1
|
Kumar P, Mohan V, Sinha RA, Chagtoo M, Godbole MM. Histone deacetylase inhibition reduces hypothyroidism-induced neurodevelopmental defects in rats. J Endocrinol 2015; 227:83-92. [PMID: 26427529 DOI: 10.1530/joe-15-0168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Thyroid hormone (TH) through its receptor (TRα/β) influences spatio-temporal regulation of its target gene repertoire during brain development. Though hypothyroidism in WT rodent models of perinatal hypothyroidism severely impairs neurodevelopment, its effect on TRα/β knockout mice is less severe. An explanation to this paradox is attributed to a possible repressive action of unliganded TRs during development. Since unliganded TRs suppress gene expression through the recruitment of histone deacetylase (HDACs) via co-repressor complexes, we tested whether pharmacological inhibition of HDACs may prevent the effects of hypothyroidism on brain development. Using valproate, an HDAC inhibitor, we show that HDAC inhibition significantly blocks the deleterious effects of hypothyroidism on rat cerebellum, evident by recovery of TH target genes like Bdnf, Pcp2 and Mbp as well as improved dendritic structure of cerebellar Purkinje neurons. Together with this, HDAC inhibition also rescues hypothyroidism-induced motor and cognitive defects. This study therefore provides an insight into the role of HDACs in TH insufficiency during neurodevelopment and their inhibition as a possible therapeutics for treatment.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Vishwa Mohan
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Rohit Anthony Sinha
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Megha Chagtoo
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| | - Madan M Godbole
- Department of Molecular Medicine and BiotechnologySanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, IndiaDepartment of Biochemistry and BiophysicsUNC School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USACardiovascular and Metabolic Disorder ProgramLaboratory of Hormonal Regulation, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
2
|
Xu M, Sulkowski ZL, Parekh P, Khan A, Chen T, Midha S, Iwasaki T, Shimokawa N, Koibuchi N, Zavacki AM, Sajdel-Sulkowska EM. Effects of Perinatal Lipopolysaccharide (LPS) Exposure on the Developing Rat Brain; Modeling the Effect of Maternal Infection on the Developing Human CNS. THE CEREBELLUM 2013; 12:572-86. [DOI: 10.1007/s12311-013-0465-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Zhang L, Sun YN, Li YM, Lin LX, Ye Y, Yan YQ, Chen ZP. Effect of different iodine nutrition on cerebellum Pcp-2 in rat offspring during lactation. Biol Trace Elem Res 2011; 143:1629-39. [PMID: 21344292 DOI: 10.1007/s12011-011-8991-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Accepted: 02/01/2011] [Indexed: 12/29/2022]
Abstract
The thyroid functions of breastfed infants, as well as (indirectly) the development of their central nervous system, are dependent on the iodine status of the lactating mother. Purkinje cell protein-2 is a cell-specific marker of the cerebellum Purkinje cell and is a suitable indicator for observing the postnatal development of the cerebellum after birth. We measured the Purkinje cell protein-2 mRNA and protein levels in the rat cerebellum in the critical postnatal (14 days after birth) and maturation periods (28 days after birth) to determine the effect of different nutritional iodine levels on cerebellum growth in the offspring during lactation. We found that severe iodine deficiency resulted in thyroid dysfunction in lactating rats and their offspring on both 14 and 28 days, showing maternal total T(4) 16.7 ± 12.0 vs 36.4 ± 15.0, P < 0.05 (14 days) and 22.6 ± 18.7 vs 53.4 ± 9.4, P < 0.01 (28 days), and neonatal total T(4) 10.6 ± 2.3 vs 16.4 ± 4.7, P < 0.01(14 days) and 12.8 ± 2.9 vs 16.7 ± 3.4, P < 0.05 (28 days), respectively. The Purkinje cell protein-2 mRNA and its protein levels in offspring rats were significantly reduced that showed Purkinje cell protein-2 mRNA 1.12 ± 0.04 vs 2.25 ± 0.53, P < 0.05 (14 days) and 1.74 ± 0.94 vs 8.69 ± 2.71, P < 0.01 (28 days). However, mild iodine deficiency and excessive iodine maintained almost normal thyroid function in maternal and neonatal rats and normal Purkinje cell protein-2 mRNA and protein levels in offspring's cerebellum. We conclude that severe iodine deficiency could significantly reduce Purkinje cell protein-2 mRNA and its protein levels, indicating that the cerebellum development was retarded, but mild iodine deficiency and excessive iodine could maintain them at an approximately normal level by the mother's and offspring's compensations, especially by the mother's mammary glands.
Collapse
Affiliation(s)
- Lu Zhang
- Institute of Endocrinology, Tianjin Medical University, Key Lab of Hormones and Development, Ministry of Health, 22, Qi-Xiang-Tai Road, 300070, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
4
|
A regulatory toolbox of MiniPromoters to drive selective expression in the brain. Proc Natl Acad Sci U S A 2010; 107:16589-94. [PMID: 20807748 DOI: 10.1073/pnas.1009158107] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Pleiades Promoter Project integrates genomewide bioinformatics with large-scale knockin mouse production and histological examination of expression patterns to develop MiniPromoters and related tools designed to study and treat the brain by directed gene expression. Genes with brain expression patterns of interest are subjected to bioinformatic analysis to delineate candidate regulatory regions, which are then incorporated into a panel of compact human MiniPromoters to drive expression to brain regions and cell types of interest. Using single-copy, homologous-recombination "knockins" in embryonic stem cells, each MiniPromoter reporter is integrated immediately 5' of the Hprt locus in the mouse genome. MiniPromoter expression profiles are characterized in differentiation assays of the transgenic cells or in mouse brains following transgenic mouse production. Histological examination of adult brains, eyes, and spinal cords for reporter gene activity is coupled to costaining with cell-type-specific markers to define expression. The publicly available Pleiades MiniPromoter Project is a key resource to facilitate research on brain development and therapies.
Collapse
|
5
|
Abstract
Thyroid hormone (TH) plays a key role in mammalian brain development. The developing brain is sensitive to both TH deficiency and excess. Brain development in the absence of TH results in motor skill deficiencies and reduced intellectual development. These functional abnormalities can be attributed to maldevelopment of specific cell types and regions of the brain including the cerebellum. TH functions at the molecular level by regulating gene transcription. Therefore, understanding how TH regulates cerebellar development requires identification of TH-regulated gene targets and the cells expressing these genes. Additionally, the process of TH-dependent regulation of gene expression is tightly controlled by mechanisms including regulation of TH transport, TH metabolism, toxicologic inhibition of TH signaling, and control of the nuclear TH response apparatus. This review will describe the functional, cellular, and molecular effects of TH deficit in the developing cerebellum and emphasize the most recent findings regarding TH action in this important brain region.
Collapse
Affiliation(s)
- Grant W Anderson
- Department of Pharmacy Practice and Pharmaceutical Sciences, College of Pharmacy, University of Minnesota, Duluth, Minnesota 55812, USA.
| |
Collapse
|
6
|
Nunez J, Celi FS, Ng L, Forrest D. Multigenic control of thyroid hormone functions in the nervous system. Mol Cell Endocrinol 2008; 287:1-12. [PMID: 18448240 PMCID: PMC2486256 DOI: 10.1016/j.mce.2008.03.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 03/07/2008] [Accepted: 03/07/2008] [Indexed: 12/16/2022]
Abstract
Thyroid hormone (TH) has a remarkable range of actions in the development and function of the nervous system. A multigenic picture is emerging of the mechanisms that specify these diverse functions in target tissues. Distinct responses are mediated by alpha and beta isoforms of TH receptor which act as ligand-regulated transcription factors. Receptor activity can be regulated at several levels including that of uptake of TH ligand and the activation or inactivation of ligand by deiodinase enzymes in target tissues. Processes under the control of TH range from learning and anxiety-like behaviour to sensory function. At the cellular level, TH controls events as diverse as axonal outgrowth, hippocampal synaptic activity and the patterning of opsin photopigments necessary for colour vision. Overall, TH coordinates this variety of events in both central and sensory systems to promote the function of the nervous system as a complete entity.
Collapse
|
7
|
|
8
|
Abstract
Thyroid hormones play important roles in brain development. The physiologic function of thyroid hormones in the developing brain is to provide a timing signal that leads to the induction of differentiation and maturation programs during precise stages of development. Inappropriate initiation of these timing events leads to asynchrony in developmental processes and a deleterious outcome. The developing brain is protected from premature thyroid hormone signaling through a variety of measures. Firstly, local brain levels of both thyroxine and triiodothyronine are controlled by ontogenically regulated patterns of production and metabolism. Secondly, developmentally regulated expression of nuclear proteins involved with the nuclear TH response apparatus control the temporal response of brain genes to thyroid hormone. Finally, developmental regulation of TH action modulating transcription factor expression also controls TH action in the developing brain. Together these molecular mechanisms cooperatively act to temporally control TH action during brain development. A description of these controlling mechanisms is the subject of this review.
Collapse
Affiliation(s)
- Grant W Anderson
- College of Pharmacy, Duluth, University of Minnesota, Duluth, Minnesota 55812-3095, USA.
| | | | | |
Collapse
|
9
|
Martinez R, Gomes FCA. Neuritogenesis induced by thyroid hormone-treated astrocytes is mediated by epidermal growth factor/mitogen-activated protein kinase-phosphatidylinositol 3-kinase pathways and involves modulation of extracellular matrix proteins. J Biol Chem 2002; 277:49311-8. [PMID: 12356760 DOI: 10.1074/jbc.m209284200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Thyroid hormone (T3) plays a crucial role in several steps of cerebellar ontogenesis. By using a neuron-astrocyte coculture model, we have investigated the effects of T3-treated astrocytes on cerebellar neuronal differentiation in vitro. Neurons plated onto T3-astrocytes presented a 40-60% increase on the total neurite length and an increment in the number of neurites. Treatment of astrocytes with epidermal growth factor (EGF) yielded similar results, suggesting that this growth factor might mediate T3-induced neuritogenesis. EGF and T3 treatment increased fibronectin and laminin expression by astrocytes, suggesting that astrocyte neurite permissiveness induced by these treatments is mostly due to modulation of extracellular matrix (ECM) components. Such increase in ECM protein expression as well as astrocyte permissiveness to neurite outgrowth was reversed by the specific EGF receptor tyrosine kinase inhibitor, tyrphostin. Moreover, studies using selective inhibitors of several transduction-signaling cascades indicated that modulation of ECM proteins by EGF is mainly through a synergistic activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. In this work, we provide evidence of a novel role of EGF as an intermediary factor of T3 action on cerebellar ontogenesis. By modulating the content of ECM proteins, EGF increases neurite outgrowth. Our data reveal an important role of astrocytes as mediators of T3-induced cerebellar development and partially elucidate the role of EGF and mitogen-activated protein kinase/phosphatidylinositol 3-kinase pathways on this process.
Collapse
Affiliation(s)
- Rodrigo Martinez
- Instituto de Ciências Biomédicas, Departamento de Anatomia, Universidade Federal do Rio de Janeiro, Ilha do Fundão 21941-590, Rio de Janeiro, RJ, Brazil
| | | |
Collapse
|
10
|
Liu YY, Brent GA. A complex deoxyribonucleic acid response element in the rat Ca(2+)/calmodulin-dependent protein kinase IV gene 5'-flanking region mediates thyroid hormone induction and chicken ovalbumin upstream promoter transcription factor 1 repression. Mol Endocrinol 2002; 16:2439-51. [PMID: 12403833 DOI: 10.1210/me.2001-0324] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Ca(2+)/calmodulin-dependent protein kinase IV (CaMKIV) is regulated by T(3) in a time- and concentration-dependent manner in the developing rat brain and plays an important role in neuronal-specific gene regulation. T(3) treatment, but not retinoic acid (RA), stimulated endogenous CaMKIV mRNA 5-fold in mouse embryonic stem (ES) cells differentiated into neurons. We localized a region -750 to -700 in the CaMKIV gene 5'-flanking region that conferred T(3) responsiveness and bound thyroid hormone receptor (TR), retinoic acid receptor (RAR), and chicken ovalbumin upstream promoter-transcription factor 1 (COUP-TF1). T(3) and RA treatment stimulated the CaMKIV hormone response element. Cotransfection of a COUP-TF1 expression vector repressed the T(3) response and augmented the RA response. Mutational analysis identified three half-sites arranged in a direct repeat (AB) and overlapping inverted repeat (BC), required for functional induction and receptor binding. TR and RAR bound predominantly to the BC portion of the element and COUP-TF1 to the AB region, with a close correlation of binding and functional studies. COUP-TF1 binding did not influence TR/retinoid X receptor binding but modestly augmented RAR/retinoid X receptor binding. A single element confers T(3) and COUP-TF1 regulation of CaMKIV expression.
Collapse
Affiliation(s)
- Yan-Yun Liu
- Molecular Endocrinology Laboratory, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California 90073, USA
| | | |
Collapse
|
11
|
Abstract
Among the most critical actions of thyroid hormone in man and other mammals are those exerted on brain development. Severe hypothyroidism during the neonatal period leads to structural alterations, including hypomyelination and defects of cell migration and differentiation, with long-lasting, irreversible effects on behavior and performance. A complex regulatory mechanism operates in brain involving regulation of the concentration of the active hormone, T3, and the control of gene expression. Most brain T3 is formed locally from its precursor, T4, by the action of type II deiodinase which is expressed in glial cells, tanycytes, and astrocytes. Type III deiodinase (DIII) is also involved in the regulation of T3 concentrations, especially during the embryonic and early post-natal periods. DIII is expressed in neurons and degrades T4 and T3 to inactive metabolites. The action of T3 is mediated through nuclear receptors, which are expressed mainly in neurons. The receptors are ligand-modulated transcription factors, and a number of genes have been identified as regulated by thyroid hormone in brain. The regulated genes encode proteins of myelin, mitochondria, neurotrophins and their receptors, cytoskeleton, transcription factors, splicing regulators, cell matrix proteins, adhesion molecules, and proteins involved in intracellular signaling pathways. The role of thyroid hormone is to accelerate changes of gene expression that take place during development. Surprisingly, null-mutant mice for the T3 receptors show almost no signs of central nervous system involvement, in contrast with the severe effects of hypothyroidism. The resolution of this paradox is essential to understand the role of thyroid hormone and its receptors in brain development and function.
Collapse
Affiliation(s)
- J Bernal
- Instituto de Investigaciones Biomedicas Alberto Sols, Consejo Superior de Investigaciones Cientfficas, Universidad Autónoma de Madrid, Spain.
| |
Collapse
|
12
|
Jetten AM, Kurebayashi S, Ueda E. The ROR nuclear orphan receptor subfamily: critical regulators of multiple biological processes. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 69:205-47. [PMID: 11550795 DOI: 10.1016/s0079-6603(01)69048-2] [Citation(s) in RCA: 182] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The nuclear receptor superfamily, a group of structurally related, ligand-dependent transcription factors, includes a large number of orphan receptors for which no ligand has yet been identified. These proteins function as key regulators of many physiological processes that occur during embryonic development and in the adult. The retinoid-related orphan receptors (RORs) alpha, beta, and gamma comprise one nuclear orphan receptor gene subfamily. RORs exhibit a modular structure that is characteristic for nuclear receptors; the DNA-binding domain is highly conserved and the ligand-binding domain is moderately conserved among RORs. By a combination of alternative promoter usage and exon splicing, each ROR gene generates several isoforms that differ only in their amino terminus. RORs bind as monomers to specific ROR response elements (ROREs) consisting of the consensus core motif AGGTCA preceded by a 5-bp A/T-rich sequence. RORE-dependent transcriptional activation by RORs is cell type-specific and mediated through interactions with nuclear cofactors. RORs have been shown to interact with certain corepressors as well as coactivators, suggesting that RORs are not constitutively active but that their activity is under some regulatory control. RORs likely can assume at least two different conformations: a repressive state, which allows interaction with corepressor complexes, and an active state, which promotes binding of coactivator complexes. Whether the transition between these two states is regulated by ligand binding and/or by phosphorylation remains to be determined. Ca2+/calmodulin-dependent kinase IV (CaMKIV) can dramatically enhance ROR-mediated transcriptional activation. This stimulation involves CaMKIV-mediated phosphorylation not of RORs, but likely of specific nuclear cofactors that interact with RORs. RORalpha is widely expressed. In the cerebellum, its expression is limited to the Purkinje cells. RORalpha-/- mice and the natural RORalpha-deficient staggerer mice exhibit severe cerebellar ataxia due to a defect in Purkinje cell development. In addition, these mice have thin long bones, suggesting a role for RORalpha in bone metabolism, and develop severe atherosclerosis when placed on a high-fat diet. Expression of RORbeta is very restricted. RORbeta is highly expressed in different parts of the neurophotoendocrine system, the pineal gland, the retina, and suprachiasmatic nuclei, suggesting a role in the control of circadian rhythm. This is supported by observations showing alterations in circadian behavior in RORbeta-/- mice. RORgamma, which is most highly expressed in the thymus, plays an important role in thymopoiesis. Thymocytes from RORgamma-/- mice undergo accelerated apoptosis. The induction of apoptosis is, at least in part, due to a down-regulation of the expression of the antiapoptotic gene Bcl-XL. In addition to the thynic phenotype, RORgamma-/- mice lack lymph nodes, indicating that RORgamma is essential for lymph node organogenesis. Overexpression of RORgamma has been shown to inhibit T cell receptor-mediated apoptosis in T cell hybridomas and to repress the induction of Fas-ligand and interleukin 2. These studies demonstrate that RORs play critical roles in the regulation of a variety of physiological processes. Further characterization of the mechanisms of action of RORs will not only lead to the identification of ROR target genes and provide additional insight into their normal physiological functions, but will also determine their roles in disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- Cloning, Molecular
- Gene Expression
- Hematopoiesis
- Humans
- Ligands
- Mice
- Mice, Knockout
- Molecular Sequence Data
- Nuclear Receptor Subfamily 1, Group F, Member 1
- Nuclear Receptor Subfamily 1, Group F, Member 2
- Nuclear Receptor Subfamily 1, Group F, Member 3
- Phenotype
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid
- Receptors, Thyroid Hormone
- Sequence Homology, Amino Acid
- Trans-Activators/chemistry
- Trans-Activators/genetics
- Trans-Activators/physiology
Collapse
Affiliation(s)
- A M Jetten
- Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | |
Collapse
|
13
|
Fourcade S, Savary S, Albet S, Gauthé D, Gondcaille C, Pineau T, Bellenger J, Bentejac M, Holzinger A, Berger J, Bugaut M. Fibrate induction of the adrenoleukodystrophy-related gene (ABCD2): promoter analysis and role of the peroxisome proliferator-activated receptor PPARalpha. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3490-500. [PMID: 11422379 DOI: 10.1046/j.1432-1327.2001.02249.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
X-linked adrenoleukodystrophy (X-ALD) is a neurodegenerative disease due to a defect in the ABCD1 (ALD) gene. ABCD1, and the two close homologues ABCD2 (ALDR) and ABCD3 (PMP70), are genes encoding ATP-binding cassette half-transporters of the peroxisomal membrane. As overexpression of the ABCD2 or ABCD3 gene can reverse the biochemical phenotype of X-ALD (reduced beta-oxidation of very-long-chain fatty acids), pharmacological induction of these partially redundant genes may represent a therapeutic approach to X-ALD. We previously reported that the ABCD2 and ABCD3 genes could be strongly induced by fibrates, which are hypolipidaemic drugs and peroxisome-proliferators in rodents. We provide evidence that the induction is dependent on peroxisome proliferator-activated receptor (PPARalpha) as both genes were not induced in fenofibrate-treated PPARalpha -/- knock-out mice. To further characterize the PPARalpha pathway, we cloned and analysed the promoter of the ABCD2 gene, the closest homologue of the ABCD1 gene. The proximal region (2 kb) of the rat promoter displayed a high conservation with the human and mouse cognate sequences suggesting an important role of the region in regulation of the ABCD2 gene. Classically, fibrate-induction involves interaction of PPARalpha with a response element (PPRE) characterized by a direct repeat of the AGGTCA-like motif. Putative PPRE motifs of the rat ABCD2 promoter were studied in the isolated form or in their promoter context by gel-shift assay and transfection of COS-7 cells. We failed to characterize a functional PPRE, suggesting a different mechanism for the PPARalpha-dependent regulation of the ABCD2 gene.
Collapse
Affiliation(s)
- S Fourcade
- Laboratoire de Biologie Moléculaire et Cellulaire, Université de Bourgogne, Dijon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Significant progress has been made over the past 2 decades toward understanding the molecular basis of thyroid hormone action. It is now widely accepted that thyroid hormones play predominantly a nuclear role and function by regulating the transcription of specific target genes. Understanding thyroid hormone action at the tissue and organismic level requires assessment of the thyroid hormone response apparatus and identification of specific target genes. Progress toward uncovering the molecular basis of thyroid hormone action during mammalian brain development is advancing rapidly. This commentary provides a brief overview of the molecular basis of thyroid hormone action followed by three sections detailing thyroid hormone regulation of brain development at the functional, cellular, and molecular levels. Each section is followed by a discussion of unresolved issues and an analysis of our current level of understanding of each topic.
Collapse
Affiliation(s)
- G W Anderson
- University of Minnesota School of Medicine, Minneapolis, Minnesota 55455, USA.
| |
Collapse
|
15
|
Alvarez-Dolado M, Cuadrado A, Navarro-Yubero C, Sonderegger P, Furley AJ, Bernal J, Muñoz A. Regulation of the L1 cell adhesion molecule by thyroid hormone in the developing brain. Mol Cell Neurosci 2000; 16:499-514. [PMID: 11085884 DOI: 10.1006/mcne.2000.0879] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Thyroid hormone is essential for brain maturation, regulating neuronal differentiation and migration, myelination, and synaptogenesis. Mutations in the cell adhesion molecule L1 cause severe neurological abnormalities in humans. We studied the effect of thyroid hormone deprivation and administration on L1 expression. Northern and in situ hybridization studies showed that hypothyroidism induces a marked increase in L1 mRNA levels in the caudate putamen, cerebral cortex, amygdala, and some thalamic nuclei. L1 protein was overexpressed in embryonic and newborn hypothyroid rats in the caudate putamen, internal capsule, habenula, and neocortex. Later in development, an abnormally high L1 expression was found in the cortical and cerebellar white matter, corpus callosum, anterior commissure, thalamocortical projections, and striatal fiber tracts of hypothyroid animals. Thyroid hormone administration reversed the upregulation of L1 expression in vivo and in cultured cells. Thus, alterations of L1 expression may contribute to the profound abnormalities caused by hypothyroidism in the developing brain.
Collapse
Affiliation(s)
- M Alvarez-Dolado
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The major developmental targets for thyroid hormone are the brain, small intestine, and bone. Clear defects in gene regulation and tissue function as a consequence of TR gene inactivation can additionally be shown in the pituitary, hypothalamus, heart, and liver. TR gene knockout models show a clear distinction between thyroid hormone requirements for development and those that are required for functions in the adult animal. T3-mediated gene repression appears especially important in a number of tissues including brain, pituitary, and the heart. Preliminary evaluation of the combined TR knockout models suggests that hypothyroidism is associated with more significant abnormalities than receptor deficiency, indicating that the repressive action of the unliganded receptor may have physiological relevance. These various animal models should be very useful to design and test thyroid hormone analogues to selectively stimulate desired thyroid hormone actions.
Collapse
Affiliation(s)
- G A Brent
- Molecular Endocrinology Laboratory, West Los Angeles VA Medical Center, Departments of Medicine and Physiology, UCLA School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
17
|
Morte B, Martínez de Arrieta C, Manzano J, Coloma A, Bernal J. Identification of a cis-acting element that interferes with thyroid hormone induction of the neurogranin (NRGN) gene. FEBS Lett 1999; 464:179-83. [PMID: 10618501 DOI: 10.1016/s0014-5793(99)01706-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The neuron-specific RC3/neurogranin gene is regulated by thyroid hormone at the transcriptional level in brain and in cultured neuronal cells. Regulation in vivo displays exquisite regional selectivity which is not due to differential distribution of thyroid receptors and is most probably related to region-specific trans-acting elements. We have previously identified an intronic thyroid hormone responsive element in the human RC3 gene homolog, NRGN. In a search for cis-acting elements that might contribute to the specificity of thyroid regulation, we have identified a novel sequence, TTCCAAAATGG, which binds to a developmentally regulated protein, and interferes with T3 transactivation.
Collapse
Affiliation(s)
- B Morte
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Arturo Duperier 4, 28029, Madrid, Spain
| | | | | | | | | |
Collapse
|
18
|
Anderson GW, Larson RJ, Oas DR, Sandhofer CR, Schwartz HL, Mariash CN, Oppenheimer JH. Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) modulates expression of the Purkinje cell protein-2 gene. A potential role for COUP-TF in repressing premature thyroid hormone action in the developing brain. J Biol Chem 1998; 273:16391-9. [PMID: 9632703 DOI: 10.1074/jbc.273.26.16391] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cerebellar Purkinje cell-specific PCP-2 gene is transcriptionally activated by thyroid hormone during the 2nd and 3rd weeks of postnatal life in the rat. In contrast, thyroid hormone has no detectable effects on PCP-2 expression in the fetal rat. We now present data that suggest that the orphan nuclear receptor chicken ovalbumin upstream promoter-transcription factor (COUP-TF) represses triiodothyronine (T3)-dependent transcriptional activation of PCP-2 in the immature Purkinje cell. Gel shift assays show that the PCP-2 A1TRE and adjoining sequences (-295/-199 region) bind to rat and mouse brain nucleoproteins in a developmentally regulated fashion and that one of these nucleoproteins could be the orphan nucleoprotein COUP-TF. In support of this hypothesis, in vitro translated COUP-TF binds to the -295/-199 region and COUP-TF represses T3-dependent activation of the PCP-2 promoter in transient transfection analyses. Finally, immunohistochemical studies reveal that COUP-TF is specifically expressed in the immature fetal and early neonatal Purkinje cell and that this expression diminishes coincident with thyroid hormone induction of PCP-2 expression. Our findings are consistent with the hypothesis that the presence or absence of inhibitory proteins bound to the thyroid hormone response element of T3-responsive genes governs the responsivity of these genes to thyroid hormone during brain development.
Collapse
Affiliation(s)
- G W Anderson
- Thyroid Research Unit, Division of Endocrinology and Diabetes, Department of Medicine, Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- J H Oppenheimer
- Department of Medicine, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|