1
|
Carvajal L, Gutiérrez J, Morselli E, Leiva A. Autophagy Process in Trophoblast Cells Invasion and Differentiation: Similitude and Differences With Cancer Cells. Front Oncol 2021; 11:637594. [PMID: 33937039 PMCID: PMC8082112 DOI: 10.3389/fonc.2021.637594] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Early human placental development begins with blastocyst implantation, then the trophoblast differentiates and originates the cells required for a proper fetal nutrition and placental implantation. Among them, extravillous trophoblast corresponds to a non-proliferating trophoblast highly invasive that allows the vascular remodeling which is essential for appropriate placental perfusion and to maintain the adequate fetal growth. This process involves different placental cell types as well as molecules that allow cell growth, cellular adhesion, tissular remodeling, and immune tolerance. Remarkably, some of the cellular processes required for proper placentation are common between placental and cancer cells to finally support tumor growth. Indeed, as in placentation trophoblasts invade and migrate, cancer cells invade and migrate to promote tumor metastasis. However, while these processes respond to a controlled program in trophoblasts, in cancer cells this regulation is lost. Interestingly, it has been shown that autophagy, a process responsible for the degradation of damaged proteins and organelles to maintain cellular homeostasis, is required for invasion of trophoblast cells and for vascular remodeling during placentation. In cancer cells, autophagy has a dual role, as it has been shown both as tumor promoter and inhibitor, depending on the stage and tumor considered. In this review, we summarized the similarities and differences between trophoblast cell invasion and cancer cell metastasis specifically evaluating the role of autophagy in both processes.
Collapse
Affiliation(s)
- Lorena Carvajal
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jaime Gutiérrez
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - Eugenia Morselli
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.,Autophagy Research Center, Santiago, Chile
| | - Andrea Leiva
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| |
Collapse
|
2
|
Bae YU, Son Y, Kim CH, Kim KS, Hyun SH, Woo HG, Jee BA, Choi JH, Sung HK, Choi HC, Park SY, Bae JH, Doh KO, Kim JR. Embryonic Stem Cell-Derived mmu-miR-291a-3p Inhibits Cellular Senescence in Human Dermal Fibroblasts Through the TGF-β Receptor 2 Pathway. J Gerontol A Biol Sci Med Sci 2020; 74:1359-1367. [PMID: 30239625 DOI: 10.1093/gerona/gly208] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Indexed: 12/15/2022] Open
Abstract
Senescent cells accumulate in various tissues over time and contribute to tissue dysfunction and aging-associated phenotypes. Accumulating evidence suggests that cellular senescence can be inhibited through pharmacological intervention, as well as through treatment with soluble factors derived from embryonic stem cells (ESCs). In an attempt to investigate the anti-senescence factors secreted by ESCs, we analyzed mouse ESC-derived extracellular microRNAs in conditioned medium via microRNA array analysis. We selected mmu-miR-291a-3p as a putative anti-senescence factor via bioinformatics analysis. We validated its inhibitory effects on replicative, Adriamycin-induced, and ionizing radiation-induced senescence in human dermal fibroblasts. Treatment of senescent cells with mmu-miR-291a-3p decreased senescence-associated β-galactosidase activity, enhanced proliferative potential, and reduced mRNA and protein expression of TGF-β receptor 2, p53, and p21. mmu-miR-291a-3p in conditioned medium was enclosed in ESC-derived exosomes and exosomes purified from ESC conditioned medium inhibited cellular senescence. The inhibitory effects of mmu-miR-291a-3p were mediated through the TGF-β receptor 2 signaling pathway. Hsa-miR-371a-3p and hsa-miR-520e, the human homologs of mmu-miR-291a-3p, showed similar anti-senescence activity. Furthermore, mmu-miR-291a-3p accelerated the excisional skin wound healing process in aged mice. Our results indicate that the ESC-derived mmu-miR-291a-3p is a novel candidate agent that can be utilized for cell-free therapeutic intervention against aging and aging-related diseases.
Collapse
Affiliation(s)
- Yun-Ui Bae
- Department of Biochemistry and Molecular Biology, College of Medicine, Daegu, Republic of Korea
- Smart-Aging Convergence Research Center, Yeungnam University, Daegu, Republic of Korea
| | - Youlim Son
- Department of Biochemistry and Molecular Biology, College of Medicine, Daegu, Republic of Korea
- Smart-Aging Convergence Research Center, Yeungnam University, Daegu, Republic of Korea
| | - Chang-Hyun Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Daegu, Republic of Korea
| | - Kwang Seok Kim
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Se Hee Hyun
- Division of Applied Radiation Bioscience, Korea Institute of Radiological and Medical Sciences, Seoul, Republic of Korea
| | - Hyun Goo Woo
- Department of Physiology, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Byul A Jee
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, Republic of Korea
| | - Jun-Hyuk Choi
- Department of Pathology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Hoon-Ki Sung
- Physiology and Experimental Medicine Program, Hospital for Sick Children Research Institute, Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
| | - Hyung-Chul Choi
- Department of Pharmacology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - So Young Park
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Ju-Hyun Bae
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Kyung-Oh Doh
- Department of Physiology, College of Medicine, Yeungnam University, Daegu, Republic of Korea
| | - Jae-Ryong Kim
- Department of Biochemistry and Molecular Biology, College of Medicine, Daegu, Republic of Korea
- Smart-Aging Convergence Research Center, Yeungnam University, Daegu, Republic of Korea
| |
Collapse
|
3
|
Mahmoudian J, Ghods R, Nazari M, Jeddi-Tehrani M, Ghahremani MH, Ghaffari-Tabrizi-Wizsy N, Ostad SN, Zarnani AH. PLAC1: biology and potential application in cancer immunotherapy. Cancer Immunol Immunother 2019; 68:1039-1058. [PMID: 31165204 PMCID: PMC11028298 DOI: 10.1007/s00262-019-02350-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 05/24/2019] [Indexed: 12/29/2022]
Abstract
The emergence of immunotherapy has revolutionized medical oncology with unprecedented advances in cancer treatment over the past two decades. However, a major obstacle in cancer immunotherapy is identifying appropriate tumor-specific antigens to make targeted therapy achievable with fewer normal cells being impaired. The similarity between placentation and tumor development and growth has inspired many investigators to discover antigens for effective immunotherapy of cancers. Placenta-specific 1 (PLAC1) is one of the recently discovered placental antigens with limited normal tissue expression and fundamental roles in placental function and development. There is a growing body of evidence showing that PLAC1 is frequently activated in a wide variety of cancer types and promotes cancer progression. Based on the restricted expression of PLAC1 in testis, placenta and a wide variety of cancers, we have designated this molecule with new terminology, cancer-testis-placenta (CTP) antigen, a feature that PLAC1 shares with many other cancer testis antigens. Recent reports from our lab provide compelling evidence on the preferential expression of PLAC1 in prostate cancer and its potential utility in prostate cancer immunotherapy. PLAC1 may be regarded as a potential CTP antigen for targeted cancer immunotherapy based on the available data on its promoting function in cancer development and also its expression in cancers of different histological origin. In this review, we will summarize current data on PLAC1 with emphasis on its association with cancer development and immunotherapy.
Collapse
Affiliation(s)
- Jafar Mahmoudian
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghahremani
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran
| | | | - Seyed Nasser Ostad
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Pharmacology Building, Enghelab St., Tehran, 1417614411, Iran.
| | - Amir-Hassan Zarnani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Nafisi Building, Enghelab St., Tehran, 1417613151, Iran.
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
- Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Vidal DO, Ramão A, Pinheiro DG, Muys BR, Lorenzi JCC, de Pádua Alves C, Zanette DL, de Molfetta GA, Duarte G, Silva WA. Highly expressed placental miRNAs control key biological processes in human cancer cell lines. Oncotarget 2018; 9:23554-23563. [PMID: 29805755 PMCID: PMC5955126 DOI: 10.18632/oncotarget.25264] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/24/2018] [Indexed: 12/31/2022] Open
Abstract
Despite being a healthy tissue, the constituent cells of the placenta, share similar characteristics with tumor cells, such as increased cell growth, migration, and invasion. However, while these processes are stochastic and uncontrolled in cancer cells, in placenta they are precisely controlled. Since miRNAs have been reported to regulate genes that control the molecular mechanisms necessary for the development of both human placenta and cancer, we addressed for miRNAs highly expressed in the placenta that could be involved in tumorigenesis. Here, we assessed the miRNA profile in placenta samples using microarray analysis. The results showed that miR-451 and miR-720, highly expressed placental miRNAs, presented very low or undetectable expression in cancer cell lines compared to the normal placenta and healthy tissues. Additionally, transfection of miR-451 or miR-720 mimics in choriocarcinoma cell line (JEG3) and colorectal adenocarcinoma cell line (HT-29) resulted in impaired cell proliferation, decreased cell migration and invasion and reduced ability of colony formation. These findings provide evidence that placenta may work as an alternative model to identify novel miRNAs involved in pathways controlling tumorigenesis.
Collapse
Affiliation(s)
- Daniel Onofre Vidal
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil
| | - Anelisa Ramão
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Daniel Guariz Pinheiro
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Bruna Rodrigues Muys
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Julio Cesar Cetrulo Lorenzi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Cleidson de Pádua Alves
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Dalila Luciola Zanette
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Greice Andreotti de Molfetta
- Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil
| | - Geraldo Duarte
- Department of Gynecology and Obstetrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Wilson Araújo Silva
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Cell-Based Therapy (CEPID/FAPESP), National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Riberão Preto, SP, Brazil.,Center for Medical Genomics (HCFMRP/USP), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.,Center for Integrative Systems Biology (CISBi-NAP/USP), Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
5
|
The Genes of Life and Death: A Potential Role for Placental-Specific Genes in Cancer. Bioessays 2017; 39. [DOI: 10.1002/bies.201700091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/20/2017] [Indexed: 12/17/2022]
|
6
|
Monson T, Wright T, Galan HL, Reynolds PR, Arroyo JA. Caspase dependent and independent mechanisms of apoptosis across gestation in a sheep model of placental insufficiency and intrauterine growth restriction. Apoptosis 2017; 22:710-718. [DOI: 10.1007/s10495-017-1343-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Selesniemi K, Albers RE, Brown TL. Id2 Mediates Differentiation of Labyrinthine Placental Progenitor Cell Line, SM10. Stem Cells Dev 2016; 25:959-74. [PMID: 27168216 PMCID: PMC4931356 DOI: 10.1089/scd.2016.0010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/17/2016] [Indexed: 11/12/2022] Open
Abstract
The placenta is an organ that is formed transiently during pregnancy, and appropriate placental development is necessary for fetal survival and growth. Proper differentiation of the labyrinthine layer of the placenta is especially crucial, as it establishes the fetal-maternal interface that is involved in physiological exchange processes. Although previous studies have indicated the importance of inhibitor of differentiation/inhibitor of DNA binding-2 (Id2) helix-loop-helix transcriptional regulator in mediating cell differentiation, the ability of Id2 to regulate differentiation toward the labyrinthine (transport) lineage of the placenta has yet to be determined. In the current study, we have generated labyrinthine trophoblast progenitor cells with increased (SM10-Id2) or decreased (SM10-Id2-shRNA) Id2 expression and determined the effect on TGF-β-induced differentiation. Our Id2 overexpression and knockdown analyses indicate that Id2 mediates TGF-β-induced morphological differentiation of labyrinthine trophoblast cells, as Id2 overexpression prevents differentiation and Id2 knockdown results in differentiation. Thus, our data indicate that Id2 is an important molecular mediator of labyrinthine trophoblast differentiation. An understanding of the regulators of trophoblast progenitor differentiation toward the labyrinthine lineage may offer insights into events governing pregnancy-associated disorders, such as placental insufficiency, fetal growth restriction, and preeclampsia.
Collapse
Affiliation(s)
- Kaisa Selesniemi
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Renee E Albers
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University Boonshoft School of Medicine , Dayton, Ohio
| |
Collapse
|
8
|
Changes in the expression of DNA double strand break repair genes in primordial follicles from immature and aged rats. Reprod Biomed Online 2015; 30:303-10. [DOI: 10.1016/j.rbmo.2014.11.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 11/19/2022]
|
9
|
Rahat B, Hamid A, Ahmad Najar R, Bagga R, Kaur J. Epigenetic mechanisms regulate placental c-myc and hTERT in normal and pathological pregnancies; c-myc as a novel fetal DNA epigenetic marker for pre-eclampsia. Mol Hum Reprod 2014; 20:1026-1040. [PMID: 25024139 DOI: 10.1093/molehr/gau053] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Placental development is known for its resemblance with tumor development, such as in the expression of oncogenes (c-myc) and telomerase (hTERT). The expression of c-myc and hTERT is up-regulated during early pregnancy and gestational trophoblastic diseases (GTDs). To determine the role of DNA methylation [via methylation-sensitive high resolution melting (MS-HRM)] and histone modifications [via chromatin immunoprecipitation (ChIP assay)] in regulating the differential expression of c-myc and hTERT during normal gestation and their dysregulation during placental disorders, we obtained placental samples from 135 pregnant women, in five groups: normal first, second and third trimester (n = 30 each), pre-eclamptic pregnancy (n = 30) and molar pregnancy (n = 15). Two placental cell lines (JEG-3 and HTR-8/SVneo) and isolated first-trimester cytotrophoblasts were also studied. Quantitative RT-PCR revealed decreased mRNA expression levels of c-myc and hTERT, which were associated with a higher level of H3K9me3 (1.5-fold, P < 0.05) and H3K27me3 (1.9-fold, P < 0.05), respectively, in third-trimester placental villi versus first-trimester villi. A significantly lower level of H3K27me3 in molar placenta was associated with a higher mRNA expression of c-myc and hTERT. The development of pre-eclampsia (PE) was associated with increased methylation (P < 0.001) and H3K27me3 (P < 0.01) at the c-myc promoter and reduced H3K9me3 (P < 0.01) and H3K27me3 (P < 0.05) at the hTERT promoter. Further, mRNA expression of c-myc and hTERT was strongly correlated in molar villi (r = 0.88, P < 0.01) and JEG-3 cells (r = 0.99, P < 0.02). Moreover, on the basis of methylation data, we demonstrate the potential of c-myc as a fetal DNA epigenetic marker for pre-eclamptic pregnancies. Thus we suggest a role for epigenetic mechanisms in regulating differential expression of c-myc and hTERT during placental development and use of the c-myc promoter region as a potential fetal DNA marker in the case of PE.
Collapse
Affiliation(s)
- Beenish Rahat
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rauf Ahmad Najar
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rashmi Bagga
- Department of Obstetrics and Gynaecology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
10
|
Ozturk S, Sozen B, Demir N. Telomere length and telomerase activity during oocyte maturation and early embryo development in mammalian species. Mol Hum Reprod 2013; 20:15-30. [DOI: 10.1093/molehr/gat055] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
11
|
Boufettal H, Feige JJ, Benharouga M, Aboussaouira T, Nadifi S, Mahdaoui S, Samouh N, Alfaidy N. [Potential role of the angiogenic factor "EG-VEGF" in gestational trophoblastic diseases]. ACTA ACUST UNITED AC 2013; 61:178-83. [PMID: 23647696 DOI: 10.1016/j.patbio.2013.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 02/15/2013] [Indexed: 10/26/2022]
Abstract
Gestational trophoblastic disease (MGT) includes a wide spectrum of pathologies of the placenta, ranging from benign precancerous lesions, with gestational trophoblastic tumors. Metastases are the leading causes of death as a result of this tumor. They represent a major problem for obstetrics and for the public health system. To date, there is no predictor of the progression of molar pregnancies to gestational trophoblastic tumor (GTT). Only an unfavorable plasma hCG monitoring after evacuation of hydatidiform mole is used to diagnose a TTG. The causes of the development of this cancer are still poorly understood. Increasing data in the literature suggests a close association between the development of this tumor and poor placental vascularization during the first trimester of pregnancy. The development of the human placenta depends on a coordination between the trophoblast and endothelial cells. A disruption in the expression of angiogenic factors could contribute to uterine or extra-uterine tissue invasion by extravillous trophoblast, contributing to the development of TTG. This review sheds lights on the phenomenon of angiogenesis during normal and abnormal placentation, especially during the MGT and reports preliminary finding concerning, the variability of expression of "Endocrine Gland-Derived Vascular Endothelial Growth Factor" (EG-VEGF), a specific placental angiogenic factor, in normal and molar placentas, and the potential role of differentiated expressions of the main placental angiogenic factors in the scalability of hydatidiform moles towards a recovery or towards the development of gestational trophoblastic tumor. Deciphering the mechanisms by which the angiogenic factor influences these processes will help understand the pathophysiology of MGT and to create opportunities for early diagnosis and treatment of the latter.
Collapse
Affiliation(s)
- H Boufettal
- 29, lotissement Abdelmoumen, résidence Al Mokhtar, 20340 Casablanca, Maroc; Centre d'études doctorales, formation doctorale en génétique et biologie moléculaire, faculté de médecine et de pharmacie, université Aïn Chok, Casablanca, Maroc; Service de gynécologie-obstétrique « C », faculté de médecine et de pharmacie, université Aïn Chok, CHU Ibn Rochd, Casablanca, Maroc.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Lebrun JJ. The Dual Role of TGFβ in Human Cancer: From Tumor Suppression to Cancer Metastasis. ISRN MOLECULAR BIOLOGY 2012; 2012:381428. [PMID: 27340590 PMCID: PMC4899619 DOI: 10.5402/2012/381428] [Citation(s) in RCA: 239] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 10/12/2012] [Indexed: 12/31/2022]
Abstract
The transforming growth factor-beta (TGFβ) superfamily encompasses widespread and evolutionarily conserved polypeptide growth factors that regulate and orchestrate growth and differentiation in all cell types and tissues. While they regulate asymmetric cell division and cell fate determination during early development and embryogenesis, TGFβ family members play a major regulatory role in hormonal and immune responses, cell growth, cell death and cell immortalization, bone formation, tissue remodeling and repair, and erythropoiesis throughout adult life. The biological and physiological functions of TGFβ, the founding member of this family, and its receptors are of central importance to human diseases, particularly cancer. By regulating cell growth, death, and immortalization, TGFβ signaling pathways exert tumor suppressor effects in normal cells and early carcinomas. Thus, it is not surprising that a high number of human tumors arise due to mutations or deletions in the genes coding for the various TGFβ signaling components. As tumors develop and progress, these protective and cytostatic effects of TGFβ are often lost. TGFβ signaling then switches to promote cancer progression, invasion, and tumor metastasis. The molecular mechanisms underlying this dual role of TGFβ in human cancer will be discussed in depth in this paper, and it will highlight the challenge and importance of developing novel therapeutic strategies specifically aimed at blocking the prometastatic arm of the TGFβ signaling pathway without affecting its tumor suppressive effects.
Collapse
Affiliation(s)
- Jean-Jacques Lebrun
- Division of Medical Oncology, Department of Medicine, Royal Victoria Hospital, McGill University Health Center, Montreal, QC, Canada H3A 1A1
| |
Collapse
|
13
|
Novakovic B, Saffery R. The ever growing complexity of placental epigenetics – Role in adverse pregnancy outcomes and fetal programming. Placenta 2012; 33:959-70. [DOI: 10.1016/j.placenta.2012.10.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/02/2012] [Accepted: 10/06/2012] [Indexed: 02/01/2023]
|
14
|
Wagner PK, Otomo A, Christians JK. Regulation of pregnancy-associated plasma protein A2 (PAPPA2) in a human placental trophoblast cell line (BeWo). Reprod Biol Endocrinol 2011; 9:48. [PMID: 21496272 PMCID: PMC3096916 DOI: 10.1186/1477-7827-9-48] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 04/15/2011] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Pregnancy-associated plasma protein A2 (PAPPA2) is an insulin-like growth factor-binding protein (IGFBP) protease expressed at high levels in the placenta and upregulated in pregnancies complicated by preeclampsia and HELLP (Hemolytic anemia, Elevated Liver enzymes, and Low Platelet count) syndrome. However, it is unclear whether elevated PAPPA2 expression causes abnormal placental development, or whether upregulation compensates for placental pathology. In the present study, we investigate whether PAPPA2 expression is affected by hypoxia, oxidative stress, syncytialization factors or substances known to affect the expression of PAPPA2's paralogue, PAPPA. METHODS BeWo cells, a model of placental trophoblasts, were treated with one of the following: hypoxia (2% O2), oxidative stress (20 microM hydrogen peroxide), forskolin (10 microM and 100 microM), TGF-beta (10 and 50 ng/mL), TNF-alpha (100 ng/mL), IL-1beta (100 ng/mL) or PGE2 (1 microM). We used quantitative RT-PCR (qRT-PCR) to quantify the mRNA levels of PAPPA2, as well as those of PAPPA and ADAM12 since these proteases have similar substrates and are also highly expressed in the placenta. Where we observed significant effects on PAPPA2 mRNA levels, we tested for effects at the protein level using an in-cell Western assay. RESULTS Hypoxia, but not oxidative stress, caused a 47-fold increase in PAPPA2 mRNA expression, while TNF-alpha resulted in a 6-fold increase, and both of these effects were confirmed at the protein level. PGE2 resulted in a 14-fold upregulation of PAPPA2 mRNA but this was not reflected at the protein level. Forskolin, TGF-beta and IL-1beta had no significant effect on PAPPA2 mRNA expression. We observed no effects of any treatment on PAPPA or ADAM12 expression. CONCLUSION Our study demonstrates that factors previously known to be highly expressed in preeclamptic placentae (PGE2 and TNF-alpha), contribute to the upregulation of PAPPA2. Hypoxia, known to occur in preeclamptic placentae, also increased PAPPA2 expression. These results are consistent with the hypothesis that PAPPA2 is upregulated as a consequence of placental pathology, rather than elevated PAPPA2 levels being a cause of preeclampsia.
Collapse
Affiliation(s)
- Pamela K Wagner
- Simon Fraser University, Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Aki Otomo
- Simon Fraser University, Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| | - Julian K Christians
- Simon Fraser University, Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
15
|
Li K, Zhang J, Ren JJ, Wang Q, Yang KY, Xiong ZJ, Mao YQ, Qi YY, Chen XW, Lan F, Wang XJ, Xiao HY, Lin P, Wei YQ. A novel zinc finger protein Zfp637 behaves as a repressive regulator in myogenic cellular differentiation. J Cell Biochem 2010; 110:352-62. [PMID: 20235149 DOI: 10.1002/jcb.22546] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Zinc finger proteins have been implicated as transcription factors in the differentiation and development of cells and tissues in higher organisms. The classical C2H2 zinc finger motif is one main type of motif of zinc finger proteins. Our previous studies have shown that Zfp637, which comprises six consecutively typical and one atypical C2H2 zinc finger motifs, is highly expressed in undifferentiated or poorly differentiated cell lines, but is moderately or slightly expressed in normal tissues. We have also demonstrated that Zfp637 can promote cell proliferation. However, its role in the regulation of cell differentiation remains unknown. We report here that endogenous Zfp637 as well as mTERT is expressed in proliferating C2C12 myoblasts and that their expression is downregulated during myogenic differentiation. Constitutive expression of Zfp637 in C2C12 myoblasts increased mTERT expression and telomerase activity, and promoted the progression of the cell cycle and cell proliferation. By contrast, endogenous repression of Zfp637 expression by RNA interference downregulated the mTERT gene and the activity of telomerase, and markedly reduced cell proliferation. Overexpression of Zfp637 also inhibited the expression of myogenic differentiation-specific genes such as MyoD and myogenin, and prevented C2C12 myoblast differentiation. Our results suggest that Zfp637 inhibits muscle differentiation through a defect in the cell cycle exit by potentially regulating mTERT expression in C2C12 myoblasts. This may provide a new research line for studying muscle differentiation.
Collapse
Affiliation(s)
- Kai Li
- Division of Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bolat F, Haberal N, Tunali N, Aslan E, Bal N, Tuncer I. Expression of vascular endothelial growth factor (VEGF), hypoxia inducible factor 1 alpha (HIF-1α), and transforming growth factors β1 (TGFβ1) and β3 (TGFβ3) in gestational trophoblastic disease. Pathol Res Pract 2010; 206:19-23. [DOI: 10.1016/j.prp.2009.07.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 07/15/2009] [Accepted: 07/24/2009] [Indexed: 11/16/2022]
|
17
|
Neelima PS, Rao Rekha M, Rama S, Rao AJ. Effect of human telomerase reverse transcriptase transfection on differentiation in BeWo choriocarcinoma cells. Reprod Biomed Online 2009; 18:838-49. [PMID: 19490790 DOI: 10.1016/s1472-6483(10)60035-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arrest of proliferation is one of the prerequisites for differentiation of cytotrophoblasts into syncytiotrophoblasts, and thus during differentiation telomerase activity, as well as human telomerase reverse transcriptase (hTERT) expression, is down-regulated. Considering this, it is of interest to investigate whether syncytium formation can be delayed by prolonging the expression of telomerase in cytotrophoblasts. BeWo cells were transfected with pLPC-hTERT retroviral vector and the reverse transcription-polymerase chain reaction analysis for hTERT mRNA concentrations in the transfected cells revealed a several-fold increase in hTERT mRNA compared with the cells transfected with empty vector, and this confirmed that the transfection was successful. An increase in the proliferation, as assessed by bromodeoxyuridine incorporation assay, as well as an increase in mRNA and protein concentration of various cyclins and proliferating cell nuclear antigen, was noticed. The effect of hTERT transfection was also assessed after the addition of forskolin to induce differentiation and it was observed that cell-cell fusion was delayed and differentiation did not occur in hTERT-transfected cells. However, the effects seen were only transient as stable transfection was not possible and the cells were undergoing apoptosis after 72 h, which suggested that apart from hTERT other factors might be important for immortalization of BeWo cells.
Collapse
Affiliation(s)
- P S Neelima
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
18
|
Koslowski M, Türeci O, Biesterfeld S, Seitz G, Huber C, Sahin U. Selective activation of trophoblast-specific PLAC1 in breast cancer by CCAAT/enhancer-binding protein beta (C/EBPbeta) isoform 2. J Biol Chem 2009; 284:28607-15. [PMID: 19652226 DOI: 10.1074/jbc.m109.031120] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The trophoblast-specific gene PLAC1 (placenta-specific 1) is ectopically expressed in a wide range of human malignancies, most frequently in breast cancer, and is essentially involved in cancer cell proliferation, migration, and invasion. Here we show that basal activity of the PLAC1 promoter is selectively controlled by ubiquitous transcription factor SP1 and isoform 2 of CCAAT/enhancer-binding protein beta that we found to be selectively expressed in placental tissue and cancer cells. Binding of both factors to their respective elements within the PLAC1 promoter was essential to attain full promoter activity. Estrogen receptor alpha (ERalpha) signaling further augmented transcription and translation of PLAC1 and most likely accounts for the positive correlation between PLAC1 expression levels and the ERalpha status we observed in primary breast cancer specimens. DNA affinity precipitation and chromatin immunoprecipitation assays revealed that transactivation of the PLAC1 promoter by ligand-activated ERalpha is based on a nonclassical pathway independent of estrogen-response elements, by tethering of ERalpha to DNA-bound CCAAT/enhancer-binding protein beta-2, and SP1. Our findings provide first insight into a novel and hitherto unknown regulatory mechanism governing selective activation of trophoblast-specific gene expression in breast cancer.
Collapse
Affiliation(s)
- Michael Koslowski
- Department of Internal Medicine III, Experimental and Translational Oncology, Johannes Gutenberg University, 55131 Mainz, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Chen Y, Kong QZ. Expression alteration of tankyrase and telomerase in HCC development in rats. Shijie Huaren Xiaohua Zazhi 2008; 16:2086-2091. [DOI: 10.11569/wcjd.v16.i19.2086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the dynamic states of and relationship between tankyrase and telomerase reverse transcriptase (TERT) in hepatocellular carcinoma (HCC) development in rats.
METHODS: SD rats were assigned randomly to control group (n = 42) and model group (n = 42). HCC model was induced by diethyl nitrosoamine (DENA). Twelve rats from both groups were randomly executed at 3, 6, 9, 12, 15, 18, 21 wk for further test. The expression of tankyrase and TERT was detected using Western blot and immunofluorescence analysis, whereas telomerase activity and the expression of Ki-67 were assayed using TRAP and immunohistochemical methods, respectively.
RESULTS: Compared with the low expression level of telomerase and TERT in normal tissue and precancerous lesions, the expression level of tankyrase was significantly increased in inflammatory stage, as well as in hepatocirrhotic stage, especially in HCC stage, in which stage peak values of all these factors were obtained . The expression of tankyrase was positively correlated with telomerase and TERT (r = 0.898, P = 0.038; r = 0.943, P = 0.016), but no relationship was found between tankyrase and Ki-67. However, Ki-67 was positively correlated with telomerase and TERT (r = 0.986, P = 0.002; r = 0.93, P = 0.022).
CONCLUSION: Over-expression of tankyrase might be one of the factors that regulates telomerase function as telomere elongation. Tankyrase, TERT, telomerase and Ki-67 are closely related to HCC progression.
Collapse
|
20
|
Fest S, Brachwitz N, Schumacher A, Zenclussen ML, Khan F, Wafula PO, Casalis PA, Fill S, Costa SD, Mor G, Volk HD, Lode HN, Zenclussen AC. Supporting the hypothesis of pregnancy as a tumor: survivin is upregulated in normal pregnant mice and participates in human trophoblast proliferation. Am J Reprod Immunol 2008; 59:75-83. [PMID: 18154598 DOI: 10.1111/j.1600-0897.2007.00557.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
PROBLEM Survivin, a tumor-promoting antiapoptotic molecule, is expressed in the human placenta. Here, we analyzed its expression during normal and pathological murine pregnancy and investigated its participation in human first trimester trophoblast cell survival and proliferation. METHOD OF STUDY We first analyzed the expression of survivin on the mRNA and protein level at the fetal-maternal interface of normal pregnant (CBA/J x BALB/c) and abortion-prone (CBA/J x DBA/2J) mice at different pregnancy stages by RT-PCR and immunohistochemistry. We also evaluated apoptosis in murine trophoblasts in both mating combinations by TUNEL technique. Functional studies were carried out by knockdown survivin by means of siRNA methodology in two human first trimester trophoblast cell lines [Swan.71 (Sw.71) and HTR8 (H8)]. RESULTS We observed a peak in mRNA levels on day 5 and a peak of protein levels on day 8 of pregnancy in both combinations. The level of survivin in animals from the abortion-prone group was decreased compared with normal pregnant mice on day 8, which was accompanied by elevated apoptosis rates. In later pregnancy stages (days 10 and 14), survivin levels decreased to levels comparable to those observed right after fecundation in both groups. Transfection of human first trimester cell lines (H8 and Sw.71) with siRNA targeting the survivin gene led to a 76-82% reduction of its expression leading to reduced trophoblast cell viability and proliferation. CONCLUSION Our findings suggest an important role of survivin to promote trophoblast cell survival and proliferation during placentation, thus maintaining pregnancy. The pregnancy-associated expression of a cancer molecule such as survivin supports the 'pseudo-malignancy' hypothesis of pregnancy. Our data may contribute to the better understanding of trophoblast cell development during implantation and placentation.
Collapse
Affiliation(s)
- Stefan Fest
- Department of Paediatrics, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Neelima PS, Rao AJ. Gene expression profiling during Forskolin induced differentiation of BeWo cells by differential display RT-PCR. Mol Cell Endocrinol 2008; 281:37-46. [PMID: 18035478 DOI: 10.1016/j.mce.2007.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 09/07/2007] [Accepted: 10/08/2007] [Indexed: 01/05/2023]
Abstract
The differentiation of cytotrophoblasts into syncytiotrophoblasts in the placenta has been employed as a model to investigate stage specific expression as well as regulation of genes during this process. While the cytotrophoblasts are highly invasive and proliferative with relatively less capacity to synthesize pregnancy related proteins, the multinucleated syncytiotrophoblasts are non-proliferative and non-invasive. However, syncytiotrophoblasts are the site of synthesis of a variety of protein, peptide and steroid hormones as well as several growth factors. Both the freshly isolated cytotrophoblasts from human placenta as well as the BeWo cell, a choriocarcinoma cell line model which retain several characteristic of cytotrophoblasts has been employed by us to study regulation of differentiation. In the present study, we have employed the differential display RT-PCR analysis (DD-RT-PCR) to evaluate gene expression changes during Forskolin induced in vitro differentiation of BeWo cells. We have identified several genes which are differentially expressed during differentiation and the differential expression of 10 transcripts was confirmed by Northern blot analysis. Based on the identity of the transcripts an attempt has been made to relate the known function of the gene products, to changes observed during differentiation. Of the several transcripts, one of the transcripts, namely Secretory Leukocyte Protease Inhibitor (SLPI) which is known to have multiple functions was found to increase 15-fold in the syntiotrophoblast.
Collapse
Affiliation(s)
- P S Neelima
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | | |
Collapse
|
22
|
Mammalian Ste20-like protein kinase 3 mediates trophoblast apoptosis in spontaneous delivery. Apoptosis 2007; 13:283-94. [DOI: 10.1007/s10495-007-0161-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
23
|
Lacerte A, Korah J, Roy M, Yang XJ, Lemay S, Lebrun JJ. Transforming growth factor-beta inhibits telomerase through SMAD3 and E2F transcription factors. Cell Signal 2007; 20:50-9. [PMID: 17881189 DOI: 10.1016/j.cellsig.2007.08.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Accepted: 08/14/2007] [Indexed: 11/30/2022]
Abstract
Cancer arises from multiple genetic changes within the cell, among which constitutive telomerase activity and attainment of immortality are central. Expression of hTERT, the protein component of telomerase, is increased in most cancer cells. Transforming growth factor-beta (TGFbeta), a potent tumor suppressor, has been reported to regulate hTERT expression. We found that TGFbeta represses hTERT expression in normal and cancer cells and that this effect is mediated through Smad3 but also requires Erk1/2, p38 kinase and histone deacetylase activity. Furthermore, we identified four critical E2F transcription factor binding sites within the hTERT gene promoter that confer the TGFbeta response. Finally, using the E2F-1 knockout model, we showed that loss of E2F-1 abolishes TGFbeta inhibition of telomerase expression. These findings highlight the prominent role of TGFbeta in regulating telomerase expression and identify Smad3 and E2F-1 as critical mediators of TGFbeta effects in both normal and cancer cells.
Collapse
Affiliation(s)
- Annie Lacerte
- Hormones and Cancer Research Unit, Department of Medicine, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, H3A 1A1, Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
24
|
Nampoothiri LP, Neelima PS, Rao AJ. Proteomic profiling of forskolin-induced differentiated BeWo cells: an in-vitro model of cytotrophoblast differentiation. Reprod Biomed Online 2007; 14:477-87. [PMID: 17425831 DOI: 10.1016/s1472-6483(10)60896-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Placental trophoblastic differentiation is characterized by the fusion of monolayer cytotrophoblasts into syncytiotrophoblasts. During this process of differentiation, several morphological and biochemical changes are known to occur, and this model has been employed to investigate the changes that occur at the gene and protein level during differentiation. Using the sensitive technique of proteomics [two-dimensional gel electrophoresis (2DGE)], changes in protein profile were evaluated in the control and forskolin-induced differentiated cells of trophoblastic choriocarcinoma BeWo cell line. Several proteins were differentially expressed in control and differentiated cells. Four major proteins were up-regulated as assessed by silver staining, and were further characterized as c-h-ras p 21 (phosphorylated), retinoblastoma susceptibility protein 1 and integrase interactor protein 1. These proteins are known to play an important role in growth arrest of cells, and thus may play a role in initiating the process of differentiation.
Collapse
|
25
|
Zdanov S, Debacq-Chainiaux F, Remacle J, Toussaint O. Identification of p38MAPK-dependent genes with changed transcript abundance in H2O2-induced premature senescence of IMR-90 hTERT human fibroblasts. FEBS Lett 2006; 580:6455-63. [PMID: 17101135 DOI: 10.1016/j.febslet.2006.10.064] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2006] [Revised: 10/24/2006] [Accepted: 10/29/2006] [Indexed: 01/09/2023]
Abstract
Premature senescence of IMR-90 human diploid fibroblasts expressing telomerase (hTERT) establishes after exposure to an acute sublethal concentration of H2O2. We showed herein that p38(MAPK) was phosphorylated after exposure of IMR-90 hTERT cells to H2O2. Selective inhibition of p38(MAPK) activity attenuated the increase in the proportion of cells positive for senescence associated beta-galactosidase activity. We generated a low density DNA array to study gene expression profiles of 240 senescence-related genes. Using this array, p38(MAPK) inhibitor and p38(MAPK) small interferent RNA, we identified several p38(MAPK)-target genes differentially expressed in H2O2-stressed IMR-90 hTERT fibroblasts.
Collapse
Affiliation(s)
- Stéphanie Zdanov
- Research Unit on Cellular Biology (URBC), University of Namur (FUNDP), Rue de Bruxelles, 61 B-5000 Namur, Belgium
| | | | | | | |
Collapse
|
26
|
Selesniemi K, Reedy M, Gultice A, Guilbert LJ, Brown TL. Transforming growth factor-beta induces differentiation of the labyrinthine trophoblast stem cell line SM10. Stem Cells Dev 2006; 14:697-711. [PMID: 16433625 DOI: 10.1089/scd.2005.14.697] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mammalian placenta consists of different trophoblast cell types that assist in the variety of functions required for the maintenance of pregnancy. In rodents, labyrinthine trophoblasts of the placenta are especially important, because they are capable of differentiating into fused labyrinthine cells, which form the feto-maternal exchange surface. Even though the molecular signals triggering labyrinthine trophoblast differentiation are poorly understood, transforming growth factor-beta (TGF-beta) has been shown to be present in the placental environment and alter trophoblast development. In this study, we investigated the effects of TGF-beta on the differentiation of the labyrinthine trophoblast stem cell lines SM10 and HRP-1. RT-PCR analyses demonstrated that while the molecular expression of labyrinthine-specific lineage markers (Esx1, Tfeb, and Tec) was maintained in TGF-beta-treated SM10 and HRP-1 cells, TGF-beta induced the down-regulation of trophoblast stem cell markers Id2 and Cdx2. In contrast, TGF-beta induced the expression of a marker of differentiated labyrinthine trophoblasts, Gcm1, only in the SM10 cell line. Furthermore, we demonstrated an increased glucose uptake in the TGF-beta-treated SM10 cells, indicative of functional differentiation. Finally, cell fusion in TGF-beta-treated SM10 and HRP-1 cells was investigated by western blotting analysis of placental alkaline phosphatase and cadherin-11 and by microscopic analyses of cell morphology using green fluorescent protein (GFP) and rhodamine phalloidin staining. The western blotting and morphological analyses indicate TGF-beta-induced cell fusion and morphological differentiation in the SM10 cell line. The SM10 cell line will provide a new and unique model for detailed analysis of TGF-beta-induced molecular events associated with labyrinthine trophoblast differentiation and function.
Collapse
Affiliation(s)
- Kaisa Selesniemi
- Department of Neuroscience, Cell Biology, and Physiology, Wright State University School of Medicine, Dayton, Ohio 45435, USA
| | | | | | | | | |
Collapse
|
27
|
Zhu B, Zhang LH, Zhao YM, Cui JR, Strada SJ. 8-chloroadenosine induced HL-60 cell growth inhibition, differentiation, and G(0)/G(1) arrest involves attenuated cyclin D1 and telomerase and up-regulated p21(WAF1/CIP1). J Cell Biochem 2006; 97:166-77. [PMID: 16173047 DOI: 10.1002/jcb.20630] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.
Collapse
Affiliation(s)
- Bing Zhu
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | | | | | | | | |
Collapse
|
28
|
Yashwanth R, Rama S, Anbalagan M, Rao AJ. Role of estrogen in regulation of cellular differentiation: a study using human placental and rat Leydig cells. Mol Cell Endocrinol 2006; 246:114-20. [PMID: 16413111 DOI: 10.1016/j.mce.2005.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Estrogen classically is recognized as a growth-promoting hormone. Recent evidence suggests that estrogens are also involved in a wide variety of cellular and physiological functions involving the central nervous system, immune system, cardiovascular system and bone homeostasis. Our studies in cytotrophoblasts and BeWo cells, demonstrated that 17beta-estradiol induces terminal differentiation of placental trophoblasts directly and this differentiation is coupled with an increased production of TGFbeta1, which, in turn, affects telomerase activity and telomerase associated components at the level of hTERT. Furthermore, using rats treated in vivo with either EDS or estradiol and in vitro Leydig cell cultures, we proposed that 17beta-estradiol mediated down-regulation of collagen IV alpha4 expression could be one of the possible mechanisms for the inhibition of progenitor Leydig cell proliferation. In this review, we summarize the results from both the model systems, the human placental cytotrophoblast and rat Leydig cells to conclude that 17beta-estradiol has a unique stage-specific role in differentiation.
Collapse
Affiliation(s)
- R Yashwanth
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | | | |
Collapse
|
29
|
Lindkvist A, Franzén A, Ren ZP, Heldin NE, Paulsson-Karlsson Y. Differential effects of TGF-β1 on telomerase activity in thyroid carcinoma cell lines. Biochem Biophys Res Commun 2005; 338:1625-33. [PMID: 16288728 DOI: 10.1016/j.bbrc.2005.10.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Accepted: 10/22/2005] [Indexed: 12/22/2022]
Abstract
The aim of the present study was to investigate the effect of transforming growth factor-beta1 (TGF-beta1) on telomerase activity in a panel of human anaplastic thyroid carcinoma (ATC) cell lines. Addition of TGF-beta1 decreased the telomerase activity in HTh 74 and KTC-1 cells, while in C 643 and HTh 7 an increased activity was observed. The decreased telomerase activity appeared to be due to transcriptional repression of the hTERT promoter. Addition of a PI-3 kinase inhibitor (LY294002) abrogated the stimulatory effect of TGF-beta1 on the telomerase activity, indicating the possible involvement of hTERT activation via phosphorylation. Furthermore, the MEK-inhibitor U0126 had similar effects suggesting dual regulatory mechanisms. Interestingly, the cell lines differed genetically in that ATC cell lines responding with increased telomerase activity harbored a p53 mutation. In conclusion, TGF-beta1 exerts opposing effects on telomerase activity in ATC cell lines, possibly reflecting deregulation of TGF-beta1 signaling in a more malignant genotype.
Collapse
Affiliation(s)
- Anna Lindkvist
- Department of Genetics and Pathology, Uppsala University Hospital, Rudbeck Laboratory, SE-751 85 Uppsala, Sweden
| | | | | | | | | |
Collapse
|
30
|
Ewan KBR, Oketch-Rabah HA, Ravani SA, Shyamala G, Moses HL, Barcellos-Hoff MH. Proliferation of estrogen receptor-alpha-positive mammary epithelial cells is restrained by transforming growth factor-beta1 in adult mice. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:409-17. [PMID: 16049327 PMCID: PMC1603552 DOI: 10.1016/s0002-9440(10)62985-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2005] [Indexed: 01/05/2023]
Abstract
Transforming growth factor (TGF)-beta1 is a potent inhibitor of mammary epithelial proliferation. In human breast, estrogen receptor (ER)-alpha cells rarely co-localize with markers of proliferation, but their increased frequency correlates with breast cancer risk. To determine whether TGF-beta1 is necessary for the quiescence of ER-alpha-positive populations, we examined mouse mammary epithelial glands at estrus. Approximately 35% of epithelial cells showed TGF-beta1 activation, which co-localized with nuclear receptor-phosphorylated Smad 2/3, indicating that TGF-beta signaling is autocrine. Nuclear Smad co-localized with nuclear ER-alpha. To test whether TGF-beta inhibits proliferation, we examined genetically engineered mice with different levels of TGF-beta1. ER-alpha co-localization with markers of proliferation (ie, Ki-67 or bromodeoxyuridine) at estrus was significantly increased in the mammary glands of Tgf beta1 C57/bl/129SV heterozygote mice. This relationship was maintained after pregnancy but was absent at puberty. Conversely, mammary epithelial expression of constitutively active TGF-beta1 via the MMTV promoter suppressed proliferation of ER-alpha-positive cells. Thus, TGF-beta1 activation functionally restrains ER-alpha-positive cells from proliferating in adult mammary gland. Accordingly, we propose that TGF-beta1 dysregulation may promote proliferation of ER-alpha-positive cells associated with breast cancer risk in humans.
Collapse
Affiliation(s)
- Kenneth B R Ewan
- Life Sciences Division, Bldg. 74-355, 1 Cyclotron Rd., Lawrence Berkeley National Laboratory, Berkeley CA 94720, USA
| | | | | | | | | | | |
Collapse
|
31
|
Effects of ICI 182780 on estrogen receptor expression, fluid absorption and sperm motility in the epididymis of the bonnet monkey. Reprod Biol Endocrinol 2005; 3:10. [PMID: 15743524 PMCID: PMC1079944 DOI: 10.1186/1477-7827-3-10] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2004] [Accepted: 03/02/2005] [Indexed: 01/20/2023] Open
Abstract
Background The importance of estrogen in regulation of fluid absorption and sperm maturation in the rodent epididymis has been established from studies on estrogen receptor-alpha knockout mice. However, functional studies on the role of estrogen in primate epididymis have been few. The main objective of this study was therefore to extend these observations and systematically analyze the presence and function of estrogen receptors in modulating the function of the primate epididymis, using the bonnet monkey (Macaca radiata) as a model system. Methods A steroidal estrogen receptor (ER) antagonist, ICI 182780 (ICI), was administered to adult male bonnet monkeys via mini-osmotic pumps for a duration of 30 to 180 days. The expression of key estrogen-regulated genes (ER-alpha, Na-K ATPase alpha-1 and Aquaporin-1) was examined at specific time points. Further, the effect of ICI in modulating fluid reabsorption in efferent ductules was monitored, and critical sperm-maturation parameters were also analyzed. Results Our studies in the bonnet monkey revealed that both ER-alpha and ER-beta were expressed in all the three regions of the epididymis. We observed an increase in ER-alpha mRNA and protein in the caput of ICI-treated monkeys. Steady state mRNA levels of the water-channel protein, Aquaporin-1, was significantly lower in the caput of ICI-treated monkeys compared to controls, whereas the mRNA levels of Na-K ATPase alpha-1 remained unchanged. In vitro incubation of efferent ductules with ICI resulted in two-fold increase in tubular diameter, indicating affected fluid reabsorption capacity. Furthermore, sperm from ICI-treated monkeys were immotile. Conclusion Taken together, our results point to an integral role for estrogen in modulating the functions of the bonnet monkey epididymis. This study also demonstrates possible differences in the epididymal physiology of rodents and non-human primates, and thus underscores the significance of reports such as these, that examine the physiology of non-human primates (as opposed to rodents), in an attempt to understand similar events in the human.
Collapse
|
32
|
Lee MK, Hande MP, Sabapathy K. Ectopic mTERT expression in mouse embryonic stem cells does not affect differentiation but confers resistance to differentiation- and stress-induced p53-dependent apoptosis. J Cell Sci 2005; 118:819-29. [PMID: 15687103 DOI: 10.1242/jcs.01673] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The fundamental role of telomerase is to protect telomere ends and to maintain telomere length during replication; hence, telomerase expression is high in stem cells but reduced upon differentiation. Recent studies indicate that telomerase might play other roles besides telomere maintenance. We have investigated the role of telomerase in cellular differentiation and death. Here, we show that ectopic expression of mouse telomerase catalytic subunit (mTERT) does not affect embryonic stem (ES) cell proliferation or differentiation in vitro, but protects ES cells against cell death during differentiation. Ectopic mTERT expression also confers resistance to apoptosis induced by oxidative stress and other genotoxic insults. This resistance depends on the catalytic activity of mTERT. Stress-signal-induced p53 accumulation and consequent p53-dependent apoptotic target gene expression was not affected by mTERT overexpression. However, although chemical inhibition of p53 by alpha-pifithrin reduced stress-induced apoptosis in vector-expressing cells, it did not significantly affect apoptosis in mTERT-expressing cells. Moreover, overexpression of mTERT in p53-/- ES cells did not confer further resistance to genotoxic insults, suggesting that mTERT might exert its protective effect by antagonizing the p53 pathway. Altogether, our findings indicate that ectopic mTERT expression in ES cells does not affect differentiation but confers resistance to apoptosis, and suggest that this strategy might be used in improving the efficiency of stem-cell therapies.
Collapse
Affiliation(s)
- Ming Kei Lee
- National Cancer Centre, 11, Hospital Drive, Singapore 169610, Republic of Singapore
| | | | | |
Collapse
|
33
|
Abstract
The human placenta is a tumor-like tissue in which highly proliferative, migratory, and invasive extra-villous trophoblast cells, migrate and invade the uterus and its vasculature, to provide a vital link between the mother and the developing fetus. In the present article, we review our studies on a series of experiments, designed to identify molecular events responsible for the phenotypic changes during placental growth. Our observations illustrate that the human placenta is endowed with the biochemical machinery to proliferate indefinitely throughout gestation, yet, there are intrinsic mechanisms that effectively circumscribe the extent and duration of trophoblast proliferation. The placenta combines in itself the unique ability to produce a wide variety of protein, peptide and steroid hormones, but intricately interwoven in this process, is also the remarkable capacity to simultaneously regulate their synthesis and secretion. The placenta therefore represents an autonomous or a self-sufficient unit capable of modulating its own growth and function, while assisting the developing fetus until it is capable of independent existence.
Collapse
Affiliation(s)
- S Rama
- Department of Biochemistry, Indian Institute of Science, Bangalore, India
| | | |
Collapse
|
34
|
Rao RM, Rama S, Rao AJ. Changes in T-plastin expression with human trophoblast differentiation. Reprod Biomed Online 2004; 7:235-42. [PMID: 14567899 DOI: 10.1016/s1472-6483(10)61758-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
During the first trimester of pregnancy, the human placenta is an actively dividing and highly invasive tumour-like tissue, while near term, it represents a fully developed, non-invasive unit. In order to understand the molecular basis of this marked difference in the placental phenotypes, an approach based on a differential display-reverse transcription-polymerase chain reaction (DD-RT-PCR) was adopted to analyse changes in gene expression, using total RNA isolated from first-trimester and term placental villi. Using this approach, T-plastin was initially identified as being differentially expressed in the human first-trimester placenta. T-plastin is an actin-bundling protein and is known to be highly expressed in actively dividing cells and up-regulated in several carcinomas. Using a homogenous population of cytotrophoblasts and syncytiotrophoblasts isolated from human placentae, the present authors demonstrate the differential expression of T-plastin in cytotrophoblasts compared with the terminally differentiated syncytiotrophoblasts. The down-regulation of T-plastin expression is further demonstrated in human trophoblastic BeWo cells induced to differentiate using transforming growth factor (TGF)beta1, a growth factor known for its anti-proliferative and anti-invasive response in placental cells. These studies suggest that expression of T-plastin in the placental context may indeed be associated with the enhanced replicative potential of placental trophoblasts.
Collapse
Affiliation(s)
- Rekha M Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
35
|
Rama S, Petrusz P, Rao AJ. Hormonal regulation of human trophoblast differentiation: a possible role for 17beta-estradiol and GnRH. Mol Cell Endocrinol 2004; 218:79-94. [PMID: 15130513 DOI: 10.1016/j.mce.2003.12.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2003] [Revised: 11/10/2003] [Accepted: 12/17/2003] [Indexed: 10/26/2022]
Abstract
We have examined the role of 17beta-estradiol and gonadotropin releasing hormone (GnRH) in the regulation of functional differentiation in human trophoblasts. In contrast to its recognized functions as a proliferation-promoting hormone in a variety of cell types, we found that 17beta-estradiol induced terminal differentiation in human trophoblastic cells, and that this event was estrogen-receptor-mediated. This process involved a loss in expression of Cyclins A2 and E, and a coincident increase in p27(Kip1). The anti-proliferative effects of 17beta-estradiol were annulled by specific transforming growth factor-beta 1 (TGFbeta1)-neutralizing antibody, suggesting that 17beta-estradiol may mediate its growth-inhibitory actions, through TGFbeta1 activity. Following exposure to Buserelin, cultured human trophoblastic cells stopped proliferating and formed functionally mature syncytiotrophoblasts. This differentiation event, that involved a drastic loss in expression of proliferating-cell-nuclear-antigen, could be blocked by Cetrorelix, suggesting the involvement of functional GnRH receptors. Preliminary studies on the characterization of the human placental GnRH receptor, indicate the presence of multiple receptor isoforms across human gestation.
Collapse
Affiliation(s)
- S Rama
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | | | |
Collapse
|
36
|
Soundararajan R, Rao AJ. Trophoblast 'pseudo-tumorigenesis': significance and contributory factors. Reprod Biol Endocrinol 2004; 2:15. [PMID: 15043753 PMCID: PMC407853 DOI: 10.1186/1477-7827-2-15] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2003] [Accepted: 03/25/2004] [Indexed: 01/01/2023] Open
Abstract
Trophoblast cells of the human placenta proliferate, migrate, and invade the pregnant uterus and its vasculature in order to nourish the developing fetus, in a way that is imitated by malignant tumors. Many similarities exist between embryo implantation and the growth of cancer cells. We begin this article by reviewing decades of studies that have helped unearth the mechanisms that contribute to the tumor-like phenotype of human trophoblast cells. Interestingly, these attributes are only transient in nature, with stringent spatial and temporal confines. The importance of intrinsic molecular controls that effectively circumscribe the extent and duration of trophoblast incursion, becomes increasingly evident in abnormal pregnancies that are characterized by aberrant trophoblast proliferation/invasion. We summarize and discuss the significance of abnormalities in these regulatory mechanisms, and finally, speculate about the use of human trophoblastic cells as model systems for the study of a variety of cellular processes. While on one hand, human placental cells are bestowed with a capacity to proliferate indefinitely and invade extensively, on the other, these cells are also replete with mechanisms to regulate these tumor-like attributes and eventually progress to a senescent apoptotic state. This is therefore, a 'well-behaved' tumor. The comparison in the present review is between the invasive cytotrophoblastic cell type and the tumor cell type.
Collapse
Affiliation(s)
- Rama Soundararajan
- Department of Biochemistry, Indian Institute of Science, Bangalore - 560 012, India
| | - A Jagannadha Rao
- Department of Biochemistry, Indian Institute of Science, Bangalore - 560 012, India
- Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore - 560 012, India
| |
Collapse
|
37
|
Rama S, Suresh Y, Rao AJ. TGF beta1 induces multiple independent signals to regulate human trophoblastic differentiation: mechanistic insights. Mol Cell Endocrinol 2003; 206:123-36. [PMID: 12943995 DOI: 10.1016/s0303-7207(03)00202-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Transforming growth factor-beta 1 (TGF beta1) plays a crucial role in controlling trophoblast growth and invasion. Loss of this key regulatory function provides the pathophysiological basis for several tumors, which are characterized by uncontrolled telomerase activity. We have shown earlier that telomerase activity is negatively regulated during terminal differentiation of human trophoblasts, and that TGF beta1 may be an important factor governing the transcription of human telomerase reverse transcriptase (hTERT) (the catalytic subunit of the telomerase complex) during this process. In the present study, we extend these observations to identify possible functional effectors of TGF beta1-induced loss in telomerase activity during human trophoblastic differentiation. We show that this regulation may involve the suppression of c-Myc and an increased production of Mad1. We also observed a simultaneous increase in the expression of cyclin-dependent-kinase inhibitors, p21, p27, p15 and p16, associated with a loss in expression of Cyclin-A2 and Cyclin-E. Thus, TGF beta1 may induce multiple independent signals to check the proliferative potential of human trophoblastic cells and allow their functional differentiation.
Collapse
Affiliation(s)
- S Rama
- Department of Biochemistry and Department of Molecular Reproduction, Development & Genetics, Indian Institute of Science, Bangalore 560 012, Kamataka, India
| | | | | |
Collapse
|
38
|
Cerezo A, Stark HJ, Moshir S, Boukamp P. Constitutive overexpression of human telomerase reverse transcriptase but not c-myc blocks terminal differentiation in human HaCaT skin keratinocytes. J Invest Dermatol 2003; 121:110-9. [PMID: 12839571 DOI: 10.1046/j.1523-1747.2003.12304.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Formation of a well structured epidermis strictly depends on a tight balance between proliferation and differentiation. Accordingly, telomerase, which is restricted to proliferating cells, is downregulated with differentiation. It is unclear, however, whether this inhibition is essential to or only a consequence of the differentiation process. By studying different variants of the HaCaT skin keratinocytes we now show that constitutive overexpression of human telomerase reverse transcriptase (hTERT) in HaCaT-TERT cells (lacking its own differentiation-sensitive promoter) and constitutive expression of the c-myc gene in HaCaT-myc cells caused increased proliferation in conventional cultures; however, this proliferative advantage was not maintained in tissue-like organotypic cocultures. Despite reduced stratification, HaCaT-myc cells were still able to develop a fully differentiated epithelium. HaCaT-TERT cultures, on the other hand, expressed all markers of early but not of terminal differentiation. The failure to differentiate terminally was observed in hTERT mass cultures and individual clones and correlated with an intense nuclear hTERT staining of the uppermost cells of the HaCaT-TERT epithelia. Thus, our data suggest that constitutive overexpression of hTERT does not interfere with epidermal differentiation per se but blocks the terminal stage of differentiation and therefore indicates that hTERT/telomerase plays an active part in the regulatory pathway of epidermal differentiation.
Collapse
|
39
|
Abstract
The telomere is a special functional complex at the end of linear eukaryotic chromosomes, consisting of tandem repeat DNA sequences and associated proteins. It is essential for maintaining the integrity and stability of linear eukaryotic genomes. Telomere length regulation and maintenance contribute to normal human cellular aging and human diseases. The synthesis of telomeres is mainly achieved by the cellular reverse transcriptase telomerase, an RNA-dependent DNA polymerase that adds telomeric DNA to telomeres. Expression of telomerase is usually required for cell immortalization and long-term tumor growth. In humans, telomerase activity is tightly regulated during development and oncogenesis. The modulation of telomerase activity may therefore have important implications in antiaging and anticancer therapy. This review describes the currently known components of the telomerase complex and attempts to provide an update on the molecular mechanisms of human telomerase regulation.
Collapse
Affiliation(s)
- Yu-Sheng Cong
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9039, USA.
| | | | | |
Collapse
|