1
|
Dalecki M, Albines D, Macpherson A, Sergio LE. Prolonged cognitive-motor impairments in children and adolescents with a history of concussion. Concussion 2016; 1:CNC14. [PMID: 30202556 PMCID: PMC6094154 DOI: 10.2217/cnc-2016-0001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 02/26/2016] [Indexed: 01/01/2023] Open
Abstract
Aim: We investigated whether children and adolescents with concussion history show cognitive–motor integration (CMI) deficits. Method: Asymptomatic children and adolescents with concussion history (n = 50; mean 12.84 years) and no history (n = 49; mean: 11.63 years) slid a cursor to targets using their finger on a dual-touch-screen laptop; target location and motor action were not aligned in the CMI task. Results: Children and adolescents with concussion history showed prolonged CMI deficits, in that their performance did not match that of no history controls until nearly 2 years postevent. Conclusion: These CMI deficits may be due to disruptions in fronto-parietal networks, contributing to an increased vulnerability to further injury. Current return-to-play assessments that do not test CMI may not fully capture functional abilities postconcussion.
Collapse
Affiliation(s)
- Marc Dalecki
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - David Albines
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada
| | - Alison Macpherson
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada
| | - Lauren E Sergio
- School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada.,School of Kinesiology & Health Science, York University, Toronto, Ontario, Canada.,Centre for Vision Research, York University, Toronto, Ontario, Canada.,York University Sport Medicine Team, York University, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Brown JA, Dalecki M, Hughes C, Macpherson AK, Sergio LE. Cognitive-motor integration deficits in young adult athletes following concussion. BMC Sports Sci Med Rehabil 2015; 7:25. [PMID: 26491541 PMCID: PMC4612424 DOI: 10.1186/s13102-015-0019-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/09/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND The ability to perform visually-guided motor tasks requires the transformation of visual information into programmed motor outputs. When the guiding visual information does not align spatially with the motor output, the brain processes rules to integrate the information for an appropriate motor response. Here, we look at how performance on such tasks is affected in young adult athletes with concussion history. METHODS Participants displaced a cursor from a central to peripheral targets on a vertical display by sliding their finger along a touch sensitive screen in one of two spatial planes. The addition of a memory component, along with variations in cursor feedback increased task complexity across conditions. RESULTS Significant main effects between participants with concussion history and healthy controls without concussion history were observed in timing and accuracy measures. Importantly, the deficits were distinctly more pronounced for participants with concussion history compared to healthy controls, especially when the brain had to control movements having two levels of decoupling between vision and action. A discriminant analysis correctly classified athletes with a history of concussion based on task performance with an accuracy of 94 %, despite the majority of these athletes being rated asymptomatic by current standards. CONCLUSIONS These findings correspond to our previous work with adults at risk of developing dementia, and support the use of cognitive motor integration as an enhanced assessment tool for those who may have mild brain dysfunction. Such a task may provide a more sensitive metric of performance relevant to daily function than what is currently in use, to assist in return to play/work/learn decisions.
Collapse
Affiliation(s)
- Jeffrey A Brown
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada
| | - Marc Dalecki
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; Centre for Vision Research, York University, Toronto, Canada
| | - Cindy Hughes
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; York University Sport Medicine Team, York University, Toronto, Canada
| | - Alison K Macpherson
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; York University Sport Medicine Team, York University, Toronto, Canada
| | - Lauren E Sergio
- School of Kinesiology and Health Science, York University, 357 Bethune College, 4700 Keele Street, Toronto, M3J 1P3 ON Canada ; Centre for Vision Research, York University, Toronto, Canada ; York University Sport Medicine Team, York University, Toronto, Canada ; Southlake Regional Health Centre, Newmarket, ON Canada
| |
Collapse
|
3
|
Cantu D, Walker K, Andresen L, Taylor-Weiner A, Hampton D, Tesco G, Dulla CG. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control. Cereb Cortex 2014; 25:2306-20. [PMID: 24610117 DOI: 10.1093/cercor/bhu041] [Citation(s) in RCA: 141] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2-4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input-output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy.
Collapse
Affiliation(s)
- David Cantu
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| | - Kendall Walker
- Department of Neuroscience, Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, A305, Boston, MA 02111, USA
| | - Lauren Andresen
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA Program in Neuroscience at the Sackler School of Biomedical Sciences, Tufts University
| | - Amaro Taylor-Weiner
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA Current address: Broad Institute, Cambridge, MA 02142, USA
| | - David Hampton
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| | - Giuseppina Tesco
- Department of Neuroscience, Alzheimer's Disease Research Laboratory, Tufts University School of Medicine, A305, Boston, MA 02111, USA
| | - Chris G Dulla
- Department of Neuroscience, Tufts University School of Medicine, SC201, Boston, MA 02111, USA
| |
Collapse
|