1
|
Nair R, Kasturi M, Mathur V, Seetharam RN, S Vasanthan K. Strategies for developing 3D printed ovarian model for restoring fertility. Clin Transl Sci 2024; 17:e13863. [PMID: 38955776 PMCID: PMC11219245 DOI: 10.1111/cts.13863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 05/31/2024] [Indexed: 07/04/2024] Open
Abstract
Ovaries play a crucial role in the regulation of numerous essential processes that occur within the intricate framework of female physiology. They are entrusted with the responsibility of both generating a new life and orchestrating a delicate hormonal symphony. Understanding their functioning is crucial for gaining insight into the complexities of reproduction, health, and fertility. In addition, ovaries secrete hormones that are crucial for both secondary sexual characteristics and the maintenance of overall health. A three-dimensional (3D) prosthetic ovary has the potential to restore ovarian function and preserve fertility in younger females who have undergone ovariectomies or are afflicted with ovarian malfunction. Clinical studies have not yet commenced, and the production of 3D ovarian tissue for human implantation is still in the research phase. The main challenges faced while creating a 3D ovary for in vivo implantation include sustenance of ovarian follicles, achieving vascular infiltration into the host tissue, and restoring hormone circulation. The complex ovarian microenvironment that is compartmentalized and rigid makes the biomimicking of the 3D ovary challenging in terms of biomaterial selection and bioink composition. The successful restoration of these properties in animal models has led to expectations for the development of human ovaries for implantation. This review article summarizes and evaluates the optimal 3D models of ovarian structures and their safety and efficacy concerns to provide concrete suggestions for future research.
Collapse
Affiliation(s)
- Ramya Nair
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Meghana Kasturi
- Department of Mechanical EngineeringUniversity of MichiganDearbornMichiganUSA
| | - Vidhi Mathur
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Raviraja N. Seetharam
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| | - Kirthanashri S Vasanthan
- Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
2
|
Faustini M, Agradi S, Vigo D, Torre ML, Curone G. Bioencapsulation of Oocytes and Granulosa Cells. Methods Mol Biol 2024; 2749:103-108. [PMID: 38133778 DOI: 10.1007/978-1-0716-3609-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
A protocol for the encapsulation in sodium alginate of granulosa cells in primary culture and coculture of oocyte-cumulus complexes is reported. Sodium alginate forms strong gels when jellified with barium ions, allowing the self-organization of cells into a 3D structure. This method of encapsulation is simple and cheap, allowing the culture of cells in a three-dimensional fashion.
Collapse
Affiliation(s)
- Massimo Faustini
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Stella Agradi
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| | - Daniele Vigo
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy.
| | - Maria L Torre
- Dipartimento di Scienze del farmaco, Università degli Studi del Piemonte Orientale, Vercelli, Italy
| | - Giulio Curone
- Department of Veterinary Medicine and Animal Sciences, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Chang CL. Facilitation of Ovarian Response by Mechanical Force-Latest Insight on Fertility Improvement in Women with Poor Ovarian Response or Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:14751. [PMID: 37834198 PMCID: PMC10573075 DOI: 10.3390/ijms241914751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
The decline in fertility in aging women, especially those with poor ovarian response (POR) or primary ovarian insufficiency (POI), is a major concern for modern IVF centers. Fertility treatments have traditionally relied on gonadotropin- and steroid-hormone-based IVF practices, but these methods have limitations, especially for women with aging ovaries. Researchers have been motivated to explore alternative approaches. Ovarian aging is a complicated process, and the deterioration of oocytes, follicular cells, the extracellular matrix (ECM), and the stromal compartment can all contribute to declining fertility. Adjunct interventions that involve the use of hormones, steroids, and cofactors and gamete engineering are two major research areas aimed to improve fertility in aging women. Additionally, mechanical procedures including the In Vitro Activation (IVA) procedure, which combines pharmacological activators and fragmentation of ovarian strips, and the Whole Ovary Laparoscopic Incision (WOLI) procedure that solely relies on mechanical manipulation in vivo have shown promising results in improving follicle growth and fertility in women with POR and POI. Advances in the use of mechanical procedures have brought exciting opportunities to improve fertility outcomes in aging women with POR or POI. While the lack of a comprehensive understanding of the molecular mechanisms that lead to fertility decline in aging women remains a major challenge for further improvement of mechanical-manipulation-based approaches, recent progress has provided a better view of how these procedures promote folliculogenesis in the fibrotic and avascular aging ovaries. In this review, we first provide a brief overview of the potential mechanisms that contribute to ovarian aging in POI and POR patients, followed by a discussion of measures that aim to improve ovarian folliculogenesis in aging women. At last, we discuss the likely mechanisms that contribute to the outcomes of IVA and WOLI procedures and potential future directions.
Collapse
Affiliation(s)
- Chia Lin Chang
- Department of Obstetrics and Gynecology, Chang Gung Memorial Hospital Linkou Medical Center, Chang Gung University, Guishan, Taoyuan 33305, Taiwan
| |
Collapse
|
4
|
Arjoune A, Sirard MA. The genomic response of human granulosa cells (KGN) to melatonin and specific agonists/antagonists to the melatonin receptors. Sci Rep 2022; 12:17539. [PMID: 36266374 PMCID: PMC9584952 DOI: 10.1038/s41598-022-21162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 09/23/2022] [Indexed: 01/13/2023] Open
Abstract
Melatonin is a known modulator of follicle development; it acts through several molecular cascades via binding to its two specific receptors MT1 and MT2. Even though it is believed that melatonin can modulate granulosa cell (GC) functions, there is still limited knowledge of how it can act in human GC through MT1 and MT2 and which one is more implicated in the effects of melatonin on the metabolic processes in the dominant follicle. To better characterize the roles of these receptors on the effects of melatonin on follicular development, human granulosa-like tumor cells (KGN) were treated with specific melatonin receptor agonists and antagonists, and gene expression was analyzed with RNA-seq technology. Following appropriate normalization and the application of a fold change cut-off of 1.5 (FC 1.5, p ≤ 0.05) for each treatment, lists of the principal differentially expressed genes (DEGs) are generated. Analysis of major upstream regulators suggested that the MT1 receptor may be involved in the melatonin antiproliferative effect by reprogramming the metabolism of human GC by activating the PKB signaling pathway. Our data suggest that melatonin may act complementary through both MT1 and MT2 receptors to modulate human GC steroidogenesis, proliferation, and differentiation. However, MT2 receptors may be the ones implicated in transducing the effects of melatonin on the prevention of GC luteinization and follicle atresia at the antral follicular stage through stimulating the PKA pathway.
Collapse
Affiliation(s)
- Asma Arjoune
- grid.23856.3a0000 0004 1936 8390Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de L’agriculture et de l’alimentation, Département des Sciences animales, Université Laval, Québec, QC G1V 0A6 Canada ,grid.419508.10000 0001 2295 3249Department of Animal Production, National Agronomic Institute of Tunisia, University of Carthage, 43 Avenue Charles Nicolle, 1082 Mahrajène, Tunisia
| | - Marc-André Sirard
- grid.23856.3a0000 0004 1936 8390Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Faculté des Sciences de L’agriculture et de l’alimentation, Département des Sciences animales, Université Laval, Québec, QC G1V 0A6 Canada
| |
Collapse
|
5
|
Matsushige C, Xu X, Miyagi M, Zuo YY, Yamazaki Y. RGD-modified dextran hydrogel promotes follicle growth in three-dimensional ovarian tissue culture in mice. Theriogenology 2022; 183:120-131. [PMID: 35247849 PMCID: PMC9005264 DOI: 10.1016/j.theriogenology.2022.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
Abstract
In vitro follicle growth is a promising technology to preserve fertility for cancer patients. We previously developed a three-dimensional (3-D) ovarian tissue culture system supported by mouse tumor cell-derived Matrigel. When murine ovarian tissues at 14 days old were cultured in Matrigel drops, antrum formation and oocyte competence were significantly enhanced compared with those cultured without Matrigel. In this study, we tested whether nonanimal-derived dextran hydrogels can support a 3-D ovarian tissue culture. We employed chemically defined dextran hydrogels consisting of dextran polymers crosslinked with polyethylene glycol (PEG)-based cell-degradable crosslinker. To determine the optimal gel elasticity for the 3-D tissue culture, we measured Young's modulus of dextran hydrogels at four concentrations (1.75, 2.25, 2.75, and 3.25 mmol/L), and cultured ovarian tissues in these gels for 7 days. As a result, 2.25 mmol/L dextran hydrogel with Young's modulus of 224 Pa was appropriate to provide physical support as well as to promote follicle expansion in the 3-D system. To mimic the natural extracellular matrix (ECM) environment, we modified the dextran hydrogels with two bioactive factors: ECM-derived Arg-Gly-Asp (RGD) peptides as a cell-adhesive factor, and activin A. The ovarian tissues were cultured in 2.25 mmol/L dextran hydrogels under four different conditions: Activin-/RGD- (A-R-), A + R-, A-R+, and A + R+. On Day 7 of culture, follicle and oocyte sizes were significantly increased in the RGD-modified conditions compared with those without RGD. The RGD-modified hydrogels also promoted mRNA levels of steroidogenic-related genes and estradiol production in the 3-D ovarian tissue culture. In vitro maturation and developmental competence of follicular oocytes were remarkably improved in the presence of RGD. In particular, blastocyst embryos were obtained only from A-R+ or A+R+ conditions after in vitro fertilization. We also determined synergistic effects of the RGD peptides and activin A on follicle growth and oocyte development in the 3-D tissue culture. In conclusion, our results suggest that RGD-modified dextran hydrogels provide an ECM-mimetic bioactive environment to support folliculogenesis in a 3-D ovarian tissue culture system.
Collapse
|
6
|
Modified silicon carbide NPs reinforced nanocomposite hydrogels based on alginate-gelatin by with high mechanical properties for tissue engineering. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103520] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
7
|
A blueprint of the topology and mechanics of the human ovary for next-generation bioengineering and diagnosis. Nat Commun 2021; 12:5603. [PMID: 34556652 PMCID: PMC8460685 DOI: 10.1038/s41467-021-25934-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Although the first dissection of the human ovary dates back to the 17th century, the biophysical characteristics of the ovarian cell microenvironment are still poorly understood. However, this information is vital to deciphering cellular processes such as proliferation, morphology and differentiation, as well as pathologies like tumor progression, as demonstrated in other biological tissues. Here, we provide the first readout of human ovarian fiber morphology, interstitial and perifollicular fiber orientation, pore geometry, topography and surface roughness, and elastic and viscoelastic properties. By determining differences between healthy prepubertal, reproductive-age, and menopausal ovarian tissue, we unravel and elucidate a unique biophysical phenotype of reproductive-age tissue, bridging biophysics and female fertility. While these data enable to design of more biomimetic scaffolds for the tissue-engineered ovary, our analysis pipeline is applicable for the characterization of other organs in physiological or pathological states to reveal their biophysical markers or design their bioinspired analogs. Although the first dissection of the human ovary dates back to the 17th century, its characterization is still limited. Here, the authors have unraveled a unique biophysical and topological phenotype of reproductive-age tissue, bridging biophysics and female fertility and providing a blueprint for the artificial ovary.
Collapse
|
8
|
Mastrorocco A, Cacopardo L, Lamanna D, Temerario L, Brunetti G, Carluccio A, Robbe D, Dell’Aquila ME. Bioengineering Approaches to Improve In Vitro Performance of Prepubertal Lamb Oocytes. Cells 2021; 10:cells10061458. [PMID: 34200771 PMCID: PMC8230371 DOI: 10.3390/cells10061458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/15/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
Juvenile in vitro embryo technology (JIVET) provides exciting opportunities in animal reproduction by reducing the generation intervals. Prepubertal oocytes are also relevant models for studies on oncofertility. However, current JIVET efficiency is still unpredictable, and further improvements are needed in order for it to be used on a large-scale level. This study applied bioengineering approaches to recreate: (1) the three-dimensional (3D) structure of the cumulus–oocyte complex (COC), by constructing—via bioprinting technologies—alginate-based microbeads (COC-microbeads) for 3D in vitro maturation (3D-IVM); (2) dynamic IVM conditions, by culturing the COC in a millifluidic bioreactor; and (3) an artificial follicular wall with basal membrane, by adding granulosa cells (GCs) and type I collagen (CI) during bioprinting. The results show that oocyte nuclear and cytoplasmic maturation, as well as blastocyst quality, were improved after 3D-IVM compared to 2D controls. The dynamic 3D-IVM did not enhance oocyte maturation, but it improved oocyte bioenergetics compared with static 3D-IVM. The computational model showed higher oxygen levels in the bioreactor with respect to the static well. Microbead enrichment with GCs and CI improved oocyte maturation and bioenergetics. In conclusion, this study demonstrated that bioengineering approaches that mimic the physiological follicle structure could be valuable tools to improve IVM and JIVET.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
- Correspondence:
| | - Ludovica Cacopardo
- Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Daniela Lamanna
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| |
Collapse
|
9
|
Sequeira RC, Criswell T, Atala A, Yoo JJ. Microfluidic Systems for Assisted Reproductive Technologies: Advantages and Potential Applications. Tissue Eng Regen Med 2020; 17:787-800. [PMID: 33237567 PMCID: PMC7710813 DOI: 10.1007/s13770-020-00311-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/16/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022] Open
Abstract
Microfluidic technologies have emerged as a powerful tool that can closely replicate the in-vivo physiological conditions of organ systems. Assisted reproductive technology (ART), while being able to achieve successful outcomes, still faces challenges related to technical error, efficiency, cost, and monitoring/assessment. In this review, we provide a brief overview of the uses of microfluidic devices in the culture, maintenance and study of ovarian follicle development for experimental and therapeutic applications. We discuss existing microfluidic platforms for oocyte and sperm selection and maintenance, facilitation of fertilization by in-vitro fertilization/intracytoplastimc sperm injection, and monitoring, selection and maintenance of resulting embryos. Furthermore, we discuss the possibility of future integration of these technologies onto a single platform and the limitations facing the development of these systems. In spite of these challenges, we envision that microfluidic systems will likely evolve and inevitably revolutionize both fundamental, reproductive physiology/toxicology research as well as clinically applicable ART.
Collapse
Affiliation(s)
- Russel C Sequeira
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA
| | - James J Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
10
|
Woodruff TK. Lessons from bioengineering the ovarian follicle: a personal perspective. Reproduction 2020; 158:F113-F126. [PMID: 31846436 DOI: 10.1530/rep-19-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
The ovarian follicle and its maturation captivated my imagination and inspired my scientific journey - what we know now about this remarkable structure is captured in this invited review. In the past decade, our knowledge of the ovarian follicle expanded dramatically as cross-disciplinary collaborations brought new perspectives to bear, ultimately leading to the development of extragonadal follicles as model systems with significant clinical implications. Follicle maturation in vitro in an 'artificial' ovary became possible by learning what the follicle is fundamentally and autonomously capable of - which turns out to be quite a lot. Progress in understanding and harnessing follicle biology has been aided by engineers and materials scientists who created hardware that enables tissue function for extended periods of time. The EVATAR system supports extracorporeal ovarian function in an engineered environment that mimics the endocrine environment of the reproductive tract. Finally, applying the tools of inorganic chemistry, we discovered that oocytes require zinc to mature over time - a truly new aspect of follicle biology with no antecedent other than the presence of zinc in sperm. Drawing on the tools and ideas from the fields of bioengineering, materials science and chemistry unlocked follicle biology in ways that we could not have known or even predicted. Similarly, how today's basic science discoveries regarding ovarian follicle maturation are translated to improve the experience of tomorrow's patients is yet to be determined.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
11
|
Gandolfi F, Ghiringhelli M, Brevini TA. Bioengineering the ovary to preserve and reestablish female fertility. Anim Reprod 2020; 16:45-51. [PMID: 33299478 PMCID: PMC7721072 DOI: 10.21451/1984-3143-ar2018-0099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 10/04/2018] [Indexed: 11/06/2022] Open
Abstract
Different bioengineering strategies can be presently adopted and have been shown to have great potential in the treatment of female infertility and ovarian dysfunction deriving from chemotherapy, congenital malformations, massive adhesions as well as aging and lifestyle. One option is transplantation of fresh or cryopreserved organs/fragments into the patient. A further possibility uses tissue engineering approaches that involve a combination of cells, biomaterials and factors that stimulate local ability to regenerate/ repair the reproductive organ. Organ transplant has shown promising results in large animal models. However, the source of the organ needs to be identified and the immunogenic effects of allografts remain still to be solved before the technology may enter the clinical practice. Decellularization/ repopulation of ovary with autologous cells or follicles could represent an interesting, still very experimental alternative. Here we summarize the recent advancements in the bioengineering strategies applied to the ovary, we present the principles for these systems and discuss the advantages of these emerging opportunities to preserve or improve female fertility.
Collapse
Affiliation(s)
- Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, Università degli Studi di Milano, Milano 20122, Italy.
| | - Matteo Ghiringhelli
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano 20122, Italy.
| | - Tiziana A.L. Brevini
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milano 20122, Italy.
| |
Collapse
|
12
|
Brevini TAL, Pennarossa G, Gandolfi F. A 3D approach to reproduction. Theriogenology 2020; 150:2-7. [PMID: 31973966 DOI: 10.1016/j.theriogenology.2020.01.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 02/07/2023]
Abstract
For over a century, 2D cell culture has been extensively used for all the different research fields. However, this in vitro system does not allow to reproduce the natural structures of the original tissue, causing several changes and, in most cases, the loss of cell-to-cell communications and cell-to-extracellular matrix interactions. Based on this, during the last years, novel 3D platforms, able to mimic the in vivo milieu, are being developed. The advantages of the use of 3D models are: the reduction of the gap between cell culture and physiological environment; imitation of the specific architecture; partially maintenance of the mechanical and biochemical cues of the original tissue. Currently, 3D systems are used in a broad range of studies, including the field of reproduction, where they have been applied to promote maturation of follicles and oocytes and embryo culture. Here, we review 2D and 3D cell culture methods, discussing advantages and limitations of these techniques. We report the fundamental mechanisms involved in cell ability to perceive and respond to mechanical cues and their role in transmitting signals to and between cells and in regulating intracellular signaling pathways. In particular, we focus on the main effectors of the Hippo pathway, Yes-associated protein (YAP) and WW domain-containing transcription regulator protein 1 (TAZ), describing their behavior and function in oocytes and embryos. Lastly, we provide an overall perspective of the most recent 3D technologies developed in the field of reproduction, describing how their use may revolutionize the understanding of cellular behavior and provide novel tools, useful in reproductive technologies and livestock production.
Collapse
Affiliation(s)
- Tiziana A L Brevini
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy.
| | - Georgia Pennarossa
- Department of Health, Animal Science and Food Safety, University of Milan, Via Celoria 10, 20133, Milan, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy University of Milan, Via Celoria 12, 20133, Milan, Italy
| |
Collapse
|
13
|
Jahanbani Y, Davaran S, Ghahremani-Nasab M, Aghebati-Maleki L, Yousefi M. Scaffold-based tissue engineering approaches in treating infertility. Life Sci 2019; 240:117066. [PMID: 31738881 DOI: 10.1016/j.lfs.2019.117066] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023]
Abstract
Tissue engineering and the use of scaffolds have shown high therapeutic potentialities about male and female infertility. Nowadays, many couples are suffering from infertility problems. There are different causes for infertility including chemotherapy (for male and female), uterine injuries, and intrauterine adhesions. Extra-cellular matrix in tissue engineering provides a supportive medium for blood or lymphatic vessels making it a suitable substrate for cell implantation and growth. Dominant successes in this branch have been in use of patient-derived primary cells, these cells loaded in scaffolds and used to generate tissue for re-implantation. However, this method has limitations, because of the invasive nature of cell collection, also the cells patient-derived may be not healthy and become the source of disease. Therefore, use of stem cells, including embryonic stem (ES) cells, bone marrow mesenchymal stem cells (BM-MSCs) and umbilical cord-derived mesenchymal stem cells (UC-MSCs) have been considered. Cell/scaffold systems have a substantial role in fertility organs or agents repair or regeneration. This review summarizes the novel scaffold-based tissue engineering approaches to treat infertility.
Collapse
Affiliation(s)
- Yalda Jahanbani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudabe Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Endocrine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
14
|
Abstract
A protocol for the encapsulation in sodium alginate of granulosa cells in primary culture and co-culture of oocyte-cumulus complexes is reported. Sodium alginate forms strong gels when jellified with barium ions, allowing the self-organization of cells into a 3D structure. This method of encapsulation is simple and cheap, allowing the culture of cells in a 3-dimensional fashion.
Collapse
|
15
|
|
16
|
Zou K, Wang J, Bi H, Zhang Y, Tian X, Tian N, Ma W, Wu J. Comparison of different in vitro differentiation conditions for murine female germline stem cells. Cell Prolif 2018; 52:e12530. [PMID: 30334302 PMCID: PMC6430485 DOI: 10.1111/cpr.12530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 08/20/2018] [Accepted: 08/24/2018] [Indexed: 12/26/2022] Open
Abstract
Objectives In vitro differentiation of oocytes from female germline stem cells (FGSCs) has exciting potential applications for reproductive medicine. Some researchers have attempted to reveal the in vitro differentiation capacity of FGSCs. However, no systematic comparative study of in vitro differentiation conditions has been performed for murine FGSCs (mFGSCs). Materials and Methods mFGSCs line was cultured under five different conditions for in vitro differentiation. RT‐PCR was performed to detect the expression of Oct4, Fragilis, Blimp1, Mvh, Scp3 and Zp3. Immunofluorescence was carried out to test the expression of Mvh, Fragilis and Zp3. Two‐photon laser‐scanning microscope was used to analyze nucleus‐plasma ratio, and the proportion of chromatin of GV oocytes differentiated from mFGSCs in vitro (IVD‐GVO), GV oocytes from in vivo (GVO) and mFGSCs. Results RT‐PCR and immunofluorescence showed that mFGSC line expressed germ cell‐specific markers, but not a meiosis‐specific marker. By evaluating five different in vitro differentiation conditions, condition 5, which included a hanging drop procedure and co‐culture of mFGSCs with granulosa cells, was shown to be optimal. mFGSCs could be successfully differentiated into germinal vesicle (GV) ‐stage oocytes under this condition. 3D observation revealed that both the nucleus‐plasma ratio and proportion of chromatin were not significantly different between IVD‐GVO and GVO. Conclusion We evaluated five in vitro differentiation conditions for mFGSCs and successfully differentiate mFGSCs into GV‐stage oocytes using a three‐step differentiation process.
Collapse
Affiliation(s)
- Kang Zou
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Wang
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Haiwei Bi
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Yabin Zhang
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Xueli Tian
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Ning Tian
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Wanyun Ma
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing, China
| | - Ji Wu
- Key Laboratory for the Genetics of Developmental & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Rajabi Z, Yazdekhasti H, Noori Mugahi SMH, Abbasi M, Kazemnejad S, Shirazi A, Majidi M, Zarnani AH. Mouse preantral follicle growth in 3D co-culture system using human menstrual blood mesenchymal stem cell. Reprod Biol 2018; 18:122-131. [PMID: 29454805 DOI: 10.1016/j.repbio.2018.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
Abstract
Follicle culture provides a condition which can help investigators to evaluate various aspects of ovarian follicle growth and development and impact of different components and supplementations as well as presumably application of follicle culture approach in fertility preservation procedures. Mesenchymal Stem Cells (MSCs), particularly those isolated from menstrual blood has the potential to be used as a tool for improvement of fertility. In the current study, a 3D co-culture system with mice preantral follicles and human Menstrual Blood Mesenchymal Stem Cells (MenSCs) using either collagen or alginate beads was designed to investigate whether this system allows better preantral follicles growth and development. Results showed that MenSCs increase the indices of follicular growth including survival rate, diameter, and antrum formation as well as the rate of in vitro maturation (IVM) in both collagen and alginates beads. Although statistically not significant, alginate was found to be superior in terms of supporting survival rate and antrum formation. Hormone assay demonstrated that the amount of secreted 17 β-estradiol and progesterone in both 3D systems increased dramatically after 12 days, with the highest levels in system employing MenSCs. Data also demonstrated that relative expression of studied genes increased for Bmp15 and Gdf9 and decreased for Mater when follicles were cultured in the presence of MenSCs. Collectively, results of the present study showed that MenSCs could improve indices of follicular growth and maturation in vitro. Further studies are needed before a clinical application of MenSCs-induced IVM is considered.
Collapse
Affiliation(s)
- Zahra Rajabi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Hossein Yazdekhasti
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Cell Biology, Center for Research in Contraceptive and Reproductive Health, University of Virginia, Charlottesville, VA 22908, USA
| | | | - Mehdi Abbasi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Somaieh Kazemnejad
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Masoumeh Majidi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir-Hassan Zarnani
- Reproductive Immunology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Natural and Synthetic Biodegradable Polymers: Different Scaffolds for Cell Expansion and Tissue Formation. Int J Artif Organs 2018. [DOI: 10.5301/ijao.5000307] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of tissue produced by implanted cells is influenced greatly by the scaffold onto which they are seeded. In the long term it is often preferable to use a biodegradable material scaffold so that all the implanted materials will disappear, leaving behind only the generated tissue. Research in this area has identified several natural biodegradable materials. Among them, hydrogels are receiving increasing attention due to their ability to retain a great quantity of water, their good biocompatibility, their low interfacial tension, and the minimal mechanical and frictional irritation that they cause. Biocompatibility is not an intrinsic property of materials; rather it depends on the biological environment and the tolerability that exists with respect to specific polymer-tissue interactions. The most often utilized biodegradable synthetic polymers for 3D scaffolds in tissue engineering are saturated poly-a-hydroxy esters, including poly(lactic acid) (PLA) and poly(glycolic acid) (PGA), as well as poly(lactic-co-lycolide) (PLGA) copolymers. Hard materials provide compressive and torsional strength; hydrogels and other soft composites more effectively promote cell expansion and tissue formation. This review focuses on the future potential for understanding the characteristics of the biomaterials considered evaluated for clinical use in order to repair or to replace a sizable defect by only harvesting a small tissue sample.
Collapse
|
19
|
Asaduzzman M, Cui X, Zhang H, Young F. Three Dimensional <i>In Vitro</i> Culture of Murine Secondary Follicles in a Defined Synthetic Matrix. ACTA ACUST UNITED AC 2018. [DOI: 10.4236/jbnb.2018.93014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Kuo CY, Baker H, Fries MH, Yoo JJ, Kim PC, Fisher JP. Bioengineering Strategies to Treat Female Infertility. TISSUE ENGINEERING. PART B, REVIEWS 2017; 23:294-306. [PMID: 28034338 PMCID: PMC5911692 DOI: 10.1089/ten.teb.2016.0385] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 11/22/2016] [Indexed: 12/21/2022]
Abstract
Bioengineering strategies have demonstrated enormous potential to treat female infertility as a result of chemotherapy, uterine injuries, fallopian tube occlusion, massive intrauterine adhesions, congenital uterine malformations, and hysterectomy. These strategies can be classified into two broad categories as follows: (i) Transplantation of fresh or cryopreserved organs into the host and (ii) tissue engineering approaches that utilize a combination of cells, growth factors, and biomaterials that leverages the body's inherent ability to regenerate/repair reproductive organs. While whole organ transplant has demonstrated success, the source of the organ and the immunogenic effects of allografts remain challenging. Even though tissue engineering strategies can avoid these issues, their feasibilities of creating whole organ constructs are yet to be demonstrated. In this article we summarize the recent advancements in the applications of bioengineering to treat female infertility.
Collapse
Affiliation(s)
- Che-Ying Kuo
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
| | - Hannah Baker
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland
| | - Melissa H. Fries
- Obstetrics and Gynecology, MedStar Washington Hospital Center, Washington, District of Columbia
| | - James J. Yoo
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Peter C.W. Kim
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
- School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia
| | - John P. Fisher
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, Maryland
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Health System, Washington, District of Columbia
| |
Collapse
|
21
|
Alginate: A Versatile Biomaterial to Encapsulate Isolated Ovarian Follicles. Ann Biomed Eng 2017; 45:1633-1649. [DOI: 10.1007/s10439-017-1816-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 02/22/2017] [Indexed: 12/19/2022]
|
22
|
Adissu HA, Asem EK, Lelievre SA. Three-Dimensional Cell Culture to Model Epithelia in the Female Reproductive System. Reprod Sci 2016; 14:11-9. [DOI: 10.1177/1933719107310872] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Hibret A. Adissu
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - Elikplimi K. Asem
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana
| | - Sophie A. Lelievre
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana,
| |
Collapse
|
23
|
Ding X, Liu G, Xu B, Wu C, Hui N, Ni X, Wang J, Du M, Teng X, Wu J. Human GV oocytes generated by mitotically active germ cells obtained from follicular aspirates. Sci Rep 2016; 6:28218. [PMID: 27357640 PMCID: PMC4928061 DOI: 10.1038/srep28218] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 06/01/2016] [Indexed: 01/26/2023] Open
Abstract
Human female germline stem cells (FGSCs) have opened new opportunities for understanding human oogenesis, delaying menopause, treating infertility, and providing a new strategy for preserving fertility. However, the shortage of adult human ovaries tissues available impedes their future investigations and clinical applications. Here, we have established FGSC lines from scarce ovarian cortical tissues that exist in follicular aspirates (faFGSCs), which are produced and discarded in in vitro fertilization centers worldwide. The faFGSCs have characteristics of germline stem cells involved in the gene expression profile, growth characteristics, and a normal karyotype consistent with that of FGSCs obtained from ovarian cortexes surgically removed from patients (srFGSCs). Furthermore, faFGSCs have developmental potentials including spontaneous differentiation into oocytes under feeder-free conditions, communicating with granulosa cells by gap junctions and paracrine factors, entering meiosis after RA induction, as well as forming follicles after injection into human ovarian cortical tissues xenografted into adult immunodeficient female mice. Lastly, we developed a strategy guiding FGSCs differentiated into germinal vesicle (GV) stage oocytes in vitro and revealed their developmental mechanisms. Our study not only provides a new approach to obtain human FGSCs for medical treatment, but also opens several avenues to investigate human oogenesis in vitro.
Collapse
Affiliation(s)
- Xinbao Ding
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guishu Liu
- The First People's Hospital of Chenzhou, Chenzhou 42300, Hunan, China
| | - Bo Xu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Changqing Wu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ning Hui
- Changhai Hospital of Second Military Medical University, Shanghai 200433, China
| | - Xin Ni
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, China
| | - Jian Wang
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meirong Du
- Laboratory for Reproductive Immunology, Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, China
| | - Xiaoming Teng
- Center of Reproductive medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Ji Wu
- Renji Hospital Shanghai Jiaotong University School of Medicine, Key Laboratory for the Genetics of Developmental &Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.,Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.,Shanghai Key Laboratory of Reproductive Medicine, Shanghai 200025, China
| |
Collapse
|
24
|
Odermatt A, Strajhar P, Engeli RT. Disruption of steroidogenesis: Cell models for mechanistic investigations and as screening tools. J Steroid Biochem Mol Biol 2016; 158:9-21. [PMID: 26807866 DOI: 10.1016/j.jsbmb.2016.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/31/2015] [Accepted: 01/20/2016] [Indexed: 02/03/2023]
Abstract
In the modern world, humans are exposed during their whole life to a large number of synthetic chemicals. Some of these chemicals have the potential to disrupt endocrine functions and contribute to the development and/or progression of major diseases. Every year approximately 1000 novel chemicals, used in industrial production, agriculture, consumer products or as pharmaceuticals, are reaching the market, often with limited safety assessment regarding potential endocrine activities. Steroids are essential endocrine hormones, and the importance of the steroidogenesis pathway as a target for endocrine disrupting chemicals (EDCs) has been recognized by leading scientists and authorities. Cell lines have a prominent role in the initial stages of toxicity assessment, i.e. for mechanistic investigations and for the medium to high throughput analysis of chemicals for potential steroidogenesis disrupting activities. Nevertheless, the users have to be aware of the limitations of the existing cell models in order to apply them properly, and there is a great demand for improved cell-based testing systems and protocols. This review intends to provide an overview of the available cell lines for studying effects of chemicals on gonadal and adrenal steroidogenesis, their use and limitations, as well as the need for future improvements of cell-based testing systems and protocols.
Collapse
Affiliation(s)
- Alex Odermatt
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Petra Strajhar
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Roger T Engeli
- Swiss Center for Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, Pharmacenter, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| |
Collapse
|
25
|
Woodruff TK. Oncofertility: a grand collaboration between reproductive medicine and oncology. Reproduction 2015; 150:S1-10. [PMID: 26130814 PMCID: PMC4710491 DOI: 10.1530/rep-15-0163] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/29/2015] [Indexed: 01/01/2023]
Abstract
In 2007, I was asked by the University of Calgary to participate in a symposium called 'Pushing the Boundaries--Advances that Will Change the World in 20 Years'. My topic was oncofertility, a word I had just coined to describe the intersection of two disciplines--oncology and fertility--and I was thrilled to share my passion for this new field and help young women with cancer protect their future reproductive health. Fertility preservation in the cancer setting lacked a concerted effort to bridge the disciplines in an organized manner. In early 2015, I was delighted to deliver a presentation for the Society for Reproduction and Fertility titled 'Sex in Three Cities', where I gave an update on the oncofertility movement, a remarkable cross-disciplinary, global collaboration created to address the fertility preservation needs of young cancer patients. During my tour of the UK, I was impressed by the interest among the society and its members to engage colleagues outside the discipline as well as the public in a dialogue about cutting-edge reproductive science. In this invited review, I will describe the work of the Oncofertility Consortium to provide fertility preservation options in the cancer setting and accelerate the acceptance of this critical topic on a global scale. I hope that one day this word and field it created will change the world for women who had been left out of the equation for far too long.
Collapse
Affiliation(s)
- Teresa K Woodruff
- The Thomas J Watkins Professor of Obstetrics and GynecologyDepartment of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Lurie 10-250, Chicago, Illinois 60611, USA
| |
Collapse
|
26
|
Brito IR, Lima IMT, Xu M, Shea LD, Woodruff TK, Figueiredo JR. Three-dimensional systems for in vitro follicular culture: overview of alginate-based matrices. Reprod Fertil Dev 2014; 26:915-30. [PMID: 23866836 PMCID: PMC11287383 DOI: 10.1071/rd12401] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/12/2013] [Indexed: 08/01/2024] Open
Abstract
The in vitro culture of ovarian follicles has provided critical insight into the biology of the follicle and its enclosed oocyte and the physical interaction and communication between the theca and granulosa cells and the oocyte that is necessary to produce meiotically competent oocytes. Various two-dimensional (2D) and three-dimensional (3D) culture systems have been developed to evaluate the effect of growth factors, hormones, extracellular matrix components and culture conditions on follicle development and oocyte growth and maturation. Among these culture systems, 3D systems make it possible to maintain follicle structure and support communication between the various cell compartments within the follicle. In this review article, we will discuss the three main approaches to ovarian follicle culture: 2D attachment systems, 3D floating systems and 3D encapsulated systems. We will specifically emphasise the development of and advances in alginate-based encapsulated systems for in vitro follicle culture.
Collapse
Affiliation(s)
- Ivina R. Brito
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE 60740-930, Brazil
| | | | - Min Xu
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Lonnie D. Shea
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Teresa K. Woodruff
- Division of Reproductive Biology and Clinical Research, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - José R. Figueiredo
- Faculty of Veterinary, Laboratory of Manipulation of Oocyte and Preantral Follicles (LAMOFOPA), PPGCV, State University of Ceará, Fortaleza, CE 60740-930, Brazil
| |
Collapse
|
27
|
Abstract
Chemo- and radiation therapies used to treat cancer can have the unintended effect of making patients infertile. Clinically established fertility preservation methods, such as egg and embryo cryopreservation, are not applicable to all patients, which has motivated the development of strategies that involve ovarian tissue removal and cryopreservation before the first sterilizing treatment. To restore fertility at a later date, the early-stage follicles present in the tissue must be matured to produce functional oocytes, a process that is not possible using existing cell culture technologies. This review describes the application of tissue engineering principles to promote ovarian follicle maturation and produce mature oocytes through either in vitro culture or transplantation. The design principles for these engineered systems are presented, along with identification of emerging opportunities in reproductive biology.
Collapse
|
28
|
Chung JHY, Naficy S, Yue Z, Kapsa R, Quigley A, Moulton SE, Wallace GG. Bio-ink properties and printability for extrusion printing living cells. Biomater Sci 2013; 1:763-773. [DOI: 10.1039/c3bm00012e] [Citation(s) in RCA: 389] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Cells with stem cell characteristics in somatic compartments of the ovary. BIOMED RESEARCH INTERNATIONAL 2012; 2013:310859. [PMID: 23484108 PMCID: PMC3591217 DOI: 10.1155/2013/310859] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/26/2012] [Accepted: 11/27/2012] [Indexed: 11/28/2022]
Abstract
Antral follicular growth in the ovary is characterized by rapid expansion of granulosa cells accompanied by a rising complexity of their functionality. Within two weeks the number of human granulosa cells increases from less than 500,000 to more than 50 millions cells per follicle and differentiates into groups of cells with a variety of specialized functions involved in steroidogenesis, nursing the oocyte, and forming a functional syncitium. Both the rapid proliferation and different specialized functions of the granulosa cells can only be explained through the involvement of stem cells. However, luteinizing granulosa cells were believed to be terminally differentiated cells. Only recently, stem and progenitor cells with FSH-receptor activity were identified in populations of luteinizing granulosa cells obtained during oocyte collected for assisted reproduction. In the presence of the leukaemia-inhibiting factor (LIF), it was possible to culture a subpopulation of the luteinizing granulosa cells over prolonged time periods. Furthermore, when embedded in a matrix consisting of collagen type I, these cells continued to express the FSH receptor over prolonged time periods, developed globular formations that surrogated as follicle-like structures, providing a promising tool for reproductive biology.
Collapse
|
30
|
Desai N, Abdelhafez F, Calabro A, Falcone T. Three dimensional culture of fresh and vitrified mouse pre-antral follicles in a hyaluronan-based hydrogel: a preliminary investigation of a novel biomaterial for in vitro follicle maturation. Reprod Biol Endocrinol 2012; 10:29. [PMID: 22513305 PMCID: PMC3474165 DOI: 10.1186/1477-7827-10-29] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/18/2012] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Folliculogenesis within the ovary requires interaction between somatic cell components and the oocyte. Maintenance of 3-dimensional (3-D) architecture and granulosa-oocyte interaction may be critical for successful in vitro maturation of follicles. Testing of novel biomaterials for the 3-D culture of follicles may ultimately lead to a culture model that can support the longer in vitro culture intervals needed for in vitro maturation of human oocytes from ovarian tissue biopsies. METHODS A novel tyramine-based hyaluronan (HA) hydrogel was tested for its biocompatibility with ovarian follicles. The HA was prepared at concentrations from 2 to 5 mg/ml. HA hydrogel was also formulated and tested with matrix proteins (ECM). Enzymatically isolated pre-antral follicles from the ovaries of 10-12 day SJL pups were divided amongst control (CT) and HA treatments. The growth of both fresh and vitrified follicles was assessed after encapsulation in the hydrogel. The basal culture medium was MEM alpha supplemented with FSH, LH, ITS and 5% FBS. Maturation was triggered by addition of hCG and EGF after in vitro culture (IVC). Outcome parameters monitored were follicle morphology, survival after IVC, antrum formation, GVBD and MII formation. Differences between treatments were analyzed. RESULTS HA and ECM-HA encapsulated follicles looked healthy and maintained their 3-D architecture during IVC. In control cultures, the follicles flattened and granulosa:oocyte connections appeared fragile. Estradiol secretion per follicle was significantly higher by Day 12 in ECM-HA compared to HA or CT (4119, 703 and 1080 pg/ml, respectively). HA and ECM-HA cultured follicles had similar survival rates (62% and 54%, respectively), percent GV breakdown (96-97%), MII formation (47-48%) and oocyte diameters at the end of IVC. Control cultures differed significantly in percent GVBD (85%) and MII formation (67%) . Vitrified-warmed follicles encapsulated in HA had an oocyte maturation rate to MII of 54% as compared to 57% in non-embedded follicles. CONCLUSIONS Initial testing of this new and unique HA-based hydrogel was quite promising. The ease of follicle encapsulation in HA, its optical transparency and ability to be molded combined with its support of follicle growth, estradiol secretion and resumption of meiosis make this HA-hydrogel particularly attractive as model for 3-D ovarian follicle culture.
Collapse
Affiliation(s)
- Nina Desai
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| | - Faten Abdelhafez
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Tommaso Falcone
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women’s Health Institute, Cleveland Clinic Foundation, Beachwood, OH, USA
| |
Collapse
|
31
|
Chemoselective cross-linking of alginate with thiol-terminated peptides for tissue engineering applications. Carbohydr Polym 2012. [DOI: 10.1016/j.carbpol.2012.01.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Kamimura W, Hattori R, Koyama H, Miyata T, Takato T. A Calcium-Cross-Linked Hydrogel Based on Alginate-Modified Atelocollagen Functions as a Scaffold Material. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 23:609-28. [DOI: 10.1163/092050611x555678] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Wataru Kamimura
- a Department of Vascular Regeneration, Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Biomaterial System Group, Biomaterials Center, National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan
| | - Rieko Hattori
- b Department of Sensory & Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroyuki Koyama
- c Department of Vascular Regeneration, Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Tetsuro Miyata
- d Division of Vascular Surgery, Department of Surgery, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tsuyoshi Takato
- e Department of Vascular Regeneration, Division of Tissue Engineering, The University of Tokyo Hospital, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan; Department of Sensory & Motor System Medicine, Graduate School of Medicine, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
33
|
|
34
|
Shikanov A, Zhang Z, Xu M, Smith RM, Rajan A, Woodruff TK, Shea LD. Fibrin encapsulation and vascular endothelial growth factor delivery promotes ovarian graft survival in mice. Tissue Eng Part A 2011; 17:3095-104. [PMID: 21740332 DOI: 10.1089/ten.tea.2011.0204] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ovarian cryopreservation before chemotherapy and autotransplantation post-treatment can restore fertility to women with premature ovarian failure. Although the majority of primordial follicles survive the cryopreservation cycle, the follicular pool is reduced after transplantation due to ischemic death. Therefore, we engineered a biomaterial-based system to promote angiogenesis in a mouse model of ovarian transplantation. To mimic the clinical situation of sterility, a bilateral ovariectomy was performed 2 weeks before transplantation, during which time serum levels of follicular stimulating hormone rose to menopausal levels. Before transplantation, vitrified/thawed ovarian tissue from 12-day-old C57Bl/6J pups was encapsulated in fibrin modified with heparin-binding peptide (HBP), heparin, and loaded with 0.5 μg vascular endothelial growth factor (VEGF). The group transplanted with fibrin-HBP-VEGF had twice as many surviving primordial follicles and an increased number of blood vessels relative to the no biomaterial control. Transplanted tissue was viable and supported natural conception that led to live and healthy offspring. The timeline of live births with VEGF delivery suggested that primary follicles survived transplantation, and provided the gametes for the first litter. Thus, VEGF delivery from fibrin supported integration of the transplant with the host, promoted angiogenesis, and enhanced engraftment and function of the tissue.
Collapse
Affiliation(s)
- Ariella Shikanov
- Institute of Bionanotechnology in Medicine (IBNAM), Northwestern University, Chicago, Illinois, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Desai N, Alex A, AbdelHafez F, Calabro A, Goldfarb J, Fleischman A, Falcone T. Three-dimensional in vitro follicle growth: overview of culture models, biomaterials, design parameters and future directions. Reprod Biol Endocrinol 2010; 8:119. [PMID: 20946661 PMCID: PMC2967553 DOI: 10.1186/1477-7827-8-119] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/14/2010] [Indexed: 01/15/2023] Open
Abstract
In vitro ovarian follicle culture is a new frontier in assisted reproductive technology with tremendous potential, especially for fertility preservation. Folliculogenesis within the ovary is a complex process requiring interaction between somatic cell components and the oocyte. Conventional two-dimensional culture on tissue culture substrata impedes spherical growth and preservation of the spatial arrangements between oocyte and surrounding granulosa cells. Granulosa cell attachment and migration can leave the oocyte naked and unable to complete the maturation process. Recognition of the importance of spatial arrangements between cells has spurred research in to three-dimensional culture system. Such systems may be vital when dealing with human primordial follicles that may require as long as three months in culture. In the present work we review pertinent aspects of in vitro follicle maturation, with an emphasis on tissue-engineering solutions for maintaining the follicular unit during the culture interval. We focus primarily on presenting the various 3-dimensional culture systems that have been applied for in vitro maturation of follicle:oocyte complexes. We also try to present an overview of outcomes with various biomaterials and animal models and also the limitations of the existing systems.
Collapse
Affiliation(s)
- Nina Desai
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Anastasia Alex
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Faten AbdelHafez
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Anthony Calabro
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - James Goldfarb
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Aaron Fleischman
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| | - Tommaso Falcone
- Cleveland Clinic Fertility Center, Department of OB/GYN and Women's Health Institute, Cleveland Clinic Foundation, Cleveland, Ohio, USA
| |
Collapse
|
36
|
Woodruff TK, Shea LD. A new hypothesis regarding ovarian follicle development: ovarian rigidity as a regulator of selection and health. J Assist Reprod Genet 2010; 28:3-6. [PMID: 20872066 DOI: 10.1007/s10815-010-9478-4] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2010] [Accepted: 08/29/2010] [Indexed: 11/30/2022] Open
Abstract
The mammalian ovary consists of a large number of dormant immature follicles, each containing a single oocyte and located on the periphery of the ovary. With each reproductive cycle, a group of immature follicles is sequentially activated to resume growth, and pituitary gonadotropins and ovarian steroid and peptide hormones cooperate to ensure further growth and development. A single dominant follicle eventually emerges, ovulates, and then involutes to allow the selection of the next group of follicles. While hormones are known to control the later stages of folliculogenesis, little is known about the pathways that activate individual immature primordial follicles in the dormant follicle pool. We advance a new hypothesis: that follicle activation is dependent on the physical environment of the ovary in addition to well-established hormonal cues. This novel perspective on ovarian function may provide new avenues to study follicle dynamics and identify therapeutic targets for ovarian dysfunction.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Center for Reproductive Research, Northwestern University, Evanston, IL 60208, USA,
| | | |
Collapse
|
37
|
Smitz J, Dolmans MM, Donnez J, Fortune JE, Hovatta O, Jewgenow K, Picton HM, Plancha C, Shea LD, Stouffer RL, Telfer EE, Woodruff TK, Zelinski MB. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update 2010; 16:395-414. [PMID: 20124287 PMCID: PMC2880913 DOI: 10.1093/humupd/dmp056] [Citation(s) in RCA: 215] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 11/12/2009] [Accepted: 12/10/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Female cancer patients are offered 'banking' of gametes before starting fertility-threatening cancer therapy. Transplants of fresh and frozen ovarian tissue between healthy fertile and infertile women have demonstrated the utility of the tissue banked for restoration of endocrine and fertility function. Additional methods, like follicle culture and isolated follicle transplantation, are in development. METHODS Specialist reproductive medicine scientists and clinicians with complementary expertise in ovarian tissue culture and transplantation presented relevant published literature in their field of expertise and also unpublished promising data for discussion. As the major aims were to identify the current gaps prohibiting advancement, to share technical experience and to orient new research, contributors were allowed to provide their opinioned expert views on future research. RESULTS Normal healthy children have been born in cancer survivors after orthotopic transplantation of their cryopreserved ovarian tissue. Longevity of the graft might be optimized by using new vitrification techniques and by promoting rapid revascularization of the graft. For the in vitro culture of follicles, a successive battery of culture methods including the use of defined media, growth factors and three-dimensional extracellular matrix support might overcome growth arrest of the follicles. Molecular methods and immunoassay can evaluate stage of maturation and guide adequate differentiation. Large animals, including non-human primates, are essential working models. CONCLUSIONS Experiments on ovarian tissue from non-human primate models and from consenting fertile and infertile patients benefit from a multidisciplinary approach. The new discipline of oncofertility requires professionalization, multidisciplinarity and mobilization of funding for basic and translational research.
Collapse
Affiliation(s)
- J Smitz
- Follicle Biology Laboratory, Center for Reproductive Medicine, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Smith RM, Woodruff TK, Shea LD. Designing follicle-environment interactions with biomaterials. Cancer Treat Res 2010; 156:11-24. [PMID: 20811822 DOI: 10.1007/978-1-4419-6518-9_2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Rachel M Smith
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
| | | | | |
Collapse
|
39
|
Vanhoutte L, Nogueira D, Dumortier F, De Sutter P. Assessment of a new in vitro maturation system for mouse and human cumulus-enclosed oocytes: three-dimensional prematuration culture in the presence of a phosphodiesterase 3-inhibitor. Hum Reprod 2009; 24:1946-59. [DOI: 10.1093/humrep/dep104] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
40
|
Abstract
Regulation of ovarian follicle development depends on endocrine- and paracrine-acting hormones, the 3-dimensional architecture of the follicle, and the physical rigidity of the surrounding tissue. These 3 forces are integrated throughout the life cycle of the follicle to ensure appropriate hormone secretion, differentiation of the somatic cells, and maturation of the oocyte. The process of in-follicle maturation provides a new tool for understanding ovarian follicle development under the influence of these factors.
Collapse
Affiliation(s)
- Teresa K Woodruff
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | |
Collapse
|
41
|
Lerch TF, Xu M, Jardetzky TS, Mayo KE, Radhakrishnan I, Kazer R, Shea LD, Woodruff TK. The structures that underlie normal reproductive function. Mol Cell Endocrinol 2007; 267:1-5. [PMID: 17140726 PMCID: PMC1919436 DOI: 10.1016/j.mce.2006.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Accepted: 10/10/2006] [Indexed: 11/18/2022]
Abstract
The mechanisms and physiology of reproductive function have fascinated scientists throughout time. Recent cellular and molecular level structural studies have provided unprecedented insights into reproductive systems and signaling networks. This 'cutting edge' editorial provides a recent example in each of these areas, namely, the anatomical integrity of the follicle, the molecular structure of activin with its binding partners and the molecular regulation of inhibin. These three examples of structure informing function help explain reproductive health and may provide solutions to reproductive disease.
Collapse
Affiliation(s)
- Thomas F. Lerch
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University Medical School, Chicago, IL USA 60611
| | - Min Xu
- Department of Obstetrics and Gynecology, Northwestern University Medical School, Chicago, IL USA 60611
| | - Theodore S. Jardetzky
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University Medical School, Chicago, IL USA 60611
| | - Kelly E. Mayo
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University Medical School, Chicago, IL USA 60611
| | - Ishwar Radhakrishnan
- Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University Medical School, Chicago, IL USA 60611
| | - Ralph Kazer
- Department of Obstetrics and Gynecology, Northwestern University Medical School, Chicago, IL USA 60611
| | - Lonnie D. Shea
- Department of Chemical Engineering, Northwestern University Medical School, Chicago, IL USA 60611
| | - Teresa K. Woodruff
- Department of Obstetrics and Gynecology, Northwestern University Medical School, Chicago, IL USA 60611
| |
Collapse
|
42
|
Heise M, Koepsel R, Russell AJ, McGee EA. Calcium alginate microencapsulation of ovarian follicles impacts FSH delivery and follicle morphology. Reprod Biol Endocrinol 2005; 3:47. [PMID: 16162282 PMCID: PMC1262772 DOI: 10.1186/1477-7827-3-47] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 09/14/2005] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND We have previously shown that suspension culture prevents follicle flattening and maintains three-dimensional follicle architecture better than culture on flat plates. However, many of the follicles cultured in suspension do eventually rupture, as basement membrane integrity is lost and the three-dimensional structure of the follicle is altered. Therefore, the objective of this study is to support three-dimensional follicle architecture during in vitro growth of ovarian follicles through encapsulation in calcium alginate, while maintaining responsiveness to FSH stimulation. METHODS Preantral follicles (150-160 micrometers in diameter) were isolated from the ovaries of juvenile rats and grown in culture tubes or encapsulated in calcium alginate and grown in culture tubes. Previous studies revealed that follicles maintained structural integrity but did not grow as well when encapsulated in calcium alginate. In these studies, we evaluated the effect of calcium alginate on FSH-stimulated follicle growth, survival, and morphology in suspension culture. Follicles were grown under 5 culture conditions: 1) not encapsulated; with FSH in the medium, 2) encapsulated in the absence of FSH, grown in medium without FSH, 3) encapsulated with calcium alginate containing FSH but grown in medium without FSH, 4) encapsulated without FSH but grown in medium containing FSH and 5) encapsulated with calcium alginate containing FSH and in medium containing FSH. To assess growth rates, follicles were cultured for 72 hours and analyzed for follicle size increase and DNA content. Survival analysis for encapsulated and unencapsulated follicles was performed by constructing a Kaplan Meier survival curve of daily observations of intact follicle survival. Three-dimensional architecture was assessed histologically and by analysis of the pattern of connexin 43 expression in the cultured follicles. RESULTS In the absence of FSH, follicle diameter increased by only 6.4%. When FSH was included in the alginate bead alone or the media alone, the follicle diameter increased by 13.5% and 19.9% respectively. This was greater than follicles cultured in the absence of FSH (p < 0.05), but less than that of the FSH-treated unencapsulated follicles (p < 0.05). However, when follicles were cultured with FSH included in both the media and the bead, a 32.6% increase in follicle diameter was observed, statistically no different than the growth rate of the unencapsulated follicles grown with FSH. CONCLUSION Microencapsulation supports three-dimensional follicle growth, but may limit access to hormones in the medium resulting in altered development compared to unencapsulated follicles. Inclusion of FSH in the alginate bead restores the follicle growth response to FSH, while also providing a scaffold of support for three-dimensional growth. The application of tissue engineering principles to the problems of follicle culture in vitro may provide advances applicable to fertility preservation in women and endangered species.
Collapse
Affiliation(s)
- Matthew Heise
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Dr. Suite 200, Pittsburgh, PA 15219, USA
| | - Richard Koepsel
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Dr. Suite 200, Pittsburgh, PA 15219, USA
| | - Alan J Russell
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Dr. Suite 200, Pittsburgh, PA 15219, USA
| | - Elizabeth A McGee
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, 100 Technology Dr. Suite 200, Pittsburgh, PA 15219, USA
- Magee-Womens Research Institute, 204 Craft Ave, Pittsburgh PA, 15213, USA
- Department of Obstetrics, Gynecology and Reproductive Medicine, University of Pittsburgh, Pittsburgh PA 15213, USA
| |
Collapse
|
43
|
Kreeger PK, Deck JW, Woodruff TK, Shea LD. The in vitro regulation of ovarian follicle development using alginate-extracellular matrix gels. Biomaterials 2005; 27:714-23. [PMID: 16076485 PMCID: PMC2648392 DOI: 10.1016/j.biomaterials.2005.06.016] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 06/23/2005] [Indexed: 01/15/2023]
Abstract
The extracellular matrix (ECM) provides a three-dimensional structure that promotes and regulates cell adhesion and provides signals that direct the cellular processes leading to tissue development. In this report, synthetic matrices that present defined ECM components were employed to investigate these signaling effects on tissue formation using ovarian follicle maturation as a model system. In vitro systems for follicle culture are being developed to preserve fertility for women, and cultures were performed to test the hypothesis that the ECM regulates follicle maturation in a manner that is dependent on both the ECM identity and the stage of follicle development. Immature mouse follicles were cultured within alginate-based matrices that were modified with specific ECM components (e.g., laminin) or RGD peptides. The matrix maintains the in vivo like morphology of the follicle and provides an environment that supports follicle development. The ECM components signal the somatic cells of the follicle, affecting their growth and differentiation, and unexpectedly also affect the meiotic competence of the oocyte. These effects depend upon both the identity of the ECM components and the initial stage of the follicle, indicating that the ECM is a dynamic regulator of follicle development. The development of synthetic matrices that promote follicle maturation to produce meiotically competent oocytes may provide a mechanism to preserve fertility, or more generally, provide design principles for scaffold-based approaches to tissue engineering.
Collapse
Affiliation(s)
- Pamela K. Kreeger
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Tech E136, Evanston, IL 60208, USA
| | - Jason W. Deck
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Teresa K. Woodruff
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208, USA
- Center for Reproductive Research, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd, Tech E136, Evanston, IL 60208, USA
- Center for Reproductive Research, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. Tel.: 847 491 7043; fax: 847 491 3728. E-mail address: (L.D. Shea)
| |
Collapse
|
44
|
Kreeger PK, Fernandes NN, Woodruff TK, Shea LD. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod 2005; 73:942-50. [PMID: 15987824 PMCID: PMC2662519 DOI: 10.1095/biolreprod.105.042390] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The developmental requirements of ovarian follicles are dependent on the maturation stage of the follicle; in particular, elegant studies with genetic models have indicated that FSH is required for antral, but not preantral, follicle growth and maturation. To elucidate further the role of FSH and other regulatory molecules in preantral follicle development, in vitro culture systems are needed. We employed a biomaterials-based approach to follicle culture, in which follicles were encapsulated within matrices that were tailored to the specific developmental needs of the follicle. This three-dimensional system was used to examine the impact of increasing doses of FSH on follicle development for two-layered secondary (100-130 microm; two layers of granulosa cells surrounding the oocyte) and multilayered secondary (150-180 microm, several layers of granulosa cells surrounding the oocyte) follicles isolated from mice. Two-layered secondary follicles were FSH responsive when cultured in alginate-collagen I matrices, exhibiting FSH dose-dependent increases in follicle growth, lactate production, and steroid secretion. Multilayered secondary follicles were FSH dependent, with follicle survival, growth, steroid secretion, metabolism, and oocyte maturation all regulated by FSH. However, doses greater than 25 mIU/ml of FSH negatively impacted multilayered secondary follicle development (reduced follicle survival). The present results indicate that the hormonal and environmental needs of the follicular complex change during the maturation process. The culture system can be adapted to each stage of development, which will be especially critical for translation to human follicles that have a longer developmental period.
Collapse
Affiliation(s)
- Pamela K. Kreeger
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208
| | - Nisha N. Fernandes
- Center for Reproductive Research, Northwestern University, Evanston, Illinois 60208
| | - Teresa K. Woodruff
- Center for Reproductive Research, Northwestern University, Evanston, Illinois 60208
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208
- Department of Medicine, Northwestern University, Chicago, Illinois 60611
| | - Lonnie D. Shea
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208
- Center for Reproductive Research, Northwestern University, Evanston, Illinois 60208
- Correspondence: Lonnie D. Shea, Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Rd., Tech E136, Evanston, IL 60208. FAX: 847 491 3728; e-mail:
| |
Collapse
|
45
|
Boontheekul T, Kong HJ, Mooney DJ. Controlling alginate gel degradation utilizing partial oxidation and bimodal molecular weight distribution. Biomaterials 2005; 26:2455-65. [PMID: 15585248 DOI: 10.1016/j.biomaterials.2004.06.044] [Citation(s) in RCA: 427] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 06/25/2004] [Indexed: 11/29/2022]
Abstract
Degradability is often a critical property of materials utilized in tissue engineering. Although alginate, a naturally derived polysaccharide, is an attractive material due to its biocompatibility and ability to form hydrogels, its slow and uncontrollable degradation can be an undesirable feature. In this study, we characterized gels formed using a combination of partial oxidation of polymer chains and a bimodal molecular weight distribution of polymer. Specifically, alginates were partially oxidized to a theoretical extent of 1% with sodium periodate, which created acetal groups susceptible to hydrolysis. The ratio of low MW to high MW alginates used to form gels was also varied, while maintaining the gel forming ability of the polymer. The rate of degradation was found to be controlled by both the oxidation and the ratio of high to low MW alginates, as monitored by the reduction of mechanical properties and corresponding number of crosslinks, dry weight loss, and molecular weight decrease. It was subsequently examined whether these modifications would lead to reduced biocompatibility by culturing C2C12 myoblast on these gels. Myoblasts adhered, proliferated, and differentiated on the modified gels at a comparable rate as those cultured on the unmodified gels. Altogether, this data indicates these hydrogels exhibit tunable degradation rates and provide a powerful material system for tissue engineering.
Collapse
Affiliation(s)
- Tanyarut Boontheekul
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
46
|
Combelles CMH, Fissore RA, Albertini DF, Racowsky C. In vitro maturation of human oocytes and cumulus cells using a co-culture three-dimensional collagen gel system. Hum Reprod 2005; 20:1349-58. [PMID: 15695316 DOI: 10.1093/humrep/deh750] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Deficiencies remain in the ability of in vitro-matured human oocytes to acquire full developmental competence and give rise to a healthy pregnancy. A clear deficiency of current systems utilizing human oocytes has been the absence of cumulus cells. In the present study, a three-dimensional (3D) co-culture system exploiting an extracellular matrix was developed and compared to conventional methods for its ability to support maturation of human oocytes. METHODS AND RESULTS Cumulus cells were embedded into a 3D collagen gel matrix with individual oocytes added to each gel. Oocytes from the same patient cultured in the gel matrix matured to metaphase II at rates similar to those of cumulus-free oocytes cultured in individual microdrops. Following maturation of oocytes and fixation of intact gels, chromatin and cytoskeletal elements were assessed in oocytes and cumulus cells. The activities of the key cell cycle kinases, maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), were compared in oocytes matured under the two culture conditions. Compared with denuded oocytes, co-cultured oocytes exhibited increased MAPK activity, but no difference in MPF levels. CONCLUSIONS This work characterizes a novel and efficacious culture system that takes advantage of the unique properties of the extracellular matrix, a 3D microenvironment, and the presence of cumulus cells for maturing human oocytes in vitro.
Collapse
Affiliation(s)
- Catherine M H Combelles
- Brigham and Women's Hospital, Harvard Medical School, Department of Obstetrics and Gynecology, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
47
|
Vigo D, Villani S, Faustini M, Accorsi PA, Galeati G, Spinaci M, Munari E, Russo V, Asti A, Conte U, Torre ML. Follicle-Like Model by Granulosa Cell Encapsulation in a Barium Alginate–Protamine Membrane. ACTA ACUST UNITED AC 2005; 11:709-14. [PMID: 15998212 DOI: 10.1089/ten.2005.11.709] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Granulosa cells from bovine and porcine ovaries were cultured either in monolayer or in follicle-like barium alginate capsules for 6 days. Morphological investigation by electron scanning microscopy indicated that culture in a three-dimensional (3D) system allows self-organization of spherical-polyhedral shape cells. The luteinization index (progesterone:17beta-estradiol ratio) was significantly higher for monolayer cells than for the 3D cell culture system, confirming the results of morphological analysis and indicating more physiological growth. The encapsulated 3D culture system appears to be a promising way of obtaining in vitro maturation and development of follicles and oocytes.
Collapse
Affiliation(s)
- D Vigo
- Dipartimento di Scienze e Tecnologie Veterinarie per la Sicurezza Alimentare, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Havelock JC, Rainey WE, Carr BR. Ovarian granulosa cell lines. Mol Cell Endocrinol 2004; 228:67-78. [PMID: 15541573 DOI: 10.1016/j.mce.2004.04.018] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2004] [Accepted: 04/14/2004] [Indexed: 10/26/2022]
Abstract
The ovary is a complex endocrine gland responsible for production of sex steroids and is the source of fertilizable ova for reproduction. It also produces various growth factors, transcription factors and cytokines that assist in the complex signaling pathways of folliculogenesis. The ovary possesses two primary steroidogenic cell types. The theca cells (and to a lesser extent, the stroma) are responsible for androgen synthesis, and the granulosa cells are responsible for conversion of androgens to estrogens, as well as progesterone synthesis. These cells undergo a transformation in the luteal phase of the menstrual cycle, converting them from estrogen producing, to predominantly progesterone producing cells. Understanding the molecular mechanisms regulating these cells is essential in understanding the regulation of steroidogenesis and reproduction. Creation of appropriate in vitro cell model systems can provide important tools for the study of ovarian function. This has led to the development of ovarian steroidogenic cell lines in several laboratories. Developing theca cell lines has met with limited success. Conversely, numerous human and animal granulosa cell lines have been developed. This review will discuss the existing granulosa cell lines and their characteristics.
Collapse
Affiliation(s)
- Jon C Havelock
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9032, USA
| | | | | |
Collapse
|
49
|
Webber RE, Shull KR. Strain Dependence of the Viscoelastic Properties of Alginate Hydrogels. Macromolecules 2004. [DOI: 10.1021/ma049274n] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rebecca E. Webber
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108
| | - Kenneth R. Shull
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Dr., Evanston, Illinois 60208-3108
| |
Collapse
|