1
|
Lin LC, Chang HY, Kuo TT, Chen HY, Liu WS, Lo YJ, Hsia SM, Huang TC. Oxidative stress mediates the inhibitory effects of Manzamine A on uterine leiomyoma cell proliferation and extracellular matrix deposition via SOAT inhibition. Redox Biol 2023; 66:102861. [PMID: 37666118 PMCID: PMC10491796 DOI: 10.1016/j.redox.2023.102861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023] Open
Abstract
Uterine fibroids, the most common benign tumors of the myometrium in women, are characterized by abnormal extracellular matrix deposition and uterine smooth muscle cell neoplasia, with high recurrence rates. Here, we investigated the potential of the marine natural product manzamine A (Manz A), which has potent anti-cancer effects, as a treatment for uterine fibroids. Manz A inhibited leiomyoma cell proliferation in vitro and in vivo by arresting cell cycle progression and inducing caspase-mediated apoptosis. We performed target prediction analysis and identified sterol o-acyltransferases (SOATs) as potential targets of Manz A. Cholesterol esterification and lipid droplet formation were reduced by Manz A, in line with reduced SOAT expression. As a downstream target of SOAT, Manz A also prevented extracellular matrix deposition by inhibiting the β-catenin/fibronectin/metalloproteinases axis and enhanced autophagy turnover. Excessive free fatty acid accumulation by SOAT inhibition led to reactive oxygen species to impair mitochondrial oxidative phosphorylation and trigger endoplasmic reticulum stress via PERK/eIF2α/CHOP signaling. The inhibitory effect of ManzA on cell proliferation was partially restored by PERK knockdown and eliminated by tauroursodeoxycholic acid, suggesting oxidative stress plays a critical role in the mechanism of action of Manz A. These findings suggest that targeting SOATs by Manz A may be a promising therapeutic approach for uterine fibroids.
Collapse
Affiliation(s)
- Li-Chun Lin
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-Yi Chang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, 11031, Taiwan; Department of Research and Development, National Defense Medical Center, Taipei, Taiwan
| | - Tzu-Ting Kuo
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Hsin-Yuan Chen
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Wen-Shan Liu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Yii-Jwu Lo
- Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Metabolism and Obesity Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan; School of Food Safety, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tsui-Chin Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, 11031, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
2
|
Sefah N, Ndebele S, Prince L, Korasare E, Agbleke M, Nkansah A, Thompson H, Al-Hendy A, Agbleke AA. Uterine fibroids - Causes, impact, treatment, and lens to the African perspective. Front Pharmacol 2023; 13:1045783. [PMID: 36703761 PMCID: PMC9871264 DOI: 10.3389/fphar.2022.1045783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Leiomyomas, or uterine fibroids as they are commonly known, are mostly seen in women of reproductive age. However, they can go undetected in most women, and approximately 25% of women show clinical symptoms. Although fibroids are a global burden impacting 80% of premenopausal women, they are more prevalent among Black women than among women of other races. Based on clinical diagnosis, the estimated cumulative incidence of fibroids in women ≤50 years old is significantly higher for black (>80%) versus white women (∼70%). The cause of leiomyomas is not clearly known, but studies have shown evidence of factors that drive the development or exacerbation of the disease. Evidence has linked risk factors such as lifestyle, age, environment, family history of uterine fibroids, and vitamin D deficiencies to an increased risk of uterine fibroids, which impact women of African descent at higher rates. Treatments may be invasive, such as hysterectomy and myomectomy, or non-invasive, such as hormonal or non-hormonal therapies. These treatments are costly and tend to burden women who have the disease. Sub-Saharan Africa is known to have the largest population of black women, yet the majority of uterine fibroid studies do not include populations from the continent. Furthermore, the prevalence of the disease on the continent is not well determined. To effectively treat the disease, its drivers need to be understood, especially with regard to racial preferences. This paper aims to review the existing literature and build a case for conducting future research on African women.
Collapse
|
3
|
Yang Q, Ciebiera M, Bariani MV, Ali M, Elkafas H, Boyer TG, Al-Hendy A. Comprehensive Review of Uterine Fibroids: Developmental Origin, Pathogenesis, and Treatment. Endocr Rev 2022; 43:678-719. [PMID: 34741454 PMCID: PMC9277653 DOI: 10.1210/endrev/bnab039] [Citation(s) in RCA: 102] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Uterine fibroids are benign monoclonal neoplasms of the myometrium, representing the most common tumors in women worldwide. To date, no long-term or noninvasive treatment option exists for hormone-dependent uterine fibroids, due to the limited knowledge about the molecular mechanisms underlying the initiation and development of uterine fibroids. This paper comprehensively summarizes the recent research advances on uterine fibroids, focusing on risk factors, development origin, pathogenetic mechanisms, and treatment options. Additionally, we describe the current treatment interventions for uterine fibroids. Finally, future perspectives on uterine fibroids studies are summarized. Deeper mechanistic insights into tumor etiology and the complexity of uterine fibroids can contribute to the progress of newer targeted therapies.
Collapse
Affiliation(s)
- Qiwei Yang
- Qiwei Yang, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, M167, Billings, Chicago, IL 60637, USA.
| | - Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, ul. Cegłowska 80, 01-809, Warsaw, Poland
| | | | - Mohamed Ali
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Hoda Elkafas
- Department of Anesthesiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmacology and Toxicology, Egyptian Drug Authority, formerly National Organization for Drug Control and Research, Cairo 35521, Egypt
| | - Thomas G Boyer
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229-3900, USA
| | - Ayman Al-Hendy
- Correspondence: Ayman Al-Hendy, MD, Ph.D. Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, N112, Peck Pavilion, Chicago, IL 60637. USA.
| |
Collapse
|
4
|
Molecular and Cellular Insights into the Development of Uterine Fibroids. Int J Mol Sci 2021; 22:ijms22168483. [PMID: 34445194 PMCID: PMC8395213 DOI: 10.3390/ijms22168483] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Uterine leiomyomas represent the most common benign gynecologic tumor. These hormone-dependent smooth-muscle formations occur with an estimated prevalence of ~70% among women of reproductive age and cause symptoms including pain, abnormal uterine bleeding, infertility, and recurrent abortion. Despite the prevalence and public health impact of uterine leiomyomas, available treatments remain limited. Among the potential causes of leiomyomas, early hormonal exposure during periods of development may result in developmental reprogramming via epigenetic changes that persist in adulthood, leading to disease onset or progression. Recent developments in unbiased high-throughput sequencing technology enable powerful approaches to detect driver mutations, yielding new insights into the genomic instability of leiomyomas. Current data also suggest that each leiomyoma originates from the clonal expansion of a single transformed somatic stem cell of the myometrium. In this review, we propose an integrated cellular and molecular view of the origins of leiomyomas, as well as paradigm-shifting studies that will lead to better understanding and the future development of non-surgical treatments for these highly frequent tumors.
Collapse
|
5
|
Ambhore NS, Kalidhindi RSR, Sathish V. Sex-Steroid Signaling in Lung Diseases and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1303:243-273. [PMID: 33788197 DOI: 10.1007/978-3-030-63046-1_14] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sex/gender difference exists in the physiology of multiple organs. Recent epidemiological reports suggest the influence of sex-steroids in modulating a wide variety of disease conditions. Sex-based discrepancies have been reported in pulmonary physiology and various chronic inflammatory responses associated with lung diseases like asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, and rare lung diseases. Notably, emerging clinical evidence suggests that several respiratory diseases affect women to a greater degree, with increased severity and prevalence than men. Although sex-specific differences in various lung diseases are evident, such differences are inherent to sex-steroids, which are major biological variables in men and women who play a central role to control these differences. The focus of this chapter is to comprehend the sex-steroid biology in inflammatory lung diseases and to understand the mechanistic role of sex-steroids signaling in regulating these diseases. Exploring the roles of sex-steroid signaling in the regulation of lung diseases and inflammation is crucial for the development of novel and effective therapy. Overall, we will illustrate the importance of differential sex-steroid signaling in lung diseases and their possible clinical implications for the development of complementary and alternative medicine to treat lung diseases.
Collapse
Affiliation(s)
- Nilesh Sudhakar Ambhore
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA
| | | | - Venkatachalem Sathish
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
6
|
Torrence ME, MacArthur MR, Hosios AM, Valvezan AJ, Asara JM, Mitchell JR, Manning BD. The mTORC1-mediated activation of ATF4 promotes protein and glutathione synthesis downstream of growth signals. eLife 2021; 10:e63326. [PMID: 33646118 PMCID: PMC7997658 DOI: 10.7554/elife.63326] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 02/26/2021] [Indexed: 12/16/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) stimulates a coordinated anabolic program in response to growth-promoting signals. Paradoxically, recent studies indicate that mTORC1 can activate the transcription factor ATF4 through mechanisms distinct from its canonical induction by the integrated stress response (ISR). However, its broader roles as a downstream target of mTORC1 are unknown. Therefore, we directly compared ATF4-dependent transcriptional changes induced upon insulin-stimulated mTORC1 signaling to those activated by the ISR. In multiple mouse embryo fibroblast and human cancer cell lines, the mTORC1-ATF4 pathway stimulated expression of only a subset of the ATF4 target genes induced by the ISR, including genes involved in amino acid uptake, synthesis, and tRNA charging. We demonstrate that ATF4 is a metabolic effector of mTORC1 involved in both its established role in promoting protein synthesis and in a previously unappreciated function for mTORC1 in stimulating cellular cystine uptake and glutathione synthesis.
Collapse
Affiliation(s)
- Margaret E Torrence
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
| | - Michael R MacArthur
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Aaron M Hosios
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
| | - Alexander J Valvezan
- Center for Advanced Biotechnology and Medicine, Department of Pharmacology, Rutgers Robert Wood Johnson Medical SchoolPiscatawayUnited States
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center and Department of Medicine, Harvard Medical SchoolBostonUnited States
| | - James R Mitchell
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
- Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) ZurichZurichSwitzerland
| | - Brendan D Manning
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public HealthBostonUnited States
| |
Collapse
|
7
|
Valvezan AJ, McNamara MC, Miller SK, Torrence ME, Asara JM, Henske EP, Manning BD. IMPDH inhibitors for antitumor therapy in tuberous sclerosis complex. JCI Insight 2020; 5:135071. [PMID: 32271165 PMCID: PMC7205253 DOI: 10.1172/jci.insight.135071] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/05/2020] [Indexed: 01/05/2023] Open
Abstract
Recent studies in distinct preclinical tumor models have established the nucleotide synthesis enzyme inosine-5'-monophosphate dehydrogenase (IMPDH) as a viable target for antitumor therapy. IMPDH inhibitors have been used clinically for decades as safe and effective immunosuppressants. However, the potential to repurpose these pharmacological agents for antitumor therapy requires further investigation, including direct comparisons of available compounds. Therefore, we tested structurally distinct IMPDH inhibitors in multiple cell and mouse tumor models of the genetic tumor syndrome tuberous sclerosis complex (TSC). TSC-associated tumors are driven by uncontrolled activation of the growth-promoting protein kinase complex mechanistic target of rapamycin (mTOR) complex 1 (mTORC1), which is also aberrantly activated in the majority of sporadic cancers. Despite eliciting similar immunosuppressive effects, the IMPDH inhibitor mizoribine, used clinically throughout Asia, demonstrated far superior antitumor activity compared with the FDA-approved IMPDH inhibitor mycophenolate mofetil (or CellCept, a prodrug of mycophenolic acid). When compared directly to the mTOR inhibitor rapamycin, mizoribine treatment provided a more durable antitumor response associated with tumor cell death. These results provide preclinical support for repurposing mizoribine, over other IMPDH inhibitors, as an alternative to mTOR inhibitors for the treatment of TSC-associated tumors and possibly other tumors featuring uncontrolled mTORC1 activity.
Collapse
Affiliation(s)
- Alexander J. Valvezan
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Molly C. McNamara
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Spencer K. Miller
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Margaret E. Torrence
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - John M. Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth P. Henske
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Brendan D. Manning
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Ali M, Al-Hendy A. Selective progesterone receptor modulators for fertility preservation in women with symptomatic uterine fibroids. Biol Reprod 2018; 97:337-352. [PMID: 29025038 PMCID: PMC5803778 DOI: 10.1093/biolre/iox094] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022] Open
Abstract
Uterine fibroids (UFs, AKA leiomyoma) are the most important benign neoplastic threat to women's health, with costs up to hundreds of billions of health care dollars worldwide. Uterine fibroids caused morbidities exert a tremendous health toll, impacting the quality of life of women of all ethnicities, especially women of color. Clinical presentations include heavy vaginal bleeding, pelvic pain, bulk symptoms, subfertility, and obstetric complications. Current management strategies heavily lean toward surgical procedures; nonetheless, the choice of treatment is generally subject to patient's age and her desire to preserve future fertility. Women with UF who desire to maintain future fertility potential face a dilemma because of the limited treatment choices that are currently available to help them achieve that goal. Recently, ulipristal acetate the first of the promising family of oral selective progesterone receptor modulators has been approved for UF treatment in Europe, Canada, and several other countries and is under review for possible approval in the USA. In this review article, we discuss recent advances in the management options against UF with a bend toward oral effective long-term treatment alternatives who are particularly suited for those seeking to preserve their future fertility potential. We also explore the transformative concept of primary and secondary UF prevention using these new anti-UF agents. We envision a remarkable shift in the management of UF in future years from surgical/invasive treatment to orally administrated options; clearly, this potential shift will require additional intense clinical research.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.,Clinical Pharmacy department, Faculty of pharmacy, Ain Shams University, Cairo, Egypt
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
9
|
Valvezan AJ, Turner M, Belaid A, Lam HC, Miller SK, McNamara MC, Baglini C, Housden BE, Perrimon N, Kwiatkowski DJ, Asara JM, Henske EP, Manning BD. mTORC1 Couples Nucleotide Synthesis to Nucleotide Demand Resulting in a Targetable Metabolic Vulnerability. Cancer Cell 2017; 32:624-638.e5. [PMID: 29056426 PMCID: PMC5687294 DOI: 10.1016/j.ccell.2017.09.013] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/21/2017] [Accepted: 09/20/2017] [Indexed: 12/13/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) supports proliferation through parallel induction of key anabolic processes, including protein, lipid, and nucleotide synthesis. We hypothesized that these processes are coupled to maintain anabolic balance in cells with mTORC1 activation, a common event in human cancers. Loss of the tuberous sclerosis complex (TSC) tumor suppressors results in activation of mTORC1 and development of the tumor syndrome TSC. We find that pharmacological inhibitors of guanylate nucleotide synthesis have selective deleterious effects on TSC-deficient cells, including in mouse tumor models. This effect stems from replication stress and DNA damage caused by mTORC1-driven rRNA synthesis, which renders nucleotide pools limiting. These findings reveal a metabolic vulnerability downstream of mTORC1 triggered by anabolic imbalance.
Collapse
Affiliation(s)
- Alexander J Valvezan
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Marc Turner
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Amine Belaid
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Hilaire C Lam
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Spencer K Miller
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Molly C McNamara
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Christian Baglini
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Boston, MA, USA
| | - David J Kwiatkowski
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - John M Asara
- Division of Signal Transduction, Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Elizabeth P Henske
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Brendan D Manning
- Department of Genetics and Complex Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
10
|
Stepanova V, Dergilev KV, Holman KR, Parfyonova YV, Tsokolaeva ZI, Teter M, Atochina-Vasserman EN, Volgina A, Zaitsev SV, Lewis SP, Zabozlaev FG, Obraztsova K, Krymskaya VP, Cines DB. Urokinase-type plasminogen activator (uPA) is critical for progression of tuberous sclerosis complex 2 (TSC2)-deficient tumors. J Biol Chem 2017; 292:20528-20543. [PMID: 28972182 DOI: 10.1074/jbc.m117.799593] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/20/2017] [Indexed: 12/20/2022] Open
Abstract
Lymphangioleiomyomatosis (LAM) is a fatal lung disease associated with germline or somatic inactivating mutations in tuberous sclerosis complex genes (TSC1 or TSC2). LAM is characterized by neoplastic growth of smooth muscle-α-actin-positive cells that destroy lung parenchyma and by the formation of benign renal neoplasms called angiolipomas. The mammalian target of rapamycin complex 1 (mTORC1) inhibitor rapamycin slows progression of these diseases but is not curative and associated with notable toxicity at clinically effective doses, highlighting the need for better understanding LAM's molecular etiology. We report here that LAM lesions and angiomyolipomas overexpress urokinase-type plasminogen activator (uPA). Tsc1-/- and Tsc2-/- mouse embryonic fibroblasts expressed higher uPA levels than their WT counterparts, resulting from the TSC inactivation. Inhibition of uPA expression in Tsc2-null cells reduced the growth and invasiveness and increased susceptibility to apoptosis. However, rapamycin further increased uPA expression in TSC2-null tumor cells and immortalized TSC2-null angiomyolipoma cells, but not in cells with intact TSC. Induction of glucocorticoid receptor signaling or forkhead box (FOXO) 1/3 inhibition abolished the rapamycin-induced uPA expression in TSC-compromised cells. Moreover, rapamycin-enhanced migration of TSC2-null cells was inhibited by the uPA inhibitor UK122, dexamethasone, and a FOXO inhibitor. uPA-knock-out mice developed fewer and smaller TSC2-null lung tumors, and introduction of uPA shRNA in tumor cells or amiloride-induced uPA inhibition reduced tumorigenesis in vivo These findings suggest that interference with the uPA-dependent pathway, when used along with rapamycin, might attenuate LAM progression and potentially other TSC-related disorders.
Collapse
Affiliation(s)
| | - Konstantin V Dergilev
- the Angiogenesis Laboratory, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Kelci R Holman
- the College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Yelena V Parfyonova
- the Angiogenesis Laboratory, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Zoya I Tsokolaeva
- the Angiogenesis Laboratory, Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow 121552, Russia
| | - Mimi Teter
- the College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Elena N Atochina-Vasserman
- Penn Center for Pulmonary Biology, Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Alla Volgina
- Penn Center for Pulmonary Biology, Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | | | - Shane P Lewis
- the College of Arts and Sciences, Drexel University, Philadelphia, Pennsylvania 19104, and
| | - Fedor G Zabozlaev
- the Department of Pathology, Federal Research Clinical Center Federal Medical and Biological Agency of Russia, Moscow 115682, Russia
| | - Kseniya Obraztsova
- Penn Center for Pulmonary Biology, Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Vera P Krymskaya
- Penn Center for Pulmonary Biology, Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Douglas B Cines
- From the Department of Pathology and Laboratory Medicine and
| |
Collapse
|
11
|
Lam HC, Liu HJ, Baglini CV, Filippakis H, Alesi N, Nijmeh J, Du H, Lope AL, Cottrill KA, Handen A, Asara JM, Kwiatkowski DJ, Ben-Sahra I, Oldham WM, Chan SY, Henske EP. Rapamycin-induced miR-21 promotes mitochondrial homeostasis and adaptation in mTORC1 activated cells. Oncotarget 2017; 8:64714-64727. [PMID: 29029388 PMCID: PMC5630288 DOI: 10.18632/oncotarget.19947] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 06/25/2017] [Indexed: 12/24/2022] Open
Abstract
mTORC1 hyperactivation drives the multi-organ hamartomatous disease tuberous sclerosis complex (TSC). Rapamycin inhibits mTORC1, inducing partial tumor responses; however, the tumors regrow following treatment cessation. We discovered that the oncogenic miRNA, miR-21, is increased in Tsc2-deficient cells and, surprisingly, further increased by rapamycin. To determine the impact of miR-21 in TSC, we inhibited miR-21 in vitro. miR-21 inhibition significantly repressed the tumorigenic potential of Tsc2-deficient cells and increased apoptosis sensitivity. Tsc2-deficient cells' clonogenic and anchorage independent growth were reduced by ∼50% (p<0.01) and ∼75% (p<0.0001), respectively, and combined rapamycin treatment decreased soft agar growth by ∼90% (p<0.0001). miR-21 inhibition also increased sensitivity to apoptosis. Through a network biology-driven integration of RNAseq data, we discovered that miR-21 promotes mitochondrial adaptation and homeostasis in Tsc2-deficient cells. miR-21 inhibition reduced mitochondrial polarization and function in Tsc2-deficient cells, with and without co-treatment with rapamycin. Importantly, miR-21 inhibition limited Tsc2-deficient tumor growth in vivo, reducing tumor size by approximately 3-fold (p<0.0001). When combined with rapamcyin, miR-21 inhibition showed even more striking efficacy, both during treatment and after treatment cessation, with a 4-fold increase in median survival following rapamycin cessation (p=0.0008). We conclude that miR-21 promotes mTORC1-driven tumorigenesis via a mechanism that involves the mitochondria, and that miR-21 is a potential therapeutic target for TSC-associated hamartomas and other mTORC1-driven tumors, with the potential for synergistic efficacy when combined with rapalogs.
Collapse
Affiliation(s)
- Hilaire C. Lam
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Heng-Jia Liu
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Christian V. Baglini
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Harilaos Filippakis
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Nicola Alesi
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Julie Nijmeh
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Heng Du
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Alicia Llorente Lope
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Katherine A. Cottrill
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Adam Handen
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - John M. Asara
- Department of Medicine, Division of Signal Transduction, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David J. Kwiatkowski
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - William M. Oldham
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephen Y. Chan
- Department of Medicine, Division of Cardiology, Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Elizabeth P. Henske
- Department of Medicine, Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
12
|
Chuang TY, Min J, Wu HL, McCrary C, Layman LC, Diamond MP, Azziz R, Al-Hendy A, Chen YH. Berberine Inhibits Uterine Leiomyoma Cell Proliferation via Downregulation of Cyclooxygenase 2 and Pituitary Tumor-Transforming Gene 1. Reprod Sci 2016; 24:1005-1013. [DOI: 10.1177/1933719116675055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Tung-Yueh Chuang
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Jie Min
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hsiao-Li Wu
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Cristina McCrary
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Lawrence C. Layman
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Michael P. Diamond
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Ricardo Azziz
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Ayman Al-Hendy
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| | - Yen-Hao Chen
- Department of Obstetrics/Gynecology, Augusta University, Augusta, GA, USA
| |
Collapse
|
13
|
Abstract
Lymphangioleiomyomatosis (LAM) is a devastating rare lung disease affecting primarily childbearing age women in which tumors consisting of abnormal smooth-muscle-like cells grow within the lungs and progressively lead to loss of pulmonary function. LAM cells metastasize to the lungs, predominantly through the lymphatics; however, the source of the LAM cell is still unknown. LAM cells contain inactivating mutations in genes encoding tuberous sclerosis 1 or 2, proteins that normally limit cell growth through suppression of mammalian target of rapamycin complex 1. As of today, sirolimus (an mammalian target of rapamycin complex 1 inhibitor) is the only treatment, available for LAM patients that is approved by the Food and Drug Administration; however, this drug and others in its class provide stabilization but not remission of LAM. One of the biggest problems in treating LAM is that both the origin of the LAM cells and the mechanism of the sexual dimorphism in LAM are still not understood. LAM cells express estrogen and progesterone receptors, and lung function declines during periods of high circulating estrogen levels. Moreover, numerous basic research studies find that estrogen is a key driving force in LAM cell proliferation, migration, and metastasis. In this review, we highlight recent insights regarding the role of steroid hormones in LAM and discuss possible explanations for the profound female sexual dimorphism of LAM.
Collapse
Affiliation(s)
- Hen Prizant
- Departments of Medicine and Pharmacology, University of Rochester Medical Center, Rochester, New York 14642
| | - Stephen R Hammes
- Departments of Medicine and Pharmacology, University of Rochester Medical Center, Rochester, New York 14642
| |
Collapse
|
14
|
Segars JH, Parrott EC, Nagel JD, Guo XC, Gao X, Birnbaum LS, Pinn VW, Dixon D. Proceedings from the Third National Institutes of Health International Congress on Advances in Uterine Leiomyoma Research: comprehensive review, conference summary and future recommendations. Hum Reprod Update 2014; 20:309-33. [PMID: 24401287 DOI: 10.1093/humupd/dmt058] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Uterine fibroids are the most common gynecologic tumors in women of reproductive age yet the etiology and pathogenesis of these lesions remain poorly understood. Age, African ancestry, nulliparity and obesity have been identified as predisposing factors for uterine fibroids. Symptomatic tumors can cause excessive uterine bleeding, bladder dysfunction and pelvic pain, as well as associated reproductive disorders such as infertility, miscarriage and other adverse pregnancy outcomes. Currently, there are limited noninvasive therapies for fibroids and no early intervention or prevention strategies are readily available. This review summarizes the advances in basic, applied and translational uterine fibroid research, in addition to current and proposed approaches to clinical management as presented at the 'Advances in Uterine Leiomyoma Research: 3rd NIH International Congress'. Congress recommendations and a review of the fibroid literature are also reported. METHODS This review is a report of meeting proceedings, the resulting recommendations and a literature review of the subject. RESULTS The research data presented highlights the complexity of uterine fibroids and the convergence of ethnicity, race, genetics, epigenetics and environmental factors, including lifestyle and possible socioeconomic parameters on disease manifestation. The data presented suggest it is likely that the majority of women with uterine fibroids will have normal pregnancy outcomes; however, additional research is warranted. As an alternative to surgery, an effective long-term medical treatment for uterine fibroids should reduce heavy uterine bleeding and fibroid/uterine volume without excessive side effects. This goal has not been achieved and current treatments reduce symptoms only temporarily; however, a multi-disciplined approach to understanding the molecular origins and pathogenesis of uterine fibroids, as presented in this report, makes our quest for identifying novel targets for noninvasive, possibly nonsystemic and effective long-term treatment very promising. CONCLUSIONS The Congress facilitated the exchange of scientific information among members of the uterine leiomyoma research and health-care communities. While advances in research have deepened our knowledge of the pathobiology of fibroids, their etiology still remains incompletely understood. Further needs exist for determination of risk factors and initiation of preventive measures for fibroids, in addition to continued development of new medical and minimally invasive options for treatment.
Collapse
Affiliation(s)
- James H Segars
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Koskas M, Derrien J. Traitements médicaux chez la femme ayant des myomes symptomatiques en période d’activité génitale. Presse Med 2013; 42:1122-6. [DOI: 10.1016/j.lpm.2013.02.318] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 02/19/2013] [Indexed: 10/26/2022] Open
|
16
|
Kim JJ, Sefton EC. The role of progesterone signaling in the pathogenesis of uterine leiomyoma. Mol Cell Endocrinol 2012; 358:223-31. [PMID: 21672608 PMCID: PMC3184215 DOI: 10.1016/j.mce.2011.05.044] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Revised: 05/18/2011] [Accepted: 05/27/2011] [Indexed: 01/03/2023]
Abstract
Uterine leiomyomas are benign tumors that originate from the myometrium. Evidence points to ovarian steroid hormones, in particular, progesterone as major promoters of leiomyoma development and growth. While progesterone action in leiomyomas involves the classical nuclear receptor effects on gene regulation, there is growing evidence that signaling pathways are directly activated by the progesterone receptor (PR) and that PR can interact with growth factor signaling systems to promote proliferation and survival of leiomyomas. Studies investigating the genomic and non-genomic actions of PR and its role in leiomyoma growth are summarized here. Studies testing various selective progesterone receptor modulators for the treatment of leiomyomas are also highlighted. An increased understanding of the mechanisms associated with progesterone-driven growth of leiomyomas is critical in order to develop more efficient and targeted therapies for this prevalent disease.
Collapse
Affiliation(s)
- J Julie Kim
- Division of Reproductive Biology Research, Department Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA.
| | | |
Collapse
|
17
|
Place des traitements médicaux : indication, durée, efficacité, chez la femme porteuse de fibromes utérins symptomatiques en période d’activité génitale. ACTA ACUST UNITED AC 2011; 40:858-74. [DOI: 10.1016/j.jgyn.2011.09.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
18
|
Darling TN, Pacheco-Rodriguez G, Gorio A, Lesma E, Walker C, Moss J. Lymphangioleiomyomatosis and TSC2-/- cells. Lymphat Res Biol 2010; 8:59-69. [PMID: 20235888 DOI: 10.1089/lrb.2009.0031] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cells comprising pulmonary lymphangioleiomyomatosis (LAM) and renal angiomyolipomas (AMLs) are heterogeneous, with variable mixtures of cells exhibiting differentiation towards smooth muscle, fat, and vessels. Cells grown from LAM and AMLs have likewise tended to be heterogeneous. The discovery that LAM and AMLs contain cells with mutations in the TSC1 or TSC2 genes is allowing investigators to discriminate between "two-hit" cells and neighboring cells, providing insights into disease pathogenesis. In rare cases, it has been possible to derive cells from human tumors, including AMLs and TSC skin tumors that are highly enriched for TSC2(-/-) cells. Cells derived from an Eker rat uterine leiomyoma (ELT3 cells) are Tsc2-null and these have been used in a rodent cell models for LAM. Further improvements in the ability to reliably grow well-characterized TSC2(-/-) cells from human tumors are critical to developing in vitro and in vivo model systems for studies of LAM pathogenesis and treatment.
Collapse
Affiliation(s)
- Thomas N Darling
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Bredfeldt TG, Greathouse KL, Safe SH, Hung MC, Bedford MT, Walker CL. Xenoestrogen-induced regulation of EZH2 and histone methylation via estrogen receptor signaling to PI3K/AKT. Mol Endocrinol 2010; 24:993-1006. [PMID: 20351197 DOI: 10.1210/me.2009-0438] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although rapid, membrane-activated estrogen receptor (ER) signaling is no longer controversial, the biological function of this nongenomic signaling is not fully characterized. We found that rapid signaling from membrane-associated ER regulates the histone methyltransferase enhancer of Zeste homolog 2 (EZH2). In response to both 17beta-estradiol (E2) and the xenoestrogen diethylstilbestrol, ER signaling via phosphatidylinositol 3-kinase/protein kinase B phosphorylates EZH2 at S21, reducing levels of trimethylation of lysine 27 on histone H3 in hormone-responsive cells. During windows of uterine development that are susceptible to developmental reprogramming, activation of this ER signaling pathway by diethylstilbestrol resulted in phosphorylation of EZH2 and reduced levels of trimethylation of lysine 27 on histone H3 in chromatin of the developing uterus. Furthermore, activation of nongenomic signaling reprogrammed the expression profile of estrogen-responsive genes in uterine myometrial cells, suggesting this as a potential mechanism for developmental reprogramming caused by early-life exposure to xenoestrogens. These data demonstrate that rapid ER signaling provides a direct linkage between xenoestrogen-induced nuclear hormone receptor signaling and modulation of the epigenetic machinery during tissue development.
Collapse
Affiliation(s)
- Tiffany G Bredfeldt
- Department of Carcinogenesis, University of Texas, M.D. Anderson Cancer Center, Science Park Research Division, 1808 Park Road 1C, P.O. Box 389, Smithville, Texas 78957, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kim JJ, Sefton EC, Bulun SE. Progesterone receptor action in leiomyoma and endometrial cancer. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 87:53-85. [PMID: 20374701 DOI: 10.1016/s1877-1173(09)87002-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Progesterone is a key hormone in the regulation of uterine function. In the normal physiological context, progesterone is primarily involved in remodeling of the endometrium and maintaining a quiescent myometrium. When pathologies of the uterus develop, specifically, endometrial cancer and uterine leiomyoma, response to progesterone is usually altered. Progesterone acts through mainly two isoforms of the progesterone receptor (PR), PRA and PRB which have been reported to exhibit different transcriptional activities. Studies examining the expression and function of the PRs in the normal endometrium and myometrium as well as in endometrial cancer and uterine leiomyoma are summarized here. The clinical use of progestins and the transcriptional activity of the PR on genes specific to endometrial cancer and leiomyoma are described. An increased understanding of the differential expression of PRs and response to progesterone in these two diseases is critical in order to develop more efficient and targeted therapies.
Collapse
Affiliation(s)
- J Julie Kim
- Division of Reproductive Biology Research, Department of Obstetrics and Gynecology, Robert H. Lurie Comprehensive Cancer Center, Chicago, Illinois 60611, USA
| | | | | |
Collapse
|
21
|
Estrogen receptor alpha (ERalpha) phospho-serine-118 is highly expressed in human uterine leiomyomas compared to matched myometrium. Virchows Arch 2008; 453:557-69. [PMID: 18853184 DOI: 10.1007/s00428-008-0679-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2008] [Revised: 09/12/2008] [Accepted: 09/16/2008] [Indexed: 10/21/2022]
Abstract
It is thought that the growth of uterine leiomyomas may be mediated by the interaction of estrogen receptor alpha (ERalpha) and growth factor pathways and that phosphorylation of ERalpha at serine 118 (ERalpha-phospho-Ser118) is important in this interaction. In this study, immunoblotting and immunohistochemistry were used to investigate the expression of ERalpha-phospho-Ser118, phosphorylated p44/42 mitogen-activated protein kinase (phospho-p44/42 MAPK), and proliferating cell nuclear antigen (PCNA) in human leiomyoma and myometrial tissues during the proliferative and secretory phases of the menstrual cycle. We found that tumors taken from the proliferative phase expressed significantly higher levels of ERalpha-phospho-Ser118, phospho-p44/42 MAPK, and PCNA compared to patient-matched myometria and had significantly higher ERalpha-phospho-Ser118 and PCNA expression compared to secretory phase tumors. Also, enhanced colocalization and association of phospho-p44/42 MAPK and ERalpha-phospho-Ser118 were observed in proliferative phase tumors by confocal microscopy and immunoprecipitation, respectively. These data suggest that ERalpha-phospho-Ser118 may be important in leiomyoma growth and is possibly phosphorylated by phospho-p44/42 MAPK.
Collapse
|
22
|
Jeng YJ, Suarez VR, Izban MG, Wang HQ, Soloff MS. Progesterone-induced sphingosine kinase-1 expression in the rat uterus during pregnancy and signaling consequences. Am J Physiol Endocrinol Metab 2007; 292:E1110-21. [PMID: 17164439 DOI: 10.1152/ajpendo.00373.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sphingosine 1-phosphate (Sph-1-P), a product of sphingomyelin metabolism, can act via a family of cognate G protein-coupled receptors or as an intracellular second messenger for agonists acting through their membrane receptors. In view of the general growth promoting and developmental effects of Sph-1-P on target cells, we hypothesized that it plays a role in adaptation of the uterus to pregnancy. We analyzed its potential role and that of the related lysophospholipid lysophosphatidic acid in the pregnant rat uterus by examining changes in mRNA levels of cognate receptors and enzymes involved in their turnover. Of these, only sphingosine kinase-1 (SphK1) was markedly changed ( approximately 30-fold increase), being localized in the glandular epithelium, vasculature, and the myometrium. Uterine SphK1 mRNA and protein levels paralleled those of serum progesterone, and treatment with progesterone or an antagonist elevated or reduced SphK1 mRNA expression, respectively. Progesterone also increased SphK1 mRNA steady-state levels in a rat myometrial/leiomyoma cell line (ELT3). Overexpressing human SphK1 in these cells resulted in increased levels of the cell cycle regulator cyclin D1 and increased myosin light-chain phosphorylation. Ectopic expression of SphK1 also resulted in increased proliferation rates, possibly in conjunction with increased cyclin D1 expression. These studies suggest that the uterine expression of SphK1 mediates processes involved in growth and differentiation of uterine tissues during pregnancy.
Collapse
Affiliation(s)
- Yow-Jiun Jeng
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX 77555-1062, USA
| | | | | | | | | |
Collapse
|
23
|
|
24
|
Bulun SE, Lin Z, Imir G, Amin S, Demura M, Yilmaz B, Martin R, Utsunomiya H, Thung S, Gurates B, Tamura M, Langoi D, Deb S. Regulation of aromatase expression in estrogen-responsive breast and uterine disease: from bench to treatment. Pharmacol Rev 2005; 57:359-83. [PMID: 16109840 DOI: 10.1124/pr.57.3.6] [Citation(s) in RCA: 403] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A single gene encodes the key enzyme for estrogen biosynthesis termed aromatase, inhibition of which effectively eliminates estrogen production. Aromatase inhibitors successfully treat breast cancer and endometriosis, whereas their roles in endometrial cancer, uterine fibroids, and aromatase excess syndrome are less clear. Ovary, testis, adipose tissue, skin, hypothalamus, and placenta express aromatase normally, whereas breast and endometrial cancers, endometriosis, and uterine fibroids overexpress aromatase and produce local estrogen that exerts paracrine and intracrine effects. Tissue-specific promoters distributed over a 93-kilobase regulatory region upstream of a common coding region alternatively control aromatase expression. A distinct set of transcription factors regulates each promoter in a signaling pathway- and tissue-specific manner. Three mechanisms are responsible for aromatase overexpression in a pathologic tissue versus its normal counterpart. First, cellular composition is altered to increase aromatase-expressing cell types that use distinct promoters (breast cancer). Second, molecular alterations in stromal cells favor binding of transcriptional enhancers versus inhibitors to a normally quiescent aromatase promoter and initiate transcription (breast/endometrial cancer, endometriosis, and uterine fibroids). Third, heterozygous mutations, which cause the aromatase coding region to lie adjacent to constitutively active cryptic promoters that normally transcribe other genes, result in excessive estrogen formation owing to the overexpression of aromatase in many tissues.
Collapse
Affiliation(s)
- Serdar E Bulun
- Division of Reproductive Biology Research, Department of Obstetric and Gynecology, Northwestern University, Chicago, IL 60611, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hsieh YY, Chan IP, Wang HI, Chang CC, Huang CW, Lin CS. PROGINS Alu sequence insertion is associated with hyperprolactinaemia but not leiomyoma susceptibility. Clin Endocrinol (Oxf) 2005; 62:492-7. [PMID: 15807882 DOI: 10.1111/j.1365-2265.2005.02251.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Leiomyoma and hyperprolactinaemia are both progesterone-dependent diseases. Hormone-related genes, such as the progesterone receptor (PGR), might be involved in their pathogenesis. DESIGN AND MEASUREMENTS Subjects were divided into three groups: (i) leiomyoma (n = 120); (ii) hyperprolactinaemia (n = 101); (iii) normal controls (n = 140). We investigated the Alu (306-bp DNA) insertion in intron G of the PGR gene in all individuals. PGR gene polymorphisms [T1 (wild-type); T2 (PROGINS, with Alu insertion)] were determined by PCR and electrophoresis. Genotype and allele frequencies of the PROGINS in each group were detected and compared. RESULTS We observed no significant difference of the PGR*T1/T2 genotypes and allele frequencies between leiomyoma and other two groups. The proportions of T1 homozygote/heterozygote/T2 homozygote in each group were (i) 90/8.3/1.7%; (ii) 84.2/9.9/5.9%; (iii) 92.9/6.4/0.7%. In contrast, a higher percentage of T2-related genotype and allele were noted in hyperprolactinaemic women compared to other two groups. The proportions of T1/T2 alleles in each group were: (i) 94.2/5.8%; (ii) 89.1/10.9%; (iii) 96.1/3.9%. CONCLUSIONS The PROGIN*T2-related genotype and allele are related to a higher susceptibility to hyperprolactinaemia. The PROGINS polymorphism is not associated with leiomyoma development.
Collapse
Affiliation(s)
- Yao-Yuan Hsieh
- Department of Biological Science and Technology, National Chiao Tung University, 75 Po-Ai Street, Hsinchu 300, Taiwan
| | | | | | | | | | | |
Collapse
|
26
|
Al-Hendy A, Lee EJ, Wang HQ, Copland JA. Gene therapy of uterine leiomyomas: adenovirus-mediated expression of dominant negative estrogen receptor inhibits tumor growth in nude mice. Am J Obstet Gynecol 2004; 191:1621-31. [PMID: 15547533 DOI: 10.1016/j.ajog.2004.04.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Leiomyomas (fibroids) are common estrogen-dependent uterine tumors with no effective medicinal treatment; hysterectomy is the mainstay of management. STUDY DESIGN This study was undertaken to investigate a potential therapy for leiomyoma; we used a mutated dominant-negative estrogen receptor gene delivered via an adenoviral vector (Ad-ER-DN). RESULTS Ad-ER-DN transduction, in both human and rat leiomyoma cell lines, induced an increase in both caspase-3 levels and BAX/Bcl-2 ratio with evident apoptosis in the TdT-mediated dUTP nick-end labeling assay. In nude mice, rat leiomyoma cells ex vivo transduced with Ad-ER-DN supported significantly smaller tumors compared with Ad-LacZ-treated cells 5 weeks after implantation. In mice treated by direct intratumor injection into preexisting lesions, Ad-ER-DN caused immediate overall arrest of tumor growth. The Ad-ER-DN-treated tumors demonstrated severely inhibited cell proliferation (BrdU index) and a marked increase in the number of apoptotic cells (TdT-mediated dUTP nick-end labeling index). CONCLUSION Dominant-negative estrogen receptor gene therapy may provide a nonsurgical treatment option for women with symptomatic uterine fibroids who want to preserve their uteri.
Collapse
Affiliation(s)
- Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, Tex, USA.
| | | | | | | |
Collapse
|