1
|
Long J, Huang Y, Wang G, Tang Z, Shan Y, Shen S, Ni X. Mitochondrial ROS Accumulation Contributes to Maternal Hypertension and Impaired Remodeling of Spiral Artery but Not IUGR in a Rat PE Model Caused by Maternal Glucocorticoid Exposure. Antioxidants (Basel) 2023; 12:antiox12050987. [PMID: 37237853 DOI: 10.3390/antiox12050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Increased maternal glucocorticoid levels have been implicated as a risk factor for preeclampsia (PE) development. We found that pregnant rats exposed to dexamethasone (DEX) showed hallmarks of PE features, impaired spiral artery (SA) remodeling, and elevated circulatory levels of sFlt1, sEng IL-1β, and TNFα. Abnormal mitochondrial morphology and mitochondrial dysfunction in placentas occurred in DEX rats. Omics showed that a large spectrum of placental signaling pathways, including oxidative phosphorylation (OXPHOS), energy metabolism, inflammation, and insulin-like growth factor (IGF) system were affected in DEX rats. MitoTEMPO, a mitochondria-targeted antioxidant, alleviated maternal hypertension and renal damage, and improved SA remodeling, uteroplacental blood flow, and the placental vasculature network. It reversed several pathways, including OXPHOS and glutathione pathways. Moreover, DEX-induced impaired functions of human extravillous trophoblasts were associated with excess ROS caused by mitochondrial dysfunction. However, scavenging excess ROS did not improve intrauterine growth retardation (IUGR), and elevated circulatory sFlt1, sEng, IL-1β, and TNFα levels in DEX rats. Our data indicate that excess mitochondrial ROS contributes to trophoblast dysfunction, impaired SA remodeling, reduced uteroplacental blood flow, and maternal hypertension in the DEX-induced PE model, while increased sFlt1 and sEng levels and IUGR might be associated with inflammation and an impaired energy metabolism and IGF system.
Collapse
Affiliation(s)
- Jing Long
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yan Huang
- Reproductive Medicine Center, General Hospital of Southern Theatre Command, Guangzhou 510010, China
| | - Gang Wang
- Department of Physiology, Naval Medical University, Shanghai 200433, China
| | - Zhengshan Tang
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Yali Shan
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Shiping Shen
- Department of Gynecology and Obstetrics, Xiangya Hospital Central South University, Changsha 410008, China
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| | - Xin Ni
- National International Joint Research Center for Medical Metabolomics, Xiangya Hospital Central South University, Changsha 410008, China
| |
Collapse
|
2
|
Chen AW, Biggar K, Nygard K, Singal S, Zhao T, Li C, Nathanielsz PW, Jansson T, Gupta MB. IGFBP-1 hyperphosphorylation in response to nutrient deprivation is mediated by activation of protein kinase Cα (PKCα). Mol Cell Endocrinol 2021; 536:111400. [PMID: 34314739 PMCID: PMC8634829 DOI: 10.1016/j.mce.2021.111400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 02/06/2023]
Abstract
Fetal growth restriction (FGR) is associated with decreased nutrient availability and reduced insulin-line growth factor (IGF)-I bioavailability via increased IGF binding protein (IGFBP)-1 phosphorylation. While protein kinase C (PKC) is implicated in IGFBP-1 hyperphosphorylation in nutrient deprivation, the mechanisms remain unclear. We hypothesised that the interaction of PKCα with protein kinase CK2β and activation of PKCα under leucine deprivation (L0) mediate fetal hepatic IGFBP-1 hyperphosphorylation. Parallel Reaction Monitoring Mass Spectrometry (PRM-MS) followed by PKCα knockdown demonstrated the PKCα isoform interacts with IGFBP-1 and CK2β under L0. Pharmacological PKCα activation with phorbol 12-myristate 13-acetate (PMA) increased whereas inhibition with bisindolylmaleimide II (Bis II) decreased IGFBP-1 phosphorylation (Ser101/119/169, Ser98 + 101 and Ser169 + 174), respectively. Furthermore, PMA mimicked L0-induced PKCα translocation and IGFBP-1 expression. PKCα expression was increased in baboon fetal liver in FGR, providing biological relevance in vivo. In summary, we report a novel nutrient-sensitive mechanism for PKCα in mediating IGFBP-1 hyperphosphorylation in FGR.
Collapse
Affiliation(s)
- Allan W Chen
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Kyle Biggar
- Institute of Biochemistry, Carleton University, Ottawa, ON, Canada
| | - Karen Nygard
- Biotron Integrated Microscopy Facility, University of Western Ontario, London, ON, Canada
| | - Sahil Singal
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Tiffany Zhao
- Department of Biochemistry, University of Western Ontario, London, ON, Canada
| | - Cun Li
- University of Wyoming, Laramie, WY, USA; Southwest National Primate Research Center, San Antonio, TX, USA
| | - Peter W Nathanielsz
- University of Wyoming, Laramie, WY, USA; Southwest National Primate Research Center, San Antonio, TX, USA
| | - Thomas Jansson
- Department of Obstetrics and Gynecology, Division of Reproductive Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Department of Biochemistry, University of Western Ontario, London, ON, Canada; Department of Pediatrics, University of Western Ontario, London, ON, Canada; Children's Health Research Institute, London, ON, Canada.
| |
Collapse
|
3
|
Joshi NP, Mane AR, Sahay AS, Sundrani DP, Joshi SR, Yajnik CS. Role of Placental Glucose Transporters in Determining Fetal Growth. Reprod Sci 2021; 29:2744-2759. [PMID: 34339038 DOI: 10.1007/s43032-021-00699-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/16/2021] [Indexed: 11/29/2022]
Abstract
Maternal nutrient availability and its transport through the placenta are crucial for fetal development. Nutrients are transported to the fetus via specific transporters present on the microvillous (MVM) and basal membrane (BM) of the placenta. Glucose is the most abundant nutrient transferred to the fetus and plays a key role in the fetal growth and development. The transfer of glucose across the human placenta is directly proportional to maternal glucose concentrations, and is mediated by glucose transporter family proteins (GLUTs). Maternal glucose concentration influences expression and activity of GLUTs in the MVM (glucose uptake) and BM (glucose delivery). Alteration in the number and function of these transporters may affect the growth and body composition of the fetus. The thin-fat phenotype of the Indian baby (low ponderal index, high adiposity) is proposed as a harbinger of future metabolic risk. We propose that placental function mediated through nutrient transporters contributes to the phenotype of the baby, specifically that glucose transporters will influence neonatal fat. This review discusses the role of various glucose transporters in the placenta in determining fetal growth and body composition, in light of the above hypothesis.
Collapse
Affiliation(s)
- Nikita P Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Aditi R Mane
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Akriti S Sahay
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Deepali P Sundrani
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India
| | - Sadhana R Joshi
- Mother and Child Health, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune-Satara Road, Pune, 411043, India.
| | | |
Collapse
|
4
|
Ghadhanfar E, Alsalem A, Al-Kandari S, Naser J, Babiker F, Al-Bader M. The role of ACE2, angiotensin-(1-7) and Mas1 receptor axis in glucocorticoid-induced intrauterine growth restriction. Reprod Biol Endocrinol 2017; 15:97. [PMID: 29321064 PMCID: PMC6389120 DOI: 10.1186/s12958-017-0316-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Plasma and urine levels of the potent vasodilator Ang-(1-7) are elevated in mid and late pregnancy and are correlated with elevated placental angiogenesis, fetal blood flow, and rapid fetal growth. We hypothesized that Ang-(1-7), its receptor (Mas1) and the enzymes involved in Ang-(1-7) production (ACE2 and Membrane metallo-endopeptidase; MME) are down regulated in response to glucocorticoid administration contributing to IUGR. METHODS Pregnant female Sprague-Dawley rats were injected with dexamethasone (DEX; 0.4 mg/kg/day) starting from 14 day gestation (dg) till sacrifice at 19 or 21 dg while control groups were injected with saline (n = 6/group). The gene and protein expression of ACE2, MME, Ang-(1-7) and Mas1 receptor in the placental labyrinth (LZ) and basal zones (BZ) were studied. RESULTS DEX administration caused a reduction in LZ weight at 19 and 21 dg (p < 0.001). IUGR, as shown by decreased fetal weights, was evident in DEX treated rats at 21 dg (p < 0.01). ACE2 gene expression was elevated in the LZ of control placentas at 21 dg (p < 0.01) compared to 19 dg and DEX prevented this rise at both gene (p < 0.01) and protein levels (p < 0.05). In addition, Ang-(1-7) protein expression in LZ was significantly reduced in DEX treated rats at 21 dg (p < 0.05). On the other hand, Mas1 and MME were upregulated in LZ at 21 dg in both groups (p < 0.05 and p < 0.001, respectively). CONCLUSION The results of this study indicate that a reduced expression of ACE2 and Ang-(1-7) in the placenta by DEX treatment may be responsible for IUGR and consequent disease programming later in life.
Collapse
Affiliation(s)
- Elham Ghadhanfar
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aseel Alsalem
- Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | | | - Jumana Naser
- Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Fawzi Babiker
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Maie Al-Bader
- Department of Physiology, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait.
| |
Collapse
|
5
|
Intrauterine growth restriction-induced deleterious adaptations in endothelial progenitor cells: possible mechanism to impair endothelial function. J Dev Orig Health Dis 2017; 8:665-673. [PMID: 28689502 DOI: 10.1017/s2040174417000484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Intrauterine growth restriction (IUGR) can induce deleterious changes in the modulatory ability of the vascular endothelium, contributing to an increased risk of developing cardiovascular diseases in the long term. However, the mechanisms involved are not fully understood. Emerging evidence has suggested the potential role of endothelial progenitor cells (EPCs) in vascular health and repair. Therefore, we aimed to evaluate the effects of IUGR on vascular reactivity and EPCs derived from the peripheral blood (PB) and bone marrow (BM) in vitro. Pregnant Wistar rats were fed an ad libitum diet (control group) or 50% of the ad libitum diet (restricted group) throughout gestation. We determined vascular reactivity, nitric oxide (NO) concentration, and endothelial nitric oxide synthase (eNOS) protein expression by evaluating the thoracic aorta of adult male offspring from both groups (aged: 19-20 weeks). Moreover, the amount, functional capacity, and senescence of EPCs were assessed in vitro. Our results indicated that IUGR reduced vasodilation via acetylcholine in aorta rings, decreased NO levels, and increased eNOS phosphorylation at Thr495. The amount of EPCs was similar between both groups; however, IUGR decreased the functional capacity of EPCs from the PB and BM. Furthermore, the senescence process was accelerated in BM-derived EPCs from IUGR rats. In summary, our findings demonstrated the deleterious changes in EPCs from IUGR rats, such as reduced EPC function and accelerated senescence in vitro. These findings may contribute towards elucidating the possible mechanisms involved in endothelial dysfunction induced by fetal programming.
Collapse
|
6
|
Malkani N, Biggar K, Shehab MA, Li SSC, Jansson T, Gupta MB. Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC. Mol Cell Endocrinol 2016; 425:48-60. [PMID: 26733150 PMCID: PMC4811673 DOI: 10.1016/j.mce.2015.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 01/11/2023]
Abstract
Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth.
Collapse
Affiliation(s)
- Niyati Malkani
- Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Kyle Biggar
- Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Majida Abu Shehab
- Children's Health Research Institute, University of Western Ontario, London, ON, Canada
| | - Shawn Shun-Cheng Li
- Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Thomas Jansson
- Dept of Obstetrics & Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Madhulika B Gupta
- Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada; Children's Health Research Institute, University of Western Ontario, London, ON, Canada; Dept of Pediatrics, University of Western Ontario, London, Canada.
| |
Collapse
|
7
|
Acar N, Soylu H, Edizer I, Ozbey O, Er H, Akkoyunlu G, Gemici B, Ustunel I. Expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and peroxiredoxin 6 (Prdx6) proteins in healthy and pathologic placentas of human and rat. Acta Histochem 2014; 116:1289-300. [PMID: 25171874 DOI: 10.1016/j.acthis.2014.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/22/2014] [Accepted: 07/23/2014] [Indexed: 12/31/2022]
Abstract
A relationship has been shown between preeclampsia (PE) and intrauterine growth restriction (IUGR) and oxidative stress (OS). Since such pregnancies experience OS, we aimed to detect the distribution pattern and expression levels of a transcription factor, Nuclear factor erythroid 2-related factor-2 (Nrf2) that has a role in the regulation of antioxidant enzymes, and peroxiredoxin 6 (Prdx6) an antioxidant enzyme, in human healthy, IUGR, PE and in groups of rat healthy and IUGR placentas using immunohistochemistry and Western blotting. Both Nrf2 and Prdx6 immunoreactivities were weaker in human and rat IUGR group placentas compared to human and rat control group placentas, respectively. Nrf2 and Prdx6 were immunostained in labyrinth trophoblasts, decidua, giant, glycogen and fetal vessel endothelial cells in rat control and IUGR group placentas. Nrf2 and Prdx6 immunoreactivities were seen in the decidua, syncytiotrophoblasts, villous stromal cells, and vascular endothelium in human control, IUGR and PE group placentas. Results of Nrf2 and Prdx6 Western blotting applied for rat and human placentas were compatible with the results of Nrf2 and Prdx6 immunohistochemical observations with regard to rat and human placentas. Down-regulation of Nrf2 and Prdx6 proteins in human and rat IUGR group placentas may have led to the formation of OS which may have impaired proliferation and invasion of cytotrophoblasts.
Collapse
Affiliation(s)
- Nuray Acar
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hakan Soylu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Imren Edizer
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Ozlem Ozbey
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Hakan Er
- Department of Biophysics, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Gokhan Akkoyunlu
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey
| | - Burcu Gemici
- Department of Physiology, Faculty of Medicine, Near East University, Nicosia, Mersin 10, Turkey
| | - Ismail Ustunel
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| |
Collapse
|
8
|
Lin F, Yu X, Zhang X, Guo Y, Huang Y, Zhou J, Zeng P, Ye D, Huang Y. A synthetic analog of lipoxin A4 partially alleviates dexamethasone-induced fetal growth restriction in rats. Placenta 2013; 34:941-8. [DOI: 10.1016/j.placenta.2013.07.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/11/2013] [Accepted: 07/15/2013] [Indexed: 12/20/2022]
|
9
|
Lee JY, Park SJ, Kim SH, Kim MH. Prenatal administration of dexamethasone during early pregnancy negatively affects placental development and function in mice. J Anim Sci 2012; 90:4846-56. [PMID: 22871938 DOI: 10.2527/jas.2012-5090] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prenatal treatment of dexamethasone, a synthetic stress hormone, leads to low birth weight and affects adult pathophysiology. Because fetal growth and survival are critically dependent on successful placental development, we aimed to investigate the effects of prenatal dexamethasone exposure on placental growth and function, particularly focusing on issues surrounding the time of stress exposure in a developmental context. Dexamethasone was administered at a dosage of 1 mg/kg BW (DEX1) or 10 mg/kg BW (DEX10) intraperitoneally at gestational d 7.5, 8.5, and 9.5 in pregnant mice. Placentas were then dissected at gestational d 11.5 and 18.5. Placental size and weight were reduced at d 11.5 in a dose-dependent manner (P = 0.11 for saline vs. DEX1 and P < 0.001 for DEX1 vs. DEX10 in size; P = 0.34 for saline vs. DEX1 and P < 0.01 for DEX1 vs. DEX10 in weight). In contrast, a considerable heterogeneity was shown at d 18.5, especially in DEX10-treated mice. Some placentas were small and malformed whereas some were enlarged with structural abnormalities in spongiotrophoblasts and labyrinth layers. Although placental overgrowth under such condition seemed to compromise fetal demand for nutrient supply, disorganized cell structure with reduced fetal vasculature observed in large placentas suggests that prenatal stress exposure during the early gestational period negatively affects placental development and efficiency.
Collapse
Affiliation(s)
- J-Y Lee
- Department of Anatomy, Embryology Laboratory, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
10
|
Soares MJ, Chakraborty D, Karim Rumi MA, Konno T, Renaud SJ. Rat placentation: an experimental model for investigating the hemochorial maternal-fetal interface. Placenta 2012; 33:233-43. [PMID: 22284666 DOI: 10.1016/j.placenta.2011.11.026] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Revised: 11/23/2011] [Accepted: 11/28/2011] [Indexed: 11/19/2022]
Abstract
The rat possesses hemochorial placentation with deep intrauterine trophoblast cell invasion and trophoblast-directed uterine spiral artery remodeling; features shared with human placentation. Recognition of these similarities spurred the establishment of in vitro and in vivo research methods using the rat as an animal model to address mechanistic questions regarding development of the hemochorial placenta. The purpose of this review is to provide the requisite background to help move the rat to the forefront in placentation research.
Collapse
Affiliation(s)
- M J Soares
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, KS 66160, USA.
| | | | | | | | | |
Collapse
|
11
|
O'Connell BA, Moritz KM, Roberts CT, Walker DW, Dickinson H. The placental response to excess maternal glucocorticoid exposure differs between the male and female conceptus in spiny mice. Biol Reprod 2011; 85:1040-7. [PMID: 21795670 DOI: 10.1095/biolreprod.111.093369] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The placenta is the intermediary between the mother and fetus, and its primary role is to provide for the appropriate growth of the fetus. A suboptimal in utero environment has been shown to differentially affect the health of offspring, depending on their sex. Here we show that excess maternal glucocorticoids administered in midgestation (Day 20, 0.5 gestation in the spiny mouse) for 60 h, have persisting effects on the placenta that differ by fetal sex, placental region, and time after glucocorticoid exposure. Dexamethasone (DEX) exposure altered placental structure and mRNA expression from male and female fetuses both immediately (Day 23) and 2 wk posttreatment (Day 37). The immediate consequences (Day 23) of DEX were similar between males and females, with reductions in the expression of IGF1, IGF1R, and SLC2A1 in the placenta. However, by Day 37, the transcriptional and structural response of the placenta was dependent on the sex of the fetus, with placentas of male fetuses having an increase in GCM1 expression, a decrease in SLC2A1 expression, and an increase in the amount of maternal blood sinusoids in the DEX-exposed placenta. Female placentas, on the other hand, showed increased SLC2A1 and MAP2K1 expression and a decrease in the amount of maternal blood sinusoids in response to DEX exposure. We have shown that the effect of a brief glucocorticoid exposure at midgestation has persisting effects on the placenta, and this is likely to have ongoing and dynamic effects on fetal development that differ for a male and female fetus.
Collapse
Affiliation(s)
- Bree A O'Connell
- The Ritchie Centre, Monash Institute of Medical Research, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
12
|
Shen SF, Hua CH. Effect ofL-arginine on the expression of Bcl-2 and Bax in the placenta of fetal growth restriction. J Matern Fetal Neonatal Med 2010; 24:822-6. [DOI: 10.3109/14767058.2010.531315] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Casanello P, Krause B, Torres E, Gallardo V, González M, Prieto C, Escudero C, Farías M, Sobrevia L. Reduced l-arginine transport and nitric oxide synthesis in human umbilical vein endothelial cells from intrauterine growth restriction pregnancies is not further altered by hypoxia. Placenta 2009; 30:625-33. [PMID: 19501907 DOI: 10.1016/j.placenta.2009.04.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Revised: 04/21/2009] [Accepted: 04/24/2009] [Indexed: 10/20/2022]
Abstract
Intrauterine growth restriction (IUGR) is associated with chronic fetal hypoxia, altered placental vasodilatation and reduced endothelial nitric oxide synthase (eNOS) activity. In human umbilical vein endothelial cells (HUVEC) from pregnancies complicated with IUGR (IUGR cells) and in HUVEC from normal pregnancies (normal cells) cultured under hypoxia l-arginine transport is reduced; however, the mechanisms leading to this dysfunction are unknown. We studied hypoxia effect on l-arginine transport and human cationic amino acid transporters 1 (hCAT-1) expression, and the potential NO and protein kinase C alpha (PKCalpha) involvement. Normal or IUGR HUVEC monolayers were exposed (0-24h) to 5% O(2) (normoxia), and 1 or 2% O(2) (hypoxia). l-Arginine transport and hCAT-1 expression, phosphorylated and total PKCalpha or eNOS protein and mRNA expression were quantified. eNOS involvement was tested using a siRNA against eNOS (eNOS-siRNA) adenovirus. IUGR cells in normoxia or hypoxia, and normal cells in hypoxia exhibited reduced l-arginine transport, hCAT-1 expression, NO synthesis and eNOS phosphorylation at Serine(1177), effects reversed by calphostin C (PKC inhibitor) and S-nitroso-N-acetyl-l,d-penicillamine (SNAP, NO donor). However, N(G)-nitro-l-arginine methyl ester (l-NAME, NOS inhibitor) reduced hCAT-1 expression only in normal cells in normoxia. Increased Thr(638)-phosphorylated PKCalpha was exhibited by IUGR cells in normoxia or hypoxia and normal cells in hypoxia. The effects of hypoxia in normal cells were mimicked in eNOS-siRNA transduced cells; however, IUGR phenotype was unaltered by eNOS knockdown. Thus, IUGR- and hypoxia-reduced l-arginine transport could result from increased PKCalpha, but reduced eNOS activity leading to a lower hCAT-1 expression in HUVEC. In addition, IUGR endothelial cells are either not responsive or maximally affected by hypoxia. These mechanisms could be responsible for placental dysfunction in diseases where fetal endothelium is chronically exposed to hypoxia, such as IUGR.
Collapse
Affiliation(s)
- P Casanello
- Perinatology Research Laboratory and Cellular and Molecular Physiology Laboratory, Department of Obstetrics and Gynecology, Faculty of Medicine, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Magnarelli G, Souza MS, D'Angelo AMPD. Heptachlor ando-p′DDT effects on protein kinase activities associated with human placenta particulate fractions. J Biochem Mol Toxicol 2009; 23:185-92. [DOI: 10.1002/jbt.20277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
15
|
Sawady J, Mercer BM, Wapner RJ, Zhao Y, Sorokin Y, Johnson F, Dudley DJ, Spong CY, Peaceman AM, Leveno KJ, Harper M, Caritis SN, Miodovnik M, Thorp JM, Ramin S, Carpenter MW, Rouse DJ. The National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network Beneficial Effects of Antenatal Repeated Steroids study: impact of repeated doses of antenatal corticosteroids on placental growth and histologic findings. Am J Obstet Gynecol 2007; 197:281.e1-8. [PMID: 17826421 DOI: 10.1016/j.ajog.2007.06.041] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/04/2007] [Accepted: 06/24/2007] [Indexed: 11/22/2022]
Abstract
OBJECTIVE In utero exposure to repeated doses of antenatal corticosteroids (ACSs) has been shown to reduce fetal growth. Our goal was to evaluate whether weekly betamethasone (R-ACS) alters placental growth and histologic findings. STUDY DESIGN In a multicenter randomized controlled trial of R-ACS vs a single course of ACS followed by weekly placebo (S-ACS), placentas were weighed after removal of the membranes and umbilical cord. A single pathologist who was masked to study group and pregnancy outcomes performed histologic evaluation for placental calcifications, infarction, fibrin deposition, and hemorrhage or thrombus formation, acute and chronic chorioamnionitis, fibromuscular vascular hyperplasia, nucleated red blood cells, and villous crowding, edema, fibrosis, or fibrinoid necrosis. Findings were compared between study groups and according to the number of courses of ACS. RESULTS One hundred ninety-four placentas were available for evaluation. Univariable analyses revealed no differences between study groups in any of the 19 evaluated histologic parameters between R-ACS and S-ACS groups overall or in analyses that were restricted to deliveries at < 32 or > or = 32 weeks of gestation. Calcifications were more common (P = .045) in the R-ACS group after controlling for other factors. Multivariable analysis revealed increasing gestational age at delivery, but not increasing ACS courses, to be associated with decreasing chorionic inflammation, villous edema, and fibrosis and with increasing villus crowding, fibrin deposition, and calcifications. Ninety-three placentas were weighed before formalin fixation. After controlling for delivery gestation and infant gender, placental weight was significantly lower in the R-ACS group (P = .017) and was related inversely to the number of ACS courses (P = .037). This finding was confirmed only for deliveries at > or = 32 weeks of gestation (525 vs 441 g for R-ACS and S-ACS group, respectively; P = .036). CONCLUSION Repeated antenatal corticosteroid treatments in pregnancy are associated with decreased placental growth in a dose-dependent fashion, but not with evident differences in histologic markers of placental inflammation, ischemia, or infarction. Histologic placental abnormalities should not be attributed to repeated courses of corticosteroids.
Collapse
Affiliation(s)
- Joram Sawady
- Department of Pathology, Metro Health Medical Center, Case Western Reserve University, Cleveland, OH, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Hewitt DP, Mark PJ, Dharmarajan AM, Waddell BJ. Placental expression of secreted frizzled related protein-4 in the rat and the impact of glucocorticoid-induced fetal and placental growth restriction. Biol Reprod 2006; 75:75-81. [PMID: 16540541 DOI: 10.1095/biolreprod.105.047647] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Wnt genes regulate a diverse range of developmental processes, including placental formation. Activation of the WNT pathway results in translocation of beta-catenin (CTNNB1) into the nucleus and the subsequent activation of transcription factors that promote proliferation. The secreted frizzled related proteins (SFRPs) are thought to inhibit WNT signaling by binding to the WNT ligand or its frizzled receptor. In this study, we compared the expression patterns of one of these secreted molecules, SFRP4, in the two morphologically and functionally distinct regions of the rat placenta during the last third of pregnancy. In addition, we assessed whether placental SFRP4 expression is altered in a model of glucocorticoid-induced placental growth restriction. Temporal analyses of the rat placenta by quantitative RT-PCR, in situ hybridization, and immunohistochemistry during the final third of pregnancy demonstrated elevated levels of Sfrp4 mRNA and SFRP4 protein near term, specifically in trophoblast cells of the basal zone. This increase in expression of SFRP4 in basal zone trophoblasts was associated with a reduction in CTNNB1 nuclear translocation, consistent with inhibition of the WNT pathway. Maternal dexamethasone treatment (1 microg/ml of drinking water, Days 13-22), which has previously been shown to reduce placental growth, further increased the expression of Sfrp4 mRNA in both the basal and labyrinth zones of the placenta at Day 22. Collectively, these data demonstrate that increased expression of SFRP4 is associated with reduced growth of placental regions in normal pregnancy and after glucocorticoid-induced growth retardation. These observations, together with associated changes in CTNNB1 localization, support the hypothesis that increased placental expression of SFRP4 inhibits the WNT pathway and thereby influences placental growth via effects on cell fate signaling.
Collapse
Affiliation(s)
- Damien P Hewitt
- School of Anatomy and Human Biology, The University of Western Australia, Perth, Western Australia 6009, Australia
| | | | | | | |
Collapse
|