; Departamento de Obstetricia y Ginecología de la División de Medicina Materno-Fetal. Universidad de Wisconsin-Madison, Wisconsin, USA
| | - Ronald Magness
- Programa de Endocrinología y Fisiología Reproductiva, Universidad de Wisconsin-Madison, Wisconsin, USA ; Laboratorio de Investigación Perinatal, Departamento de Obstetricia y Ginecología y División de Ciencias de la Reproducción, Universidad de Wisconsin-Madison, Wisconsin, USA ; Departamento Perinatal, Universidad de Wisconsin-Madison, Wisconsin, USA ; Departamento de Ciencias de Animales, Universidad de Wisconsin-Madison, Wisconsin, USA
| |
Collapse
|
2
|
Ramadoss J, Liao WX, Morschauser TJ, Lopez GE, Patankar MS, Chen DB, Magness RR. Endothelial caveolar hub regulation of adenosine triphosphate-induced endothelial nitric oxide synthase subcellular partitioning and domain-specific phosphorylation. Hypertension 2012; 59:1052-9. [PMID: 22454479 DOI: 10.1161/hypertensionaha.111.189498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ATP leads to endothelial NO synthase (eNOS)/NO-mediated vasodilation, a process hypothesized to depend on the endothelial caveolar eNOS partitioning and subcellular domain-specific multisite phosphorylation state. We demonstrate herein that, in both the absence and presence of ATP, the uterine artery endothelial caveolae contain specific protein machinery related to subcellular partitioning and act as specific focal "hubs" for NO- and ATP-related proteins. ATP-induced eNOS regulation showed a complex set of multisite posttranslational phosphorylation events that were closely associated with the enzyme's partitioning between caveolar and noncaveolar endothelial subcellular domains. The comprehensive model that we present demonstrates that ATP repartitioned eNOS between the caveolar and noncaveolar subcellular domains; specifically, the stimulatory (PSer635)eNOS was substantially higher in the caveolar pool with subcellular domain-independent increased levels on ATP treatment. The stimulatory (PSer1179)eNOS was not altered by ATP treatment. However, the inhibitory (PThr495)eNOS was regulated predominantly in the caveolar domain with decreased levels on ATP action. In contrast, the agonist-specific (PSer114)eNOS was localized in the noncaveolar pool with increased levels on ATP stimulation. Thus, the endothelial caveolar membrane system plays a pivotal role(s) in ATP-associated subcellular partitioning and possesses the relevant protein machinery for ATP-induced NO regulation. Furthermore, these subcellular domain-specific phosphorylation/dephosphorylation events provide evidence relating to eNOS spatio-temporal dynamics.
Collapse
Affiliation(s)
- Jayanth Ramadoss
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI 53715, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Pastore MB, Jobe SO, Ramadoss J, Magness RR. Estrogen receptor-α and estrogen receptor-β in the uterine vascular endothelium during pregnancy: functional implications for regulating uterine blood flow. Semin Reprod Med 2012; 30:46-61. [PMID: 22271294 DOI: 10.1055/s-0031-1299597] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The steroid hormone estrogen and its classical estrogen receptors (ERs), ER-α and ER-β, have been shown to be partly responsible for the short- and long-term uterine endothelial adaptations during pregnancy. The ER-subtype molecular and structural differences coupled with the differential effects of estrogen in target cells and tissues suggest a substantial functional heterogeneity of the ERs in estrogen signaling. In this review we discuss (1) the role of estrogen and ERs in cardiovascular adaptations during pregnancy, (2) in vivo and in vitro expression of ERs in uterine artery endothelium during the ovarian cycle and pregnancy, contrasting reproductive and nonreproductive arterial endothelia, (3) the structural basis for functional diversity of the ERs and estrogen subtype selectivity, (4) the role of estrogen and ERs on genomic responses of uterine artery endothelial cells, and (5) the role of estrogen and ERs on nongenomic responses in uterine artery endothelia. These topics integrate current knowledge of this very rapidly expanding scientific field with diverse interpretations and hypotheses regarding the estrogenic effects that are mediated by either or both ERs and their relationship with vasodilatory and angiogenic vascular adaptations required for modulating the dramatic physiological rises in uteroplacental perfusion observed during normal pregnancy.
Collapse
Affiliation(s)
- Mayra B Pastore
- Department of Obstetrics/Gynecology, Perinatal Research Laboratories, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | | | |
Collapse
|
4
|
Guo CJ, Yang XB, Wu YY, Yang LS, Mi S, Liu ZY, Jia KT, Huang YX, Weng SP, Yu XQ, He JG. Involvement of caveolin-1 in the Jak-Stat signaling pathway and infectious spleen and kidney necrosis virus infection in mandarin fish (Siniperca chuatsi). Mol Immunol 2011; 48:992-1000. [PMID: 21296425 PMCID: PMC7112660 DOI: 10.1016/j.molimm.2011.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 12/01/2010] [Accepted: 01/01/2011] [Indexed: 12/21/2022]
Abstract
Caveolae, the major source of caveolin-1 protein, are specialized invaginated microdomains of the plasma membrane that act as organizing centers for signaling molecules in the immune system. In the present study, we report the cloning and characterization of caveolin-1 (mCav-1) from mandarin fish (Siniperca chuatsi) and study on the roles of mCav-1 in the fish Jak–Stat signaling pathway and in virus infection. The cDNA sequence of mCav-1 was 707 bp in size, encoding a protein of 181 amino acids, which was different from the mammalian protein (178 amino acids). The deduced amino acid sequence of mCav-1 shared similar architecture with vertebrate caveolin-1 proteins, but mCav-1 lacked a phosphorylation site (y14). The major subcellular location of mCav-1 was in the caveolae, where the protein appeared to have major functions. Real-time PCR revealed that the expression of the mandarin fish Mx, IRF-1, SOCS1, and SOCS3 genes involved in the poly(I:C)-induced Jak–Stat signaling pathway was impaired by the mCav-1 scaffolding domain peptide (mSDP). In mandarin fish fry (MFF-1) cells, the protein levels of mCav-1 were markedly up-regulated at 12 and 24 h post-infection with ISKNV (infectious spleen and kidney necrosis virus). In addition, ISKNV entry into MFF-1 cells was significantly inhibited by mSDP, and the inhibition was dose-dependent. Thus, ISKNV infection was apparently associated with mCav-1 protein and may utilize the caveolae-related endocytosis pathway. The findings reported here further our understanding of the function of caveolin-1 in the complex signal transduction network in fish immune systems and in the cellular entry mechanism of iridoviruses.
Collapse
Affiliation(s)
- Chang-Jun Guo
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ramadoss J, Liao WX, Chen DB, Magness RR. High-throughput caveolar proteomic signature profile for maternal binge alcohol consumption. Alcohol 2010; 44:691-7. [PMID: 20053519 DOI: 10.1016/j.alcohol.2009.10.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2009] [Revised: 10/12/2009] [Accepted: 10/16/2009] [Indexed: 12/21/2022]
Abstract
Currently, no single marker is sensitive and specific enough to be considered a reliable biomarker for prenatal alcohol exposure. To identify a proteomic signature profile for maternal alcohol consumption, we carried out high-throughput proteomics on maternal endothelial caveolae exposed to moderate binge-like alcohol conditions. In these specialized lipid-ordered microdomains that contain a rich assembly of proteins, we demonstrate that moderate binge-like alcohol resulted in a distinctive maternal caveolar proteomic signature with important proteins being dramatically decreased/knocked out in the alcoholic profile. These proteins span from histones and basic structural proteins like α tubulin to proteins involved in trafficking, deubiquitination, cell signaling, and cell-cell adhesion. The profile also suggests an important role for the mother and the uteroplacental compartment in the pathogenesis of fetal alcohol spectrum disorders (FASD). These data demonstrate that the caveolar proteomic signature created by alcohol shows a promising direction for early detection of FASD.
Collapse
|
6
|
Cheung CY, Li S, Chen D, Brace RA. Regulation of caveolin-1 expression and phosphorylation by VEGF in ovine amnion cells. Reprod Sci 2010; 17:1112-9. [PMID: 20720263 DOI: 10.1177/1933719110378175] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Vascular endothelial growth factor (VEGF) has been implicated in the regulation of vesicular transport of amniotic fluid via caveolae across the amnion. This study tested the hypothesis that VEGF regulates caveolar function by stimulating caveolin-1 expression and phosphorylation in ovine amniotic epithelial cells (oAECs). Using primary cultures of oAECs, caveolin-1 was identified by immunofluorescent staining. Caveolin-1 messenger RNA (mRNA) abundance was determined by Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and protein by Western blotting. The effects of VEGF( 165) on caveolin-1 expression and phosphorylation were determined. Caveolin-1 immunoreactivity was detected in oAECs. In response to 10 ng/mL VEGF( 165), caveolin-1 mRNA levels increased whereas the protein levels were unaffected. Furthermore, VEGF stimulated caveolin-1 phosphorylation, an effect abrogated by the inhibition of c-Src protein kinase. These data suggest that VEGF upregulates caveolin-1 activity through c-Src signaling pathways. Our observations support the hypothesis that VEGF regulates amniotic fluid transport across the amnion by stimulating caveolin-1 activity to mediate caveolar function in amnion cells.
Collapse
Affiliation(s)
- Cecilia Y Cheung
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97201, USA.
| | | | | | | |
Collapse
|
7
|
Liao WX, Feng L, Zhang H, Zheng J, Moore TR, Chen DB. Compartmentalizing VEGF-induced ERK2/1 signaling in placental artery endothelial cell caveolae: a paradoxical role of caveolin-1 in placental angiogenesis in vitro. Mol Endocrinol 2009; 23:1428-44. [PMID: 19477952 DOI: 10.1210/me.2008-0475] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
On vascular endothelial growth factor (VEGF) stimulation, both VEGF R1 and R2 receptors were phosphorylated in ovine fetoplacental artery endothelial (oFPAE) cells. Treatment with VEGF stimulated both time- and dose-dependent activation of ERK2/1 in oFPAE cells. VEGF-induced ERK2/1 activation was mediated by VEGFR2, but not VEGFR1, and was linked to intracellular calcium, protein kinase C, and Raf-1. VEGF stimulated oFPAE cell proliferation, migration, and tube formation in vitro. Blockade of ERK2/1 pathway attenuated VEGF-induced cell proliferation and tube formation but failed to inhibit migration in oFPAE cells. Disruption of caveolae by cholesterol depletion with methyl-beta-cyclodextrin or by down-regulation of its structural protein caveolin-1 blunted VEGF-induced ERK2/1 activation, proliferation, and tube formation in oFPAE cells, indicating an essential role of integral caveolae in these VEGF-induced responses. Adenoviral overexpression of caveolin-1 and addition of a caveolin scaffolding domain peptide also inhibited VEGF-stimulated ERK2/1 activation, cell proliferation, and tube formation in oFPAE cells. Furthermore, molecules comprising the ERK2/1 signaling module, including VEGFR2, protein kinase Calpha, Raf-1, MAPK kinase 1/2, and ERK2/1, resided with caveolin-1 in caveolae. VEGF transiently stimulated ERK2/1 activation in the caveolae similarly as in intact cells. Caveolae disruption greatly diminished ERK2/1 activation by VEGF in oFPAE cell caveolae. We conclude that caveolae function as a platform for compartmentalizing the VEGF-induced ERK2/1 signaling module. Caveolin-1 and caveolae play a paradoxical role in regulating VEGF-induced ERK2/1 activation and in vitro angiogenesis as evidenced by the similar inhibitory effects of down-regulation and overexpression of caveolin-1 and disruption of caveolae in oFPAE cells.
Collapse
Affiliation(s)
- Wu-Xiang Liao
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
8
|
Cheung CY, Brace RA. Hypoxia modulation of caveolin-1 and vascular endothelial growth factor in ovine fetal membranes. Reprod Sci 2008; 15:469-76. [PMID: 18579855 DOI: 10.1177/1933719107312561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
During normal pregnancy, amniotic fluid is absorbed from the amniotic compartment into fetal blood through the intramembranous blood vessels in the fetal membranes. It has been hypothesized that this transport process is mediated by transcytosis of caveolae-like vesicles. Because fetal hypoxia increases intramembranous absorption, the authors explore the effects of hypoxia on the gene expression of caveolin-1, a structural protein of caveolae, in ovine fetal membranes and cultured amnion cells. Near-term ovine fetuses were rendered hypoxic for 4 days. Caveolin-1 mRNA and protein levels were significantly reduced in the amnion and chorion but not in the placenta. In cultured ovine amnion cells incubated in 2% oxygen for 24 hours, hypoxia did not significantly alter caveolin-1 mRNA or protein expression. Vascular endothelial growth factor mRNA levels were increased in response to hypoxia in the fetal membranes as well as in cultured amnion cells. The results indicate that hypoxia does not augment but instead down-regulates or has no effect on caveolin-1 gene expression in the amnion and chorion, suggesting that caveolin-1 may play a role as a negative regulator of amnion transport function under hypoxic conditions.
Collapse
Affiliation(s)
- Cecilia Y Cheung
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, Oregon 97239, USA.
| | | |
Collapse
|
9
|
Fang PK, Solomon KR, Zhuang L, Qi M, McKee M, Freeman MR, Yelick PC. Caveolin-1alpha and -1beta perform nonredundant roles in early vertebrate development. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 169:2209-22. [PMID: 17148682 PMCID: PMC1762473 DOI: 10.2353/ajpath.2006.060562] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Caveolins are integral membrane proteins that localize predominantly to lipid rafts, where they oligomerize to form flask-shaped organelles termed caveolae and play important roles in membrane trafficking, signal transduction, and other cellular processes. To investigate potential roles for caveolin-1 (cav-1) in development, cav-1alpha and -1beta cDNAs were functionally characterized in the zebrafish. Cav-1alpha and -1beta mRNAs exhibited overlapping but distinct expression patterns throughout embryogenesis. Targeted depletion of either Cav-1 isoform, using antisense morpholino oligomers, resulted in a substantial loss of caveolae and dramatic neural, eye, and somite defects by 12 hours after fertilization, the time at which mRNA levels of both isoforms substantially increased in wild-type animals. Morphant phenotypes were rescued by injection of homotypic (cav-1alpha/cav-1alpha) but not heterotypic (cav-1alpha/cav-1beta) zebrafish and human cav-1 cRNAs, revealing nonredundant and evolutionarily conserved functions for the individual Cav-1 isoforms. Mutation of a known Cav-1 phosphorylation site unique to Cav-1alpha (Y14-->F) resulted in a failure to rescue the cav-1alpha morphant phenotype, verifying an essential role for Cav-1alpha specifically and implicating this residue in early developmental functions. Cav-1alpha and -1beta morphants also exhibited disruption in the actin cytoskeleton. These results support important and previously unanticipated roles for the Caveolin-1 isoforms in vertebrate organogenesis.
Collapse
Affiliation(s)
- Ping-Ke Fang
- Urological Diseases Research Center, Department of Orthopaedic Surgery, Children's Hospital Boston, Harvard Medical School, Enders Research Laboratories, Suite 1161, 300 Longwood Ave., Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Chen DB, Jia S, King AG, Barker A, Li SM, Mata-Greenwood E, Zheng J, Magness RR. Global Protein Expression Profiling Underlines Reciprocal Regulation of Caveolin 1 and Endothelial Nitric Oxide Synthase Expression in Ovariectomized Sheep Uterine Artery by Estrogen/Progesterone Replacement Therapy1. Biol Reprod 2006; 74:832-8. [PMID: 16436525 DOI: 10.1095/biolreprod.105.049700] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Ovariectomized (OVX) ewes were assigned to receive vehicle, progesterone (P4, 0.9-g controlled internal drug release vaginal implants), estradiol-17beta (E2, 5 microg/kg bolus + 6 microg kg(-1) day(-1)), or P4 + E2 for 10 days (n = 3/group). Uterine artery endothelial proteins were mechanically isolated on Day 10. The samples were used for protein expression profiling by the Ciphergen Proteinchip system and immunoblotting analysis of endothelial nitric oxide synthase (NOS3, also termed eNOS) and caveolin 1. Uterine artery rings were cut and analyzed by immunohistochemistry to localize NOS3 and caveolin 1 expression. With the use of the IMAC3 protein chip with loading as little as 2 microg protein/sample, many protein peaks could be detected. Compared to vehicle controls, a approximately 133.1-kDa protein was identified to be upregulated by 2- to 4-fold in OVX ewes receiving E2, P4, and their combination, whereas a approximately 22.6-kDa protein was downregulated by 2- to 4-fold in OVX ewes receiving E2 and E2/P4, but not P4 treatments. Western blot analysis revealed that E2, P4, and their combination all increased NOS3 protein, whereas E2 and its combination with P4, but not P4 alone, downregulated caveolin 1 expression. Immunohistochemical analysis revealed that NOS3 was mainly localized in the endothelium and upregulated by E2, whereas caveolin 1 was localized in both endothelium and smooth muscle and downregulated by E2. Thus, our data demonstrate that uterine artery endothelial NOS3 and caveolin 1 are regulated reciprocally by estrogen replacement therapy. In keeping with the facts that E2, but not P4, causes uterine vasodilatation and that E2 and P4 increase NOS3 expression, but only E2 decrease caveolin 1 expression, our current study suggests that both increased NOS3 expression and decreased caveolin 1 expression are needed to facilitate estrogen-induced uterine vasodilatation.
Collapse
Affiliation(s)
- Dong-bao Chen
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093-0802, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen DB, Li SM, Qian XX, Moon C, Zheng J. Tyrosine Phosphorylation of Caveolin 1 by Oxidative Stress Is Reversible and Dependent on the c-src Tyrosine Kinase but Not Mitogen-Activated Protein Kinase Pathways in Placental Artery Endothelial Cells1. Biol Reprod 2005; 73:761-72. [PMID: 15958730 DOI: 10.1095/biolreprod.105.040881] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Acute H(2)O(2) exposure to placental artery endothelial cells induced an array of tyrosine-phosphorylated proteins, including caveolin 1 (CAV1) rapid and transient tyr(14) phosphorylated in a time- and concentration-dependent manner. Basal tyr(14) phosphorylated CAV1 was primarily located at the edges of cells and associated with actin filaments. Phosphorylated CAV1 was markedly increased and diffused with the disorganization of actin filaments at 20 min, disappeared at 120 min treatment with 0.2 mM H(2)O(2). Treatment with H(2)O(2) also disorganized actin filaments and changed cell shape in a time-dependent manner. Pretreatment with antioxidants catalase completely, whereas the other tested superoxide dismutase, N-acetyl-l-cysteine and sodium formate partially attenuated H(2)O(2)-induced CAV1 phosphorylation in a concentration-dependent manner. Acute treatment with H(2)O(2) activated multiple signaling pathways, including the mitogen-activated protein kinases (MAPK) members (MAPK3/1-ERK2/1, MAPK8/9-JNK1/2, and MAPK11-p38(mapk)) and the c-src tyrosine kinase (CSK). Pharmacological studies demonstrated that, among these pathways, only the blockade of CSK activation abolished H(2)O(2)-induced CAV1 phosphorylation. Additionally, H(2)O(2)-induced CAV1 phosphorylation was reversible rapidly (<10 min) upon H(2)O(2) withdrawal. Because maternal and fetal endothelia must make dynamic adaptations to oxidative stress resulting from enhanced pregnancy-specific oxygen metabolism favoring prooxidant production, which is emerging as one of the leading causes of the dysfunctional activated endothelium during pregnancy, these unique features of CAV1 phosphorylation on oxidative stress observed implicate an important role of CAV1 in placental endothelial cell biology during pregnancy.
Collapse
Affiliation(s)
- Dong-bao Chen
- Department of Reproductive Medicine, University of California San Diego, La Jolla, 92093, USA.
| | | | | | | | | |
Collapse
|
12
|
Chen DB, Bird IM, Zheng J, Magness RR. Membrane estrogen receptor-dependent extracellular signal-regulated kinase pathway mediates acute activation of endothelial nitric oxide synthase by estrogen in uterine artery endothelial cells. Endocrinology 2004; 145:113-25. [PMID: 14512434 DOI: 10.1210/en.2003-0547] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Rapid uterine vasodilatation after estrogen administration is believed to be mediated by endothelial production of nitric oxide (NO) via endothelial NO synthase (eNOS). However, the mechanism(s) by which estrogen activates eNOS in uterine artery endothelial cells (UAEC) is unknown. In this study, we observed that estradiol-17beta (E2) and E2-BSA rapidly (<2 min) increased total NOx production in UAEC in vitro. This was associated with rapid eNOS phosphorylation and activation but was unaltered by pretreatment with actinomycin-D. Estrogen receptor-alpha protein was detectable in isolated plasma membrane proteins by immunoblotting, and E2-BSA-fluorescein isothiocyanate binding was evident on the plasma membrane of UAEC. E2 did not mobilize intracellular Ca2+, but E2 and ionomycin in combination induced greater eNOS phosphorylation than either E2 or ionomycin alone. E2 did not stimulate rapid Akt phosphorylation. E2 stimulated rapid ERK2/1 activation in a time- and dose-dependent manner, with maximal responses observed at 5-10 min with E2 (10 nm to 1 microm) treatment. Acute activation of eNOS and NOx production by E2 could be inhibited by PD98059 but not by LY294002. When E2-BSA was applied, similar responses in NOx production, eNOS, and ERK2/1 activation to those of E2 were achieved. In addition, E2 and E2-BSA-induced ERK2/1 activation and ICI 182,780 could inhibit NOx production by E2. Thus, acute activation of eNOS to produce NO in UAEC by estrogen is at least partially through an ERK pathway, possibly via estrogen receptor localized on the plasma membrane. This pathway may provide a novel mechanism for NO-mediated rapid uterine vasodilatation by estrogen.
Collapse
Affiliation(s)
- Dong-Bao Chen
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093-0802, USA.
| | | | | | | |
Collapse
|
13
|
Cruz JC, Thomas M, Wong E, Ohgami N, Sugii S, Curphey T, Chang CC, Chang TY. Synthesis and biochemical properties of a new photoactivatable cholesterol analog 7,7-azocholestanol and its linoleate ester in Chinese hamster ovary cell lines. J Lipid Res 2002. [DOI: 10.1194/jlr.m200015-jlr200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|