1
|
Menendez JA, Cuyàs E, Encinar JA, Vander Steen T, Verdura S, Llop‐Hernández À, López J, Serrano‐Hervás E, Osuna S, Martin‐Castillo B, Lupu R. Fatty acid synthase (FASN) signalome: A molecular guide for precision oncology. Mol Oncol 2024; 18:479-516. [PMID: 38158755 PMCID: PMC10920094 DOI: 10.1002/1878-0261.13582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/27/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024] Open
Abstract
The initial excitement generated more than two decades ago by the discovery of drugs targeting fatty acid synthase (FASN)-catalyzed de novo lipogenesis for cancer therapy was short-lived. However, the advent of the first clinical-grade FASN inhibitor (TVB-2640; denifanstat), which is currently being studied in various phase II trials, and the exciting advances in understanding the FASN signalome are fueling a renewed interest in FASN-targeted strategies for the treatment and prevention of cancer. Here, we provide a detailed overview of how FASN can drive phenotypic plasticity and cell fate decisions, mitochondrial regulation of cell death, immune escape and organ-specific metastatic potential. We then present a variety of FASN-targeted therapeutic approaches that address the major challenges facing FASN therapy. These include limitations of current FASN inhibitors and the lack of precision tools to maximize the therapeutic potential of FASN inhibitors in the clinic. Rethinking the role of FASN as a signal transducer in cancer pathogenesis may provide molecularly driven strategies to optimize FASN as a long-awaited target for cancer therapeutics.
Collapse
Affiliation(s)
- Javier A. Menendez
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Elisabet Cuyàs
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Jose Antonio Encinar
- Institute of Research, Development and Innovation in Biotechnology of Elche (IDiBE) and Molecular and Cell Biology Institute (IBMC)Miguel Hernández University (UMH)ElcheSpain
| | - Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| | - Sara Verdura
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Àngela Llop‐Hernández
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Júlia López
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
| | - Eila Serrano‐Hervás
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
| | - Sílvia Osuna
- CompBioLab Group, Institut de Química Computacional i Catàlisi (IQCC) and Departament de QuímicaUniversitat de GironaGironaSpain
- ICREABarcelonaSpain
| | - Begoña Martin‐Castillo
- Metabolism & Cancer Group, Program Against Cancer Therapeutic Resistance (ProCURE)Catalan Institute of OncologyGironaSpain
- Girona Biomedical Research InstituteGironaSpain
- Unit of Clinical ResearchCatalan Institute of OncologyGironaSpain
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterMNUSA
- Mayo Clinic Cancer CenterRochesterMNUSA
- Department of Biochemistry and Molecular Biology LaboratoryMayo Clinic LaboratoryRochesterMNUSA
| |
Collapse
|
2
|
Zakic T, Kalezic A, Drvendzija Z, Udicki M, Ivkovic Kapicl T, Srdic Galic B, Korac A, Jankovic A, Korac B. Breast Cancer: Mitochondria-Centered Metabolic Alterations in Tumor and Associated Adipose Tissue. Cells 2024; 13:155. [PMID: 38247846 PMCID: PMC10814287 DOI: 10.3390/cells13020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/10/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The close cooperation between breast cancer and cancer-associated adipose tissue (CAAT) shapes the malignant phenotype, but the role of mitochondrial metabolic reprogramming and obesity in breast cancer remains undecided, especially in premenopausal women. Here, we examined mitochondrial metabolic dynamics in paired biopsies of malignant versus benign breast tumor tissue and CAAT in normal-weight and overweight/obese premenopausal women. Lower protein level of pyruvate dehydrogenase and citrate synthase in malignant tumor tissue indicated decreased carbon flux from glucose into the Krebs cycle, whereas the trend was just the opposite in malignant CAAT. Simultaneously, stimulated lipolysis in CAAT of obese women was followed by upregulated β-oxidation, as well as fatty acid synthesis enzymes in both tumor tissue and CAAT of women with malignant tumors, corroborating their physical association. Further, protein level of electron transport chain complexes was generally increased in tumor tissue and CAAT from women with malignant tumors, respective to obesity. Preserved mitochondrial structure in malignant tumor tissue was also observed. However, mitochondrial DNA copy number and protein levels of PGC-1α were dependent on both malignancy and obesity in tumor tissue and CAAT. In conclusion, metabolic cooperation between breast cancer and CAAT in premenopausal women involves obesity-related, synchronized changes in mitochondrial metabolism.
Collapse
Affiliation(s)
- Tamara Zakic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Andjelika Kalezic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Zorka Drvendzija
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Mirjana Udicki
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Tatjana Ivkovic Kapicl
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
- Oncology Institute of Vojvodina, 21204 Sremska Kamenica, Serbia;
| | - Biljana Srdic Galic
- Faculty of Medicine, University of Novi Sad, 21000 Novi Sad, Serbia; (Z.D.); (M.U.); (B.S.G.)
| | - Aleksandra Korac
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| | - Aleksandra Jankovic
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
| | - Bato Korac
- Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (T.Z.); (A.K.); (A.J.)
- Faculty of Biology, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Zou H, Yu J, Li Z, Liu Y, Wang T, Li T, Lv C, Zhang J. In vitro, in vivo, and in silico evaluation of the glucocorticoid receptor antagonist activity of 3,6-dibromocarbazole. Food Chem Toxicol 2023; 180:114048. [PMID: 37734465 DOI: 10.1016/j.fct.2023.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
3,6-Dibromocarbazole is a novel environmental contaminant which is currently detected in several environmental media worldwide. This work aims to investigate the anti-glucocorticoid potency and endocrine disrupting effects of 3,6-dibromocarbazole. In vitro experiments indicated that 3,6-dibromocarbazole possessed glucocorticoid receptor (GR) antagonistic activity and inhibited dexamethasone-induced GR nuclear translocation. 3,6-Dibromocarbazole reduced the expression levels of glucocorticoid responsive genes including glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase (PEPCK), fatty acid synthase (FAS), and tyrosine aminotransferase (TAT), and further disrupted the protein expression of two key enzymes PEPCK and FAS in gluconeogenesis. In vivo experiments showed that 3,6-dibromocarbazole induced abnormal development of zebrafish embryos and disrupted the major neurohormones involved in activation of hypothalamic-pituitary-adrenocortical (HPA) axis in zebrafish larvae. The results of molecular docking and molecular dynamics simulation contributed to explain the antagonistic effect of 3,6-dibromocarbazole. Taken together, this work identified 3,6-dibromocarbazole as a GR antagonist, which might exert endocrine disrupting effects by interfering the pathway of gluconeogenesis.
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Zhuolin Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yao Liu
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| | - Tuoyi Wang
- College of Food and Bioengineering, Qiqihar University, Qiqihar, 161006, China
| | - Tiezhu Li
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Chengyu Lv
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Santaliz-Casiano A, Mehta D, Danciu OC, Patel H, Banks L, Zaidi A, Buckley J, Rauscher GH, Schulte L, Weller LR, Taiym D, Liko-Hazizi E, Pulliam N, Friedewald SM, Khan S, Kim JJ, Gradishar W, Hegerty S, Frasor J, Hoskins KF, Madak-Erdogan Z. Identification of metabolic pathways contributing to ER + breast cancer disparities using a machine-learning pipeline. Sci Rep 2023; 13:12136. [PMID: 37495653 PMCID: PMC10372029 DOI: 10.1038/s41598-023-39215-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023] Open
Abstract
African American (AA) women in the United States have a 40% higher breast cancer mortality rate than Non-Hispanic White (NHW) women. The survival disparity is particularly striking among (estrogen receptor positive) ER+ breast cancer cases. The purpose of this study is to examine whether there are racial differences in metabolic pathways typically activated in patients with ER+ breast cancer. We collected pretreatment plasma from AA and NHW ER+ breast cancer cases (AA n = 48, NHW n = 54) and cancer-free controls (AA n = 100, NHW n = 48) to conduct an untargeted metabolomics analysis using gas chromatography mass spectrometry (GC-MS) to identify metabolites that may be altered in the different racial groups. Unpaired t-test combined with multiple feature selection and prediction models were employed to identify race-specific altered metabolic signatures. This was followed by the identification of altered metabolic pathways with a focus in AA patients with breast cancer. The clinical relevance of the identified pathways was further examined in PanCancer Atlas breast cancer data set from The Cancer Genome Atlas Program (TCGA). We identified differential metabolic signatures between NHW and AA patients. In AA patients, we observed decreased circulating levels of amino acids compared to healthy controls, while fatty acids were significantly higher in NHW patients. By mapping these metabolites to potential epigenetic regulatory mechanisms, this study identified significant associations with regulators of metabolism such as methionine adenosyltransferase 1A (MAT1A), DNA Methyltransferases and Histone methyltransferases for AA individuals, and Fatty acid Synthase (FASN) and Monoacylglycerol lipase (MGL) for NHW individuals. Specific gene Negative Elongation Factor Complex E (NELFE) with histone methyltransferase activity, was associated with poor survival exclusively for AA individuals. We employed a comprehensive and novel approach that integrates multiple machine learning and statistical methods, coupled with human functional pathway analyses. The metabolic profile of plasma samples identified may help elucidate underlying molecular drivers of disproportionately aggressive ER+ tumor biology in AA women. It may ultimately lead to the identification of novel therapeutic targets. To our knowledge, this is a novel finding that describes a link between metabolic alterations and epigenetic regulation in AA breast cancer and underscores the need for detailed investigations into the biological underpinnings of breast cancer health disparities.
Collapse
Affiliation(s)
| | - Dhruv Mehta
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Oana C Danciu
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Hariyali Patel
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Landan Banks
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Ayesha Zaidi
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Jermya Buckley
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Garth H Rauscher
- School of Public Health, University of Illinois at Chicago, Chicago, IL, USA
| | - Lauren Schulte
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - Lauren Ro Weller
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | - Deanna Taiym
- Robert H. Lurie Cancer Center of Northwestern University, Chicago, IL, USA
| | | | - Natalie Pulliam
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Seema Khan
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - J Julie Kim
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - William Gradishar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Jonna Frasor
- Department Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | - Kent F Hoskins
- Division of Hematology/Oncology, University of Illinois at Chicago, Chicago, IL, USA
| | - Zeynep Madak-Erdogan
- Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, Urbana, IL, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, 1201 W Gregory Dr, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Aslebagh R, Whitham D, Channaveerappa D, Mutsengi P, Pentecost BT, Arcaro KF, Darie CC. Mass Spectrometry-Based Proteomics of Human Milk to Identify Differentially Expressed Proteins in Women with Breast Cancer versus Controls. Proteomes 2022; 10:36. [PMID: 36412635 PMCID: PMC9680319 DOI: 10.3390/proteomes10040036] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
It is thought that accurate risk assessment and early diagnosis of breast cancer (BC) can help reduce cancer-related mortality. Proteomics analysis of breast milk may provide biomarkers of risk and occult disease. Our group works on the analysis of human milk samples from women with BC and controls to investigate alterations in protein patterns of milk that could be related to BC. In the current study, we used mass spectrometry (MS)-based proteomics analysis of 12 milk samples from donors with BC and matched controls. Specifically, we used one-dimensional (1D)-polyacrylamide gel electrophoresis (PAGE) coupled with nanoliquid chromatography tandem MS (nanoLC-MS/MS), followed by bioinformatics analysis. We confirmed the dysregulation of several proteins identified previously in a different set of milk samples. We also identified additional dysregulations in milk proteins shown to play a role in cancer development, such as Lactadherin isoform A, O-linked N-acetylglucosamine (GlcNAc) transferase, galactosyltransferase, recoverin, perilipin-3 isoform 1, histone-lysine methyltransferase, or clathrin heavy chain. Our results expand our current understanding of using milk as a biological fluid for identification of BC-related dysregulated proteins. Overall, our results also indicate that milk has the potential to be used for BC biomarker discovery, early detection and risk assessment in young, reproductively active women.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Danielle Whitham
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Panashe Mutsengi
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| | - Brian T. Pentecost
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Kathleen F. Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA 01003-9298, USA
| | - Costel C. Darie
- Biochemistry and Proteomics Laboratories, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY 13699-5810, USA
| |
Collapse
|
6
|
Kelly JM, Jeitner TM, Waterhouse NN, Qu W, Linstad EJ, Samani B, Williams C, Nikolopoulou A, Amor-Coarasa A, DiMagno SG, Babich JW. Synthesis and Evaluation of 11C-Labeled Triazolones as Probes for Imaging Fatty Acid Synthase Expression by Positron Emission Tomography. Molecules 2022; 27:1552. [PMID: 35268652 PMCID: PMC8911806 DOI: 10.3390/molecules27051552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 12/10/2022] Open
Abstract
Cancer cells require lipids to fulfill energetic, proliferative, and signaling requirements. Even though these cells can take up exogenous fatty acids, the majority exhibit a dependency on de novo fatty acid synthesis. Fatty acid synthase (FASN) is the rate-limiting enzyme in this process. Expression and activity of FASN is elevated in multiple cancers, where it correlates with disease progression and poor prognosis. These observations have sparked interest in developing methods of detecting FASN expression in vivo. One promising approach is the imaging of radiolabeled molecular probes targeting FASN by positron emission tomography (PET). However, although [11C]acetate uptake by prostate cancer cells correlates with FASN expression, no FASN-specific PET probes currently exist. Our aim was to synthesize and evaluate a series of small molecule triazolones based on GSK2194069, an FASN inhibitor with IC50 = 7.7 ± 4.1 nM, for PET imaging of FASN expression. These triazolones were labeled with carbon-11 in good yield and excellent radiochemical purity, and binding to FASN-positive LNCaP cells was significantly higher than FASN-negative PC3 cells. Despite these promising characteristics, however, these molecules exhibited poor in vivo pharmacokinetics and were predominantly retained in lymph nodes and the hepatobiliary system. Future studies will seek to identify structural modifications that improve tumor targeting while maintaining the excretion profile of these first-generation 11C-methyltriazolones.
Collapse
Affiliation(s)
- James M. Kelly
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Thomas M. Jeitner
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Nicole N. Waterhouse
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Wenchao Qu
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Ethan J. Linstad
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Banafshe Samani
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
| | - Clarence Williams
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Anastasia Nikolopoulou
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
| | - Alejandro Amor-Coarasa
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
| | - Stephen G. DiMagno
- Departments of Medicinal Chemistry & Pharmacognosy and Chemistry, University of Illinois-Chicago, Chicago, IL 60612, USA; (E.J.L.); (B.S.); (S.G.D.)
| | - John W. Babich
- Molecular Imaging Innovations Institute (MI3), Department of Radiology, Weill Cornell Medicine, New York, NY 10065, USA; (T.M.J.); (C.W.J.); (A.N.); (A.A.-C.); (J.W.B.)
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY 10021, USA; (N.N.W.); (W.Q.)
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
7
|
Park JH, Han HS, Lim SD, Kim WY, Park KS, Yoo YB, Lee SE, Kim WS. Fatty acid synthetase expression in triple-negative breast cancer. J Pathol Transl Med 2022; 56:73-80. [PMID: 35051326 PMCID: PMC8935000 DOI: 10.4132/jptm.2021.10.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Triple-negative breast cancer (TNBC) has a relatively poor prognosis. Research has identified potential metabolic targets, including fatty acid metabolism, in TNBC. The absence of effective target therapies for TNBC led to exploration of the role of fatty acid synthetase (FASN) as a potential target for TNBC therapy. Here, we analyzed the expression of FASN, a representative lipid metabolism–related protein, and investigated the association between FASN expression and Ki-67 and the programmed death ligand 1 (PD-L1) biomarkers in TNBC. Methods Immunohistochemical expression of FASN was analyzed in 166 patients with TNBC. For analytical purposes, patients with 0–1+ FASN staining were grouped as low-grade FASN and patients with 2–3+ FASN staining as high-grade FASN. Results FASN expression was observed in 47.1% of TNBC patients. Low and high expression of FASN was identified in 75.9% and 24.1%, respectively, and no statistically significant difference was found in T category, N category, American Joint Committee on Cancer stage, or recurrence rate between the low and high-FASN expression groups. Ki-67 proliferation level was significantly different between the low and high-FASN expression groups. FASN expression was significantly related to Ki-67 as the level increased. There was no significant difference in PD-L1 positivity between the low- and high-FASN expression groups. Conclusions We identified FASN expression in 166 TNBC patients. The Ki-67 proliferation index was positively correlated with FASN level, indicating higher proliferation activity as FASN increases. However, there was no statistical association with PD-L1 SP142, the currently FDA-approved assay, or FASN expression level.
Collapse
Affiliation(s)
- Jin Hee Park
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Hye Seung Han
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - So Dug Lim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Wook Youn Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Young Bum Yoo
- Department of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Seung Eun Lee
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Wan-Seop Kim
- Department of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Pizato N, Hoffmann MS, Irala CH, Muniz-Junqueira MI, Silva Paixao EMD, Ito MK. Serum fatty acid synthase levels and n-3 fatty acid intake in patients with breast cancer. Clin Nutr ESPEN 2021; 42:142-147. [PMID: 33745568 DOI: 10.1016/j.clnesp.2020.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/25/2020] [Accepted: 12/15/2020] [Indexed: 11/18/2022]
Abstract
PURPOSE Fatty acid synthase (FASN) is a key enzyme in fatty acid biosynthesis that is usually over-expressed in patients with breast cancer, but its relationship with the patient's dietary habit is not clear. A higher intake of n-3 polyunsaturated fatty acids is related to reduced breast carcinogenesis in vitro and in vivo. The aim of this study was to clinically investigate the association between serum FASN levels and fatty acid intake in women newly diagnosed with breast cancer. METHODS In a case-control cross-sectional study, with 18 breast cancer patients and 29 controls, we evaluated nutritional status, dietary intake, and serum FASN levels. Statistical analyses were carried out with parametric and non-parametric tests, according to the sample's normality distribution. RESULTS The mean age of breast cancer group (n = 18) and control group (n = 29) was 46.8 ± 9.7 y and 44.4. ± 8.6 y, respectively. Mean serum concentration of FASN in breast cancer group was significantly higher (132.51 ± 95.05 ng/mL) than in control group (36.88 ± 20.87 ng/mL) (p < 0.0001). Among breast cancer group, serum FASN levels of premenopausal women were significantly higher than those of postmenopausal women (p = 0.026). There was no significant difference between the early and late disease stages in regard to serum FASN levels in breast cancer group. Mean nutrient intake was similar and n-3 docosahexaenoic acid intake was low in both groups. We observed no association regarding fatty acid intake and serum FASN levels. CONCLUSION These data suggest that dietary n-3 fatty acid has no association with serum FASN levels among newly diagnosed breast cancer patients.
Collapse
Affiliation(s)
- Nathalia Pizato
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| | - Meg Schwarcz Hoffmann
- University Hospital of Brasilia, University of Brasília, UnB, Brasilia 70910-900, Brazil.
| | - Clarissa Hoffman Irala
- University Hospital of Brasilia, University of Brasília, UnB, Brasilia 70910-900, Brazil.
| | | | | | - Marina Kiyomi Ito
- Graduate Program in Human Nutrition, Department of Nutrition, University of Brasilia, UnB, Brasilia 70910-900, Brazil.
| |
Collapse
|
9
|
Tan B, Zhang Y, Zhang T, He J, Luo X, Bian X, Wu J, Zou C, Wang Y, Fu L. Identifying potential serum biomarkers of breast cancer through targeted free fatty acid profiles screening based on a GC-MS platform. Biomed Chromatogr 2020; 34:e4922. [PMID: 32537761 DOI: 10.1002/bmc.4922] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/07/2020] [Accepted: 06/10/2020] [Indexed: 12/31/2022]
Abstract
Recent advances suggest that abnormal fatty acid metabolism highly correlates with breast cancer, which provide clues to discover potential biomarkers of breast cancer. This study aims to identify serum free fatty acid (FFA) metabolic profiles and screen potential biomarkers for breast cancer diagnosis. Gas chromatography-mass spectrometry and our in-house fatty acid methyl ester standard substances library were combined to accurately identify FFA profiles in serum samples of breast cancer patients and breast adenosis patients (as controls). Potential biomarkers were screened by applying statistical analysis. A total of 18 FFAs were accurately identified in serum sample. Two groups of patients were correctly discriminated by the orthogonal partial least squares-discriminant analysis model based on FFA profiles. Seven FFA levels were significantly higher in serum from breast cancer patients than that in controls, and exhibited positive correlation with malignant degrees of disease. Furthermore, five candidates (palmitic acid, oleic acid, cis-8,11,14-eicosatrienoic acid, docosanoic acid and the ratio of oleic acid to stearic acid) were selected as potential serum biomarkers for differential diagnosis of breast cancer. Our study will help to reveal the metabolic signature of FFAs in breast cancer patients, and provides valuable information for facilitating clinical noninvasive diagnosis.
Collapse
Affiliation(s)
- Binbin Tan
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Ying Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Tiantian Zhang
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| | - Jinsong He
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xueying Luo
- Department of Breast Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xiqing Bian
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Jianlin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macao, China
| | - Chang Zou
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University, Shenzhen People's Hospital, Shenzhen, China
| | - Yangzhi Wang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Li Fu
- Guangdong Key Laboratory for Genome Stability & Disease Prevention, Department of Pharmacology and Shenzhen University International Cancer Center, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
10
|
Feng WW, Kurokawa M. Lipid metabolic reprogramming as an emerging mechanism of resistance to kinase inhibitors in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3. [PMID: 32226926 PMCID: PMC7100881 DOI: 10.20517/cdr.2019.100] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Breast cancer is one of the leading causes of death in women in the United States. In general, patients with breast cancer undergo surgical resection of the tumor and/or receive drug treatment to kill or suppress the growth of cancer cells. In this regard, small molecule kinase inhibitors serve as an important class of drugs used in clinical and research settings. However, the development of resistance to these compounds, in particular HER2 and CDK4/6 inhibitors, often limits durable clinical responses to therapy. Emerging evidence indicates that PI3K/AKT/mTOR pathway hyperactivation is one of the most prominent mechanisms of resistance to many small molecule inhibitors as it bypasses upstream growth factor receptor inhibition. Importantly, the PI3K/AKT/mTOR pathway also plays a pertinent role in regulating various aspects of cancer metabolism. Recent studies from our lab and others have demonstrated that altered lipid metabolism mediates the development of acquired drug resistance to HER2-targeted therapies in breast cancer, raising an interesting link between reprogrammed kinase signaling and lipid metabolism. It appears that, upon development of resistance to HER2 inhibitors, breast cancer cells rewire lipid metabolism to somehow circumvent the inhibition of kinase signaling. Here, we review various mechanisms of resistance observed for kinase inhibitors and discuss lipid metabolism as a potential therapeutic target to overcome acquired drug resistance.
Collapse
Affiliation(s)
- William W Feng
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Manabu Kurokawa
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA.,Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
11
|
Rasha F, Kahathuduwa C, Ramalingam L, Hernandez A, Moussa H, Moustaid-Moussa N. Combined Effects of Eicosapentaenoic Acid and Adipocyte Renin-Angiotensin System Inhibition on Breast Cancer Cell Inflammation and Migration. Cancers (Basel) 2020; 12:cancers12010220. [PMID: 31963198 PMCID: PMC7016836 DOI: 10.3390/cancers12010220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/09/2020] [Accepted: 01/11/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is a major risk factor for breast cancer (BC). Obesity-related metabolic alterations such as inflammation and overactivation of the adipose renin–angiotensin system (RAS) may contribute to the progression of BC. Clinically used antihypertensive drugs such as angiotensin-converting enzyme inhibitors (ACE-I) and dietary bioactive components such as eicosapentaenoic acid (EPA) are known for their anti-inflammatory and adipose RAS blocking properties. However, whether EPA enhances the protective effects of ACE-I in lessening adipocyte inflammation on BC cells has not been studied. We hypothesized that combined EPA and ACE-I would attenuate BC cell inflammation and migration possibly via adipose RAS inhibition. To test our hypothesis, we examined the (i) direct effects of an ACE-I (captopril (CAP)) or EPA, individually and combined, on MCF-7 and MDA-MB-231 human BC cells, and the (ii) effects of conditioned medium (CM) from human adipocytes pretreated with the abovementioned agents on BC cells. We demonstrated that CM from adipocytes pretreated with EPA with or without captopril (but not direct treatments of BC cells) significantly reduced proinflammatory cytokines expression in both BC cell lines. Additionally, cell migration was reduced in MDA-MB-231 cells in response to both direct and CM-mediated CAP and/or EPA treatments. In summary, our study provides a significant insight into added benefits of combining anti-inflammatory EPA and antihypertensive ACE-I to attenuate the effects of adipocytes on breast cancer cell migration and inflammation.
Collapse
Affiliation(s)
- Fahmida Rasha
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Chanaka Kahathuduwa
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Department of Psychiatry, School of Medicine, Texas Tech University Health Science Center, Lubbock, TX 79430, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Arelys Hernandez
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron Ave, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: ; Tel.: +1-806-834-7946
| |
Collapse
|
12
|
Al-Jawadi A, Rasha F, Ramalingam L, Alhaj S, Moussa H, Gollahon L, Dharmawardhane S, Moustaid-Moussa N. Protective effects of eicosapentaenoic acid in adipocyte-breast cancer cell cross talk. J Nutr Biochem 2019; 75:108244. [PMID: 31704550 DOI: 10.1016/j.jnutbio.2019.108244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/23/2019] [Accepted: 09/10/2019] [Indexed: 10/25/2022]
Abstract
Breast cancer is the leading cause of death in women among all cancer types. Obesity is one of the factors that promote progression of breast cancer, especially in post-menopausal women. Increasingly, adipose tissue is recognized for its active role in the tumor microenvironment. We hypothesized that adipocytes conditioned medium can impact breast cancer progression by increasing inflammatory cytokines production by cancer cells, and subsequently increasing their motility. By contrast, eicosapentaenoic acid (EPA), an anti-inflammatory n-3 polyunsaturated fatty acid, reduces adipocyte-secreted inflammatory factors, leading to reduced cancer cell motility. To test these hypotheses, we investigated the direct effects of EPA on MCF-7 and MDA-MB-231 breast cancer cells and the effects of conditioned medium from 3 T3-L1 or human mesenchymal stem cells (HMSC)-derived adipocytes treated with or without EPA supplementation on breast cancer cells. We observed that conditioned medium from HMSC-derived adipocytes significantly increased mRNA transcription levels of cancer-associated genes such as FASN, STAT3 and cIAP2, while EPA-treated HMSC-derived adipocytes significantly reduced mRNA levels of these genes. However, direct EPA treatment significantly reduced mRNA content of these tumor-associated markers (FASN, STAT3, cIAP-2) only in MDA-MB-231 cells not in MCF-7 cells. Conditioned medium from EPA-treated 3 T3-L1 adipocytes further decreased inflammation, cell motility and glycolysis in cancer cells. Our data confirms that adipocytes play a significant role in promoting breast cancer progression and demonstrates that EPA-treated adipocytes reduced the negative impact of adipocyte-secreted factors on breast cancer cell inflammation and migration.
Collapse
Affiliation(s)
- Arwa Al-Jawadi
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA
| | - Fahmida Rasha
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA
| | - Latha Ramalingam
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA
| | - Sara Alhaj
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA; Department of Mechanical Engineering; Texas Tech University, Lubbock, TX 79409, USA
| | - Lauren Gollahon
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA; Department of Biological Sciences, Texas Tech University, 2901 Main st, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA
| | - Suranganie Dharmawardhane
- Department of Biochemistry, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, 1301 Akron ave, Lubbock, TX 79409, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX 794909, USA.
| |
Collapse
|
13
|
Alfhili MA, Weidner DA, Lee MH. Disruption of erythrocyte membrane asymmetry by triclosan is preceded by calcium dysregulation and p38 MAPK and RIP1 stimulation. CHEMOSPHERE 2019; 229:103-111. [PMID: 31078025 DOI: 10.1016/j.chemosphere.2019.04.211] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial used in personal care products, household items, and medical devices. Owing to its apoptotic potential against tumor cells, TCS has been proposed for the treatment of malignancy. A major complication of chemotherapy is anemia, which may result from direct erythrocyte hemolysis or premature cell death known as eryptosis. Similar to nucleated cells, eryptotic cells lose membrane asymmetry and Ca2+ regulation, and undergo oxidative stress, shrinkage, and activation of a host of kinases. In this report, we sought to examine the hemolytic and eryptotic potential of TCS and dissect the underlying mechanistic scenarios involved there in. Hemolysis was spectrophotometrically evaluated by the degree of hemoglobin release into the medium. Flow cytometry was utilized to detect phosphatidylserine (PS) exposure by annexin-V binding, intracellular Ca2+ by Fluo-3/AM fluorescence, and oxidative stress by 2-,7-dichlorodihydrofluorescin diacetate (DCFH2-DA). Incubation of cells with 10-100 μM TCS for 1-4 h induced time- and dose-dependent hemolysis. Moreover, TCS significantly increased the percentage of eryptotic cells as evident by PS exposure (significantly enhanced annexin-V binding). Interestingly, TCS-induced eryptosis was preceded by elevated intracellular Ca2+ levels but was not associated with oxidative stress. Cotreatment of erythrocytes with 50 μM TCS and 50 μM SB203580 (p38 MAPK inhibitor), or 300 μM necrostatin-1 (receptor-interacting protein 1 (RIP1) inhibitor) significantly ameliorated TCS-induced PS externalization. We conclude that TCS is cytotoxic to erythrocytes by inducing hemolysis and stimulating premature death at least in part through Ca2+ mobilization, and p38 MAPK and RIP1 activation.
Collapse
Affiliation(s)
- Mohammad A Alfhili
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, 11433, Saudi Arabia
| | - Douglas A Weidner
- Department of Microbiology & Immunology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Myon-Hee Lee
- Department of Medicine (Division of Hematology/Oncology), Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States; Lineberger Comprehensive Cancer Center, University of North Carolina-Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
14
|
Chang L, Fang S, Chen Y, Yang Z, Yuan Y, Zhang J, Ye L, Gu W. Inhibition of FASN suppresses the malignant biological behavior of non-small cell lung cancer cells via deregulating glucose metabolism and AKT/ERK pathway. Lipids Health Dis 2019; 18:118. [PMID: 31122252 PMCID: PMC6533754 DOI: 10.1186/s12944-019-1058-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 04/29/2019] [Indexed: 12/22/2022] Open
Abstract
Background Fatty acid synthase (FASN) is overexpressed in most human carcinomas, including non-small cell lung cancer (NSCLC), and contributes to poor prognosis. An increasing number of studies have highlighted the potential function of FASN as both a biomarker and therapeutic target for cancers. However, the underlying molecular mechanisms of FASN in glucose metabolism and the malignant biological behavior of NSCLC remain the subjects of intensive investigation. Methods FASN expression was depleted by FASN-siRNA in A549 and NCI-H1299 cell lines to detect the function of glucose metabolism and the malignant biological behavior of NSCLC cells. Western-blot and qPCR were applied to determine the expressions of FASN, t-AKT, p-AKT, t-ERK, p-ERK, PKM2, HK2 and AZGP1. ATP and lactate were detected to determine the activation of glucose metabolism. CCK8 and transwell assays were used to detect the proliferation, invasion, and migration capacity of the two types of NSCLC cells. The xenograft mouse model was used to evaluate tumor weights after suppression of FASN. Results LV-FASN-siRNA and its control lentiviral vector were successfully transfected into the two types of NSCLC cells (A549 and NCI-H1299). LV-FASN siRNA significantly suppressed FASN expression in both NSCLC cell types, and expressions of p-AKT, p-ERK, PKM2, and AZGP1 were also significantly decreased. Notably, the levels of ATP and lactate were significantly decreased after transfection with LV-FASN siRNA. The proliferation of both NSCLC cell types was decreased after suppression of FASN. The invasion and migration capacity of A549, but not NCI-H1299, were inhibited following down-regulation of FASN. In vivo, inhibition of FASN caused a marked animal tumor weight loss. Conclusions FASN was involved in glucose metabolism via down-regulation of the AKT/ERK pathway and eventually altered the malignant phenotype in lung cancer cells.
Collapse
Affiliation(s)
- Ligong Chang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210001, People's Republic of China
| | - Surong Fang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210001, People's Republic of China
| | - Yubao Chen
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210001, People's Republic of China
| | - Zhenhua Yang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210001, People's Republic of China
| | - Yuan Yuan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210001, People's Republic of China
| | - Jing Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210001, People's Republic of China
| | - Liang Ye
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210001, People's Republic of China.
| | - Wei Gu
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, No. 68 Changle Road, Qinhuai District, Nanjing, 210001, People's Republic of China.
| |
Collapse
|
15
|
Kulkoyluoglu-Cotul E, Arca A, Madak-Erdogan Z. Crosstalk between Estrogen Signaling and Breast Cancer Metabolism. Trends Endocrinol Metab 2019; 30:25-38. [PMID: 30471920 DOI: 10.1016/j.tem.2018.10.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/23/2018] [Accepted: 10/26/2018] [Indexed: 02/06/2023]
Abstract
Estrogens and estrogen receptors (ERs) regulate metabolism in both normal physiology and in disease. The metabolic characteristics of intrinsic breast cancer subtypes change based on their ER expression. Crosstalk between estrogen signaling elements and several key metabolic regulators alters metabolism in breast cancer cells, and enables tumors to rewire their metabolism to adapt to poor perfusion, transient nutrient deprivation, and increased acidity. This leads to the selection of drug-resistant and metastatic clones. In this review we discuss studies revealing the role of estrogen signaling elements in drug resistance development and metabolic adaptation during breast cancer progression.
Collapse
Affiliation(s)
- Eylem Kulkoyluoglu-Cotul
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA. https://twitter.com/@eylemkul
| | - Alexandra Arca
- School of Kinesiology and Community Health, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| | - Zeynep Madak-Erdogan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL, USA; Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA; National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
16
|
Combinatorial Electrophoresis and Mass Spectrometry-Based Proteomics in Breast Milk for Breast Cancer Biomarker Discovery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:451-467. [PMID: 31347064 DOI: 10.1007/978-3-030-15950-4_26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Innovations in approaches for early detection and individual risk assessment of different cancers, including breast cancer (BC), are needed to reduce cancer morbidity and associated mortality. The assessment of potential cancer biomarkers in accessible bodily fluids provides a novel approach to identify the risk and/or onset of cancer. Biomarkers are biomolecules, such as proteins, that are indicative of an abnormality or a disease. Human milk is vastly underutilized biospecimen that offers the opportunity to investigate potential protein BC-biomarkers in young, reproductively active women. As a first step, we have examined the entire protein pattern in human milk samples from breastfeeding mothers with cancer, who were diagnosed either before or after milk donation, and from women without cancer, using mass spectrometry (MS)-based proteomics.
Collapse
|
17
|
Aslebagh R, Channaveerappa D, Arcaro KF, Darie CC. Proteomics analysis of human breast milk to assess breast cancer risk. Electrophoresis 2018; 39:653-665. [PMID: 29193311 DOI: 10.1002/elps.201700123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022]
Abstract
Detection of breast cancer (BC) in young women is challenging because mammography, the most common tool for detecting BC, is not effective on the dense breast tissue characteristic of young women. In addition to the limited means for detecting their BC, young women face a transient increased risk of pregnancy-associated BC. As a consequence, reproductively active women could benefit significantly from a tool that provides them with accurate risk assessment and early detection of BC. One potential method for detection of BC is biochemical monitoring of proteins and other molecules in bodily fluids such as serum, nipple aspirate, ductal lavage, tear, urine, saliva and breast milk. Of all these fluids, only breast milk provides access to a large volume of breast tissue, in the form of exfoliated epithelial cells, and to the local breast environment, in the form of molecules in the milk. Thus, analysis of breast milk is a non-invasive method with significant potential for assessing BC risk. Here we analyzed human breast milk by mass spectrometry (MS)-based proteomics to build a biomarker signature for early detection of BC. Ten milk samples from eight women provided five paired-groups (cancer versus control) for analysis of dysregulatedproteins: two within woman comparisons (milk from a diseased breast versus a healthy breast of the same woman) and three across women comparisons (milk from a woman with cancer versus a woman without cancer). Despite a wide range in the time between milk donation and cancer diagnosis (cancer diagnosis occurred from 1 month before to 24 months after milk donation), the levels of some proteins differed significantly between cancer and control in several of the five comparison groups. These pilot data are supportive of the idea that molecular analysis of breast milk will identify proteins informative for early detection and accurate assessment of BC risk, and warrant further research. Data are available via ProteomeXchange with identifier PXD007066.
Collapse
Affiliation(s)
- Roshanak Aslebagh
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Devika Channaveerappa
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| | - Kathleen F Arcaro
- Department of Veterinary & Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Costel C Darie
- Biochemistry & Proteomics Group, Department of Chemistry & Biomolecular Science, Clarkson University, Potsdam, NY, USA
| |
Collapse
|
18
|
Ocaña MC, Martínez-Poveda B, Quesada AR, Medina MÁ. Metabolism within the tumor microenvironment and its implication on cancer progression: An ongoing therapeutic target. Med Res Rev 2018; 39:70-113. [DOI: 10.1002/med.21511] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Ma Carmen Ocaña
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
| | - Beatriz Martínez-Poveda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
| | - Ana R. Quesada
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
- CIBER de Enfermedades Raras (CIBERER); Málaga Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), Andalucía Tech; Universidad de Málaga; Málaga Spain
- CIBER de Enfermedades Raras (CIBERER); Málaga Spain
| |
Collapse
|
19
|
Schcolnik-Cabrera A, Chávez-Blanco A, Domínguez-Gómez G, Taja-Chayeb L, Morales-Barcenas R, Trejo-Becerril C, Perez-Cardenas E, Gonzalez-Fierro A, Dueñas-González A. Orlistat as a FASN inhibitor and multitargeted agent for cancer therapy. Expert Opin Investig Drugs 2018; 27:475-489. [PMID: 29723075 DOI: 10.1080/13543784.2018.1471132] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Cancer cells have increased glycolysis and glutaminolysis. Their third feature is increased de novo lipogenesis. As such, fatty acid (FA) synthesis enzymes are over-expressed in cancer and their depletion causes antitumor effects. As fatty acid synthase (FASN) plays a pivotal role in this process, it is an attractive target for cancer therapy. AREAS COVERED This is a review of the lipogenic phenotype of cancer and how this phenomenon can be exploited for cancer therapy using inhibitors of FASN, with particular emphasis on orlistat as a repurposing drug. EXPERT OPINION Disease stabilization only has been observed with a highly selective FASN inhibitor used as a single agent in clinical trials. It is too early to say whether the absence of tumor responses other than stabilization results because even full inhibition of FASN is not enough to elicit antitumor responses. The FASN inhibitor orlistat is a 'dirty' drug with target-off actions upon at least seven targets with a proven role in tumor biology. The development of orlistat formulations suited for its intravenous administration is a step ahead to shed light on the concept that drug promiscuity can or not be a virtue.
Collapse
Affiliation(s)
| | - Alma Chávez-Blanco
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | | | - Lucia Taja-Chayeb
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Rocio Morales-Barcenas
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | | | - Enrique Perez-Cardenas
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Aurora Gonzalez-Fierro
- a Division of Basic Research , Instituto Nacional de Cancerologia , Mexico City , Mexico
| | - Alfonso Dueñas-González
- b Unit of Biomedical Research in Cancer , Instituto de Investigaciones Biomedicas, UNAM/Instituto Nacional de Cancerologia , Mexico City , Mexico
| |
Collapse
|
20
|
Griffiths SG, Cormier MT, Clayton A, Doucette AA. Differential Proteome Analysis of Extracellular Vesicles from Breast Cancer Cell Lines by Chaperone Affinity Enrichment. Proteomes 2017; 5:E25. [PMID: 28991197 PMCID: PMC5748560 DOI: 10.3390/proteomes5040025] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/28/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022] Open
Abstract
The complexity of human tissue fluid precludes timely identification of cancer biomarkers by immunoassay or mass spectrometry. An increasingly attractive strategy is to primarily enrich extracellular vesicles (EVs) released from cancer cells in an accelerated manner compared to normal cells. The Vn96 peptide was herein employed to recover a subset of EVs released into the media from cellular models of breast cancer. Vn96 has affinity for heat shock proteins (HSPs) decorating the surface of EVs. Reflecting their cells of origin, cancer EVs displayed discrete differences from those of normal phenotype. GELFrEE LC/MS identified an extensive proteome from all three sources of EVs, the vast majority having been previously reported in the ExoCarta database. Pathway analysis of the Vn96-affinity proteome unequivocally distinguished EVs from tumorigenic cell lines (SKBR3 and MCF-7) relative to a non-tumorigenic source (MCF-10a), particularly with regard to altered metabolic enzymes, signaling, and chaperone proteins. The protein data sets provide valuable information from material shed by cultured cells. It is probable that a vast amount of biomarker identities may be collected from established and primary cell cultures using the approaches described here.
Collapse
Affiliation(s)
| | | | - Aled Clayton
- School of Medicine, Cardiff University, Wales, CF14 4XN, UK.
| | - Alan A Doucette
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.
| |
Collapse
|
21
|
Menendez JA, Lupu R. Fatty acid synthase (FASN) as a therapeutic target in breast cancer. Expert Opin Ther Targets 2017; 21:1001-1016. [PMID: 28922023 DOI: 10.1080/14728222.2017.1381087] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Ten years ago, we put forward the metabolo-oncogenic nature of fatty acid synthase (FASN) in breast cancer. Since the conception of this hypothesis, which provided a model to explain how FASN is intertwined with various signaling networks to cell-autonomously regulate breast cancer initiation and progression, FASN has received considerable attention as a therapeutic target. However, despite the ever-growing evidence demonstrating the involvement of FASN as part of the cancer-associated metabolic reprogramming, translation of the basic science-discovery aspects of FASN blockade to the clinical arena remains a challenge. Areas covered: Ten years later, we herein review the preclinical lessons learned from the pharmaceutical liabilities of the first generation of FASN inhibitors. We provide an updated view of the current development and clinical testing of next generation FASN-targeted drugs. We also discuss new clinico-molecular approaches that should help us to convert roadblocks into roadways that will propel forward our therapeutic understanding of FASN. Expert opinion: With the recent demonstration of target engagement and early signs of clinical activity with the first orally available, selective, potent and reversible FASN inhibitor, we can expect Big pharma to revitalize their interest in lipogenic enzymes as well-credentialed targets for oncology drug development in breast cancer.
Collapse
Affiliation(s)
- Javier A Menendez
- a ProCURE (Program Against Cancer Therapeutic Resistance) , Metabolism & Cancer Group, Catalan Institute of Oncology , Girona , Spain.,b Girona Biomedical Research Institute (IDIBGI) , Parc Hospitalari Martí i Julià , Girona , Spain
| | - Ruth Lupu
- c Department of Medicine and Experimental Pathology , Mayo Clinic , Rochester , MN , USA.,d Mayo Clinic Cancer Center , Rochester , MN , USA
| |
Collapse
|
22
|
Buckley D, Duke G, Heuer TS, O'Farrell M, Wagman AS, McCulloch W, Kemble G. Fatty acid synthase – Modern tumor cell biology insights into a classical oncology target. Pharmacol Ther 2017; 177:23-31. [DOI: 10.1016/j.pharmthera.2017.02.021] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
23
|
Mori N, Wildes F, Takagi T, Glunde K, Bhujwalla ZM. The Tumor Microenvironment Modulates Choline and Lipid Metabolism. Front Oncol 2016; 6:262. [PMID: 28066718 PMCID: PMC5177616 DOI: 10.3389/fonc.2016.00262] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 12/09/2016] [Indexed: 12/22/2022] Open
Abstract
An increase of cellular phosphocholine (PC) and total choline (tCho)-containing compounds as well as alterations in lipids have been consistently observed in cancer cells and tissue. These metabolic changes are closely related to malignant transformation, invasion, and metastasis. The study of cancer cells in culture plays an important role in understanding mechanisms leading to altered choline (Cho) and lipid metabolism in cancer, as it provides a carefully controlled environment. However, a solid tumor is a complex system with a unique tumor microenvironment frequently containing hypoxic and acidic regions and areas of nutrient deprivation and necrosis. Cancer cell–stromal cell interactions and the extracellular matrix may also alter Cho and lipid metabolism. Human tumor xenograft models in mice are useful to mimic the growth of human cancers and provide insights into the influence of in vivo conditions on metabolism. Here, we have compared metabolites, obtained with high resolution 1H MRS of extracts from human breast and prostate cancer cells in a 2-dimensional (2D) monolayer culture and from solid tumor xenografts derived from these cells, as well as the protein expression of enzymes that regulate Cho and lipid metabolism. Our data demonstrate significant differences in Cho and lipid metabolism and protein expression patterns between human breast and prostate cancer cells in culture and in tumors derived from these cells. These data highlight the influence of the tumor microenvironment on Cho and lipid metabolism.
Collapse
Affiliation(s)
- Noriko Mori
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science , Baltimore, MD , USA
| | - Flonné Wildes
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science , Baltimore, MD , USA
| | - Tomoyo Takagi
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science , Baltimore, MD , USA
| | - Kristine Glunde
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, School of Medicine, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Dowling P, Moran B, McAuley E, Meleady P, Henry M, Clynes M, McMenamin M, Leonard N, Monks M, Wynne B, Ormond P, Larkin A. Quantitative label-free mass spectrometry analysis of formalin-fixed, paraffin-embedded tissue representing the invasive cutaneous malignant melanoma proteome. Oncol Lett 2016; 12:3296-3304. [PMID: 27899996 PMCID: PMC5103945 DOI: 10.3892/ol.2016.5101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022] Open
Abstract
Understanding the events at a protein level that govern the progression from melanoma in situ to invasive melanoma are important areas of current research to be developed. Recent advances in the analysis of formalin-fixed, paraffin-embedded tissue by proteomics, particularly using the filter-aided sample preparation protocol, has opened up the possibility of studying vast archives of clinical material and associated medical records. In the present study, quantitative protein profiling was performed using tandem mass spectrometry, and the proteome differences between melanoma in situ and invasive melanoma were compared. Biological pathway analyses revealed several signalling pathways differing between melanoma in situ and invasive melanoma, including metabolic pathways and the phosphoinositide 3-kinase-Akt signalling pathway. Selected proteins of interest (14–3-3ε and fatty acid synthase) were subsequently investigated using immunohistochemical analysis of tissue microarrays. Identifying the key proteins that play significant roles in the establishment of a more invasive phenotype in melanoma may ultimately aid diagnosis and treatment decisions.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Republic of Ireland
| | - Benvon Moran
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland; Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Edel McAuley
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| | - Mairin McMenamin
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Niamh Leonard
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Mary Monks
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Bairbre Wynne
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Patrick Ormond
- Department of Dermatology, St. James's Hospital, Trinity College Dublin, Dublin 8, Republic of Ireland
| | - Annemarie Larkin
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Republic of Ireland
| |
Collapse
|
25
|
Feng YH, Chen WY, Kuo YH, Tung CL, Tsao CJ, Shiau AL, Wu CL. Elovl6 is a poor prognostic predictor in breast cancer. Oncol Lett 2016; 12:207-212. [PMID: 27347126 DOI: 10.3892/ol.2016.4587] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Accepted: 04/29/2016] [Indexed: 12/26/2022] Open
Abstract
Elongation of long chain fatty acids family member 6 (Elovl6) has been demonstrated to be involved in insulin resistance, obesity and lipogenesis. In addition, it has been reported that the protein is upregulated in human hepatocellular carcinoma and is implicated in nonalcoholic steatohepatitis-associated liver carcinogenesis. Excess body weight has been associated with an increased risk of postmenopausal breast cancer and poor prognosis. However, the connection between Elovl6 expression and outcome of breast cancer remains uncertain. Therefore, the present study used immunohistochemical analysis to investigate the expression of Elovl6 in breast cancer tissues from patients who had undergone curative mastectomy. Out of a total of 70 patients, 37.1% of patients exhibited positive Elovl6 expression in breast cancer tissue, whilst 62.9% were considered as negative. Positive Elov16 expression correlated with positive lymph node involvement and shorter recurrence-free survival. However, Elovl6 expression had no association with primary tumor size, lymph node metastasis, stage, grade, estrogen receptor, progesterone receptor, HER2 and age. Therefore, positive Elovl6 expression is a poor prognostic factor in patients with breast cancer that have previously undergone surgery, and may function as a potential therapeutic approach in the future, particularly in the scope of obesity related disease.
Collapse
Affiliation(s)
- Yin-Hsun Feng
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan R.O.C.; Department of Nursing, College of Medicine and Life Science, Chung Hwa University of Medical Technology, Tainan 71703, Taiwan R.O.C
| | - Wei-Yu Chen
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan R.O.C
| | - Yu-Hsuan Kuo
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan R.O.C
| | - Chao-Ling Tung
- Division of Hematology and Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 71004, Taiwan R.O.C
| | - Chao-Jung Tsao
- Department of Hematology and Oncology, Chi-Mei Medical Center, Tainan 73657, Taiwan R.O.C
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan R.O.C
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan R.O.C
| |
Collapse
|
26
|
Inafuku M, Takara K, Taira N, Nugara RN, Kamiyama Y, Oku H. Monogalactosyldiacylglycerol: An abundant galactosyllipid of Cirsium brevicaule A. GRAY leaves inhibits the expression of gene encoding fatty acid synthase. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2016; 23:509-516. [PMID: 27064010 DOI: 10.1016/j.phymed.2016.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND The leaves of Cirsium brevicaule A. GRAY (CL) significantly decreased hepatic lipid accumulation and the expression of fatty acid synthase gene (FASN) in mice. PURPOSE We aimed to purify and identify the active compound(s) from CL and determine the inhibitory mechanism of expression of FASN. METHODS We purified monogalactosyldiacylglycerol (MGDG) from extracts of CL (CL-MGDG) and showed that it was the active CL component through analyses of its effects on the expression of genes of human breast cancer cell line, SKBR-3. RESULTS The content and fatty acid composition of CL-MGDG are distinctly different from those of other vegetable-derived MGDGs. Treatment of SKBR-3 cells with MGDG decreased the level of FASN mRNA as well as the levels of mRNA encoding other protein involved in lipogenesis. Further, MGDG treatments significantly inhibited luciferase activities of constructs containing liver X receptor response element in FASN promoter region without altering the levels of mRNA encoding transcription factors. MGDG and the FASN inhibitor C75 decreased the viabilities of SKBR-3 cells in a concentration-dependent manner. CL-MGDG more potently inhibited cell viability than a commercial MGDG preparation. CONCLUSIONS CL represents a good source of glycoglycerolipids with potential as functional ingredients of food.
Collapse
Affiliation(s)
- Masashi Inafuku
- Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Kensaku Takara
- Faculty of Agriculture, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Naoyuki Taira
- Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | - Ruwani N Nugara
- Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan; United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima 890-0065, Japan
| | | | - Hirosuke Oku
- Center of Molecular Biosciences, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa 903-0213, Japan.
| |
Collapse
|
27
|
Singh M, Devi U, Roy S, Gupta PS, Saraf SA, Kaithwas G. Prolyl hydroxylase mediated inhibition of fatty acid synthase to combat tumor growth in mammary gland carcinoma. Breast Cancer 2016; 23:820-829. [PMID: 26951539 DOI: 10.1007/s12282-016-0683-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/24/2016] [Indexed: 12/12/2022]
Abstract
Cancer is a group of cells which grow in an uncontrolled manner and invades to the adjacent organs to form malignant tumors. Tumor hypoxia results due to contrast between the cellular oxygen expenditure and oxygen supply to the cells. Hypoxia inducible factor (HIF) is a heterodimeric transcription factor encompass of oxygen sensitive α subunit and constitutively expressed β subunit both of which are basic helix-loop-helix protein. The stability of HIF is primarily regulated by post translational prolyl hydroxylation, catalyzed by prolyl hydroxylase 2 (Phd-2). Phd-2 is a group of enzymes that acts as an oxygen sensor. Cancer cells have altered metabolism as they fulfil their energy needs through glycolysis and lipid biogenesis. HIF-1α is known to upregulate glycolysis by activating the transcription of enzymes on the glycolytic pathway and through lipogenesis. Cancer cells have over expressed fatty acid synthase owing to altered glycolytic pathway. Considering the above, it is hypothesized that chemical activation of Phd-2 can curtail down HIF-1α and subsequently fatty acid synthase expression.
Collapse
Affiliation(s)
- Manjari Singh
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Uma Devi
- Department of Pharmaceutical Sciences, Faculty of Health Medical Sciences Indigenous and Alternative Medicine, SHIATS-Deemed to be University, Naini, Allahabad, Uttar Pradesh, India
| | - Subhadeep Roy
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Pushpraj S Gupta
- Department of Pharmaceutical Sciences, Faculty of Health Medical Sciences Indigenous and Alternative Medicine, SHIATS-Deemed to be University, Naini, Allahabad, Uttar Pradesh, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences and Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, India.
| |
Collapse
|
28
|
Diet-induced alteration of fatty acid synthase in prostate cancer progression. Oncogenesis 2016; 5:e195. [PMID: 26878389 PMCID: PMC5154344 DOI: 10.1038/oncsis.2015.42] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 02/01/2023] Open
Abstract
Fatty acid synthase (FASN) is a cytosolic metabolic enzyme that catalyzes de novo fatty acid synthesis. A high-fat diet (HFD) is attributed to prostate cancer (PCa) progression, but the role FASN on HFD-mediated PCa progression remains unclear. We investigated the role of FASN on PCa progression in LNCaP xenograft mice fed with HFD or low-fat diet (LFD), in PCa cells, and in clinical PCa. The HFD promoted tumour growth and FASN expression in the LNCaP xenograft mice. HFD resulted in AKT and extracellular signal-regulated kinase (ERK) activation and 5' adenosine monophosphate-activated protein kinase (AMPK) inactivation. Serum FASN levels were significantly lower in the HFD group (P=0.026) and correlated inversely with tumour volume (P=0.022). Extracellular FASN release was enhanced in the PCa cells with phosphatidylinositol 3-kinase (PI3K)/mitogen-activated protein kinase (MAPK) inhibition and AMPK signalling activation. FASN inhibition resulted in decrease of PCa cell proliferation through PI3K/MAPK downregulation and AMPK activation. Furthermore, AMPK activation was associated with FASN downregulation and PI3K/MAPK inactivation. Clinically, high FASN expression was significantly associated with high Gleason scores and advanced pathological T stage. Moreover, FASN expression was markedly decreased in the PCa response to androgen deprivation therapy and chemotherapy. HFD modulates FASN expression, which may be an important mechanism in HFD-associated PCa progression. Furthermore, a critical stimulatory loop exists between FASN and the PI3K/MAPK system, whereas AMPK signalling was associated with suppression. These may offer appropriate targets for chemoprevention and cancer therapy in HFD-induced PCa.
Collapse
|
29
|
Yasumoto Y, Miyazaki H, Vaidyan LK, Kagawa Y, Ebrahimi M, Yamamoto Y, Ogata M, Katsuyama Y, Sadahiro H, Suzuki M, Owada Y. Inhibition of Fatty Acid Synthase Decreases Expression of Stemness Markers in Glioma Stem Cells. PLoS One 2016; 11:e0147717. [PMID: 26808816 PMCID: PMC4726602 DOI: 10.1371/journal.pone.0147717] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 12/13/2015] [Indexed: 12/14/2022] Open
Abstract
Cellular metabolic changes, especially to lipid metabolism, have recently been recognized as a hallmark of various cancer cells. However, little is known about the significance of cellular lipid metabolism in the regulation of biological activity of glioma stem cells (GSCs). In this study, we examined the expression and role of fatty acid synthase (FASN), a key lipogenic enzyme, in GSCs. In the de novo lipid synthesis assay, GSCs exhibited higher lipogenesis than differentiated non-GSCs. Western blot and immunocytochemical analyses revealed that FASN is strongly expressed in multiple lines of patient-derived GSCs (G144 and Y10), but its expression was markedly reduced upon differentiation. When GSCs were treated with 20 μM cerulenin, a pharmacological inhibitor of FASN, their proliferation and migration were significantly suppressed and de novo lipogenesis decreased. Furthermore, following cerulenin treatment, expression of the GSC markers nestin, Sox2 and fatty acid binding protein (FABP7), markers of GCSs, decreased while that of glial fibrillary acidic protein (GFAP) expression increased. Taken together, our results indicate that FASN plays a pivotal role in the maintenance of GSC stemness, and FASN-mediated de novo lipid biosynthesis is closely associated with tumor growth and invasion in glioblastoma.
Collapse
Affiliation(s)
- Yuki Yasumoto
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirofumi Miyazaki
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Linda Koshy Vaidyan
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yoshiteru Kagawa
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Majid Ebrahimi
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yui Yamamoto
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Masaki Ogata
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yu Katsuyama
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hirokazu Sadahiro
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | - Yuji Owada
- Department of Organ Anatomy, Yamaguchi University Graduate School of Medicine, Ube, Japan
- Department of Organ Anatomy, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| |
Collapse
|
30
|
Bessadóttir M, Skúladóttir EÁ, Gowan S, Eccles S, Ögmundsdóttir S, Ogmundsdóttir HM. Effects of anti-proliferative lichen metabolite, protolichesterinic acid on fatty acid synthase, cell signalling and drug response in breast cancer cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1717-1724. [PMID: 25442282 DOI: 10.1016/j.phymed.2014.08.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 07/18/2014] [Accepted: 08/16/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND The lichen compound (+)-protolichesterinic acid (+)-PA, isolated from Iceland moss, has anti-proliferative effects on several cancer cell lines. The chemical structure of (+)-PA is similar to a known fatty acid synthase (FASN) inhibitor C75. AIMS To test whether the anti-proliferative activity of (+)-PA is associated with effects on FASN and HER2 (human epidermal growth factor receptor 2) and major signalling pathways. Synergism between (+)-PA and lapatinib, a HER2 active drug, was also evaluated. MATERIALS AND METHODS Pure compound was isolated by preparative high-performance liquid chromatography (HPLC) and purity of (+)-PA analyzed by analytical HPLC. Cell viability was assessed using Crystal violet staining. FASN and HER2 expression was estimated by immunofluorescence. The Meso Scale Discovery (MSD)(®) assay was used to measure activation of ERK1/2 and AKT. Synergism was estimated by the CalcuSyn software. RESULTS Treatment with (+)-PA increased FASN expression in SK-BR-3 cells, which overexpress FASN and HER2, implying a compensatory response to inhibition of FASN activity. HER2 expression was decreased suggesting secondary downregulation. ERK1/2 and AKT signalling pathways were inhibited, probably due to reduced levels of HER2. No effects were observed in T-47D cells. Synergism between (+)-PA and lapatinib was observed in the SK-BR-3 cells. CONCLUSION Results suggest that the primary effect of (+)-PA is inhibition of FASN activity. Synergistic effects with lapatinib were seen only in SK-BR-3 cells, and not T-47D cells, further supporting the notion that (+)-PA acts by inhibiting FASN with secondary effects on HER2 expression and signalling. (+)-PA could therefore be a suitable agent for further testing, alone or in combination treatment against HER2-overexpressing breast cancer.
Collapse
Affiliation(s)
- Margrét Bessadóttir
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland; Faculty of Pharmaceutical Sciences, University of Iceland, 101 Reykjavik, Iceland
| | | | - Sharon Gowan
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | - Suzanne Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London SW7 3RP, UK
| | | | | |
Collapse
|
31
|
Swierczynski J, Hebanowska A, Sledzinski T. Role of abnormal lipid metabolism in development, progression, diagnosis and therapy of pancreatic cancer. World J Gastroenterol 2014; 20:2279-303. [PMID: 24605027 PMCID: PMC3942833 DOI: 10.3748/wjg.v20.i9.2279] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/25/2013] [Accepted: 01/03/2014] [Indexed: 02/07/2023] Open
Abstract
There is growing evidence that metabolic alterations play an important role in cancer development and progression. The metabolism of cancer cells is reprogrammed in order to support their rapid proliferation. Elevated fatty acid synthesis is one of the most important aberrations of cancer cell metabolism. An enhancement of fatty acids synthesis is required both for carcinogenesis and cancer cell survival, as inhibition of key lipogenic enzymes slows down the growth of tumor cells and impairs their survival. Based on the data that serum fatty acid synthase (FASN), also known as oncoantigen 519, is elevated in patients with certain types of cancer, its serum level was proposed as a marker of neoplasia. This review aims to demonstrate the changes in lipid metabolism and other metabolic processes associated with lipid metabolism in pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic neoplasm, characterized by high mortality. We also addressed the influence of some oncogenic factors and tumor suppressors on pancreatic cancer cell metabolism. Additionally the review discusses the potential role of elevated lipid synthesis in diagnosis and treatment of pancreatic cancer. In particular, FASN is a viable candidate for indicator of pathologic state, marker of neoplasia, as well as, pharmacological treatment target in pancreatic cancer. Recent research showed that, in addition to lipogenesis, certain cancer cells can use fatty acids from circulation, derived from diet (chylomicrons), synthesized in liver, or released from adipose tissue for their growth. Thus, the interactions between de novo lipogenesis and uptake of fatty acids from circulation by PDAC cells require further investigation.
Collapse
|
32
|
Long QQ, Yi YX, Qiu J, Xu CJ, Huang PL. Fatty acid synthase (FASN) levels in serum of colorectal cancer patients: correlation with clinical outcomes. Tumour Biol 2014; 35:3855-9. [PMID: 24430360 DOI: 10.1007/s13277-013-1510-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/03/2013] [Indexed: 12/21/2022] Open
Abstract
Fatty acid synthase (FASN) is a common phenotype to many kinds of human cancers, such as those of the breast, ovary, pancreas, prostate, colon, and so on. Increased FASN levels have been detected in the serum of the patients with breast and pancreatic cancers. The relationship between the FASN level in serum and the clinicopathological characteristics of colorectal cancer is investigated in this study. FASN levels in serum were examined with enzyme-linked immunosorbent assay (ELISA) in 74 patients with colorectal cancer and 40 healthy persons. Pathological and clinical factors associated with FASN concentrations in serum were investigated and analyzed by statistical analysis. The FASN level in colorectal cancer patients' serum is significantly higher than that in healthy persons' serum. FASN levels in the serum of colorectal cancer patients are associated with tumor extent, lymph node metabasis status, distant metastasis, and tumor clinical stage. The 5-year overall survival rate and 5-year disease-free survival rate among patients with low FASN levels in serum are significantly higher than those among patients with high FASN levels in serum (log-rank P = 0.003). The high FASN level in serum is a promising independent predictor of colorectal cancers with advanced phases, late clinical stages, and shorter survival. These results suggest that FASN concentration in serum may be a potential and useful tumor marker.
Collapse
Affiliation(s)
- Qi-qiang Long
- Department of Internal Medicine, Medical School of Southeast University, Southeast University, DingjiaQiao 87, Nanjing, 210009, People's Republic of China
| | | | | | | | | |
Collapse
|
33
|
Ito T, Sato K, Maekawa H, Sakurada M, Orita H, Shimada K, Daida H, Wada R, Abe M, Hino O, Kajiyama Y. Elevated levels of serum fatty acid synthase in patients with gastric carcinoma. Oncol Lett 2014; 7:616-620. [PMID: 24527066 PMCID: PMC3919915 DOI: 10.3892/ol.2014.1793] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/06/2013] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is the second leading cause of cancer mortality in the world. It is important to develop biomarkers for detecting new cancers at an early stage and for treating them early during recurrence in order to guide optimal treatment. Fatty acid synthase (FAS) is highly expressed in numerous human cancers and thus could potentially serve as such a biomarker, but the potential utility of measuring FAS for detecting gastric cancer has not been previously investigated. The aim of the present study was to provide a preliminary assessment of serum FAS as a marker of gastric carcinoma. The study included 47 patients with gastric cancer and 150 healthy subjects. Blood samples were collected from each cancer patient prior to treatment. Serum FAS levels were measured by ELISA and compared across the two groups of patients. Significantly higher levels of serum FAS were found in the gastric cancer patients [95% confidence interval (CI), 30.37–52.46] compared with the healthy controls (95% CI, 1.331–2.131), with elevated levels even in patients with early-stage tumors. These results indicate that measuring serum FAS levels has strong potential to provide a biomarker for the detection of gastric cancer, with high sensitivity and specificity.
Collapse
Affiliation(s)
- Tomoaki Ito
- Department of Surgery, Juntendo Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan
| | - Koichi Sato
- Department of Surgery, Juntendo Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan
| | - Hiroshi Maekawa
- Department of Surgery, Juntendo Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan
| | - Mutsumi Sakurada
- Department of Surgery, Juntendo Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan
| | - Hajime Orita
- Department of Surgery, Juntendo Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan
| | - Kazunori Shimada
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroyuki Daida
- Department of Cardiovascular Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Ryo Wada
- Department of Pathology, Juntendo Shizuoka Hospital, Juntendo University School of Medicine, Shizuoka, Japan
| | - Masaaki Abe
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Okio Hino
- Department of Pathology and Oncology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yoshiaki Kajiyama
- Department of Esophageal and Gastroenterological Surgery, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Hopperton KE, Duncan RE, Bazinet RP, Archer MC. Fatty acid synthase plays a role in cancer metabolism beyond providing fatty acids for phospholipid synthesis or sustaining elevations in glycolytic activity. Exp Cell Res 2013; 320:302-10. [PMID: 24200503 DOI: 10.1016/j.yexcr.2013.10.016] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/08/2013] [Accepted: 10/27/2013] [Indexed: 12/22/2022]
Abstract
Fatty acid synthase is over-expressed in many cancers and its activity is required for cancer cell survival, but the role of endogenously synthesized fatty acids in cancer is unknown. It has been suggested that endogenous fatty acid synthesis is either needed to support the growth of rapidly dividing cells, or to maintain elevated glycolysis (the Warburg effect) that is characteristic of cancer cells. Here, we investigate both hypotheses. First, we compared utilization of fatty acids synthesized endogenously from (14)C-labeled acetate to those supplied exogenously as (14)C-labeled palmitate in the culture medium in human breast cancer (MCF-7 and MDA-MB-231) and untransformed breast epithelial cells (MCF-10A). We found that cancer cells do not produce fatty acids that are different from those derived from exogenous palmitate, that these fatty acids are esterified to the same lipid and phospholipid classes in the same proportions, and that their distribution within neutral lipids is not different from untransformed cells. These results suggest that endogenously synthesized fatty acids do not fulfill a specific function in cancer cells. Furthermore, we observed that cancer cells excrete endogenously synthesized fatty acids, suggesting that they are produced in excess of requirements. We next investigated whether lipogenic activity is involved in the maintenance of high glycolytic activity by culturing both cancer and non-transformed cells under anoxic conditions. Although anoxia increased glycolysis 2-3 fold, we observed no concomitant increase in lipogenesis. Our results indicate that breast cancer cells do not have a specific qualitative or quantitative requirement for endogenously synthesized fatty acids and that increased de novo lipogenesis is not required to sustain elevations in glycolytic activity induced by anoxia in these cells.
Collapse
Affiliation(s)
- Kathryn E Hopperton
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| | - Robin E Duncan
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| | - Richard P Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| | - Michael C Archer
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2; Department of Medical Biophysics, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2.
| |
Collapse
|
35
|
Lee JS, Yoon IS, Lee MS, Cha EY, Thuong PT, Diep TT, Kim JR. Anticancer activity of pristimerin in epidermal growth factor receptor 2-positive SKBR3 human breast cancer cells. Biol Pharm Bull 2013; 36:316-25. [PMID: 23370361 DOI: 10.1248/bpb.b12-00685] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pristimerin is a naturally occurring triterpenoid that causes cytotoxicity in several cancer cell lines. However, the mechanism of action for the cytotoxic effect of pristimerin has not been unexplored. The purpose of this study was to investigate the effect of pristimerin on cytotoxicity using the epidermal growth factor receptor 2 (HER2)-positive SKBR3 human breast cancer cell line. Pristimerin inhibited proliferation in dose- and time-dependent manners in cells. We found it to be effective for suppressing HER2 protein and mRNA expression. Fatty acid synthase (FASN) expression and FASN activity were downregulated by pristimerin. Adding of exogenous palmitate, the end product of de novo fatty acid synthesis, reduced the proliferation activity of pristimerin. The changes in HER2 and FASN expression induced by pristimerin altered the levels of Akt and mitogen-activated protein kinase (MAPK) phosphorylation (Erk1/2, p38, and c-Jun N-terminal kinase (JNK)). Pristimerin lowered the levels of phosphorylated mammalian target of rapamycin (mTOR) and its downstream targets such as phosphoprotein 70 ribosomal protein S6 kinase and 4E binding protein1. Pristimerin inhibited migration and invasion of cells, and co-treatment with the mTOR inhibitor rapamycin additionally suppressed these activities. Pristimerin-induced apoptosis was evaluated using Western blotting for caspase-3, -8, -9, and poly (ADP-ribose) polymerase expression and flow cytometric analysis for propidium iodide labeling. These results suggest that pristimerin is a novel HER2-downregulated compound that is able to decrease fatty acid synthase and modulate the Akt, MAPK, and mTOR signaling pathways to influence metastasis and apoptosis. Pristimerin may be further evaluated as a chemotherapeutic agent for HER2-positive breast cancers.
Collapse
Affiliation(s)
- Jin Sun Lee
- Department of Surgery, Chungnam National University Hospital, Daejeon 301–721, Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Xue T, Zhang Y, Zhang L, Yao L, Hu X, Xu LX. Proteomic Analysis of Two Metabolic Proteins with Potential to Translocate to Plasma Membrane Associated with Tumor Metastasis Development and Drug Targets. J Proteome Res 2013; 12:1754-63. [DOI: 10.1021/pr301100r] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ting Xue
- School of Biomedical Engineering
and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Zhang
- School of Biomedical Engineering
and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Luofu Zhang
- School
of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ling Yao
- School of Biomedical Engineering
and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaofang Hu
- School of Biomedical Engineering
and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Lisa X. Xu
- School of Biomedical Engineering
and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Notarnicola M, Tutino V, Calvani M, Lorusso D, Guerra V, Caruso MG. Serum levels of fatty acid synthase in colorectal cancer patients are associated with tumor stage. J Gastrointest Cancer 2013; 43:508-11. [PMID: 21727995 DOI: 10.1007/s12029-011-9300-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
PURPOSE Fatty acid synthase is a common phenotype to various human cancers including those of prostate, colon, lung, endometrium, and stomach. Increased fatty acid synthase levels have been detected in serum from patients with breast and pancreatic cancer. In this study, serum levels of fatty acid synthase were measured in colorectal cancer patients at different stages of disease. METHODS Consecutive 67 patients with colorectal cancer were enrolled in the study. Serum levels of fatty acid synthase were examined by ELISA test. The Kruskal-Wallis test and the χ (2) method for trend have been used to analyze data. RESULTS Serum fatty acid synthase levels of patients belonging to three groups of stage disease are statistically different. The patients with stage III and IV have significantly higher serum levels of fatty acid synthase than patients with stage I-II. There is a positive trend in serum fatty acid synthase levels from stage I-II to stage III and IV of disease. CONCLUSIONS Fatty acid synthase levels are associated with the stage of disease in patients with colorectal cancer.
Collapse
Affiliation(s)
- Maria Notarnicola
- Laboratory of Biochemistry, National Institute for Digestive Diseases, Castellana Grotte, Bari, Italy
| | | | | | | | | | | |
Collapse
|
38
|
Song HJ, Sneddon AA, Heys SD, Wahle KWJ. Regulation of fatty acid synthase (FAS) and apoptosis in estrogen-receptor positive and negative breast cancer cells by conjugated linoleic acids. Prostaglandins Leukot Essent Fatty Acids 2012; 87:197-203. [PMID: 23142364 DOI: 10.1016/j.plefa.2012.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 08/31/2012] [Accepted: 09/13/2012] [Indexed: 11/30/2022]
Abstract
BACKGROUND Conjugated linoleic acids (CLAs) are natural dairy food components that exhibit a unique body of potential health benefits in animals and man, including anti-cardiovascular disease and anti-cancer effects. Several studies have demonstrated that fatty acid synthase (FAS) levels (protein and mRNA) are over expressed in many carcinomas. Sterol regulatory element binding proteins (SREBPs) are transcription factors that regulate genes involved in lipid metabolism, including FAS. METHODS Breast cancer cell lines, MCF-7 and MDA-MB-231 were treated with CLAs to investigate the regulation of SREBP-1c and FAS expression. RESULTS In MDA-MB-231 cells, SREBP-1c and FAS were co-ordinately decreased by treatment with 25 μM CLA 9-11 and 10-12. In MCF-7 cells, the decrease in SREBP-1c and FAS expression was dependant on the concentration of CLA used. CONCLUSIONS The data suggest a differential effect of CLAs on SREBP-1c and FAS in estrogen receptor-positive (MCF-7) compared to estrogen receptor-negative (MDA-MB-231) breast cancer cells.
Collapse
Affiliation(s)
- H-J Song
- School of Life Science, The Robert Gordon University, Aberdeen, AB10 1JQ, UK
| | | | | | | |
Collapse
|
39
|
Notarnicola M, Misciagna G, Tutino V, Chiloiro M, Osella AR, Guerra V, Bonfiglio C, Caruso MG. Increased serum levels of lipogenic enzymes in patients with severe liver steatosis. Lipids Health Dis 2012; 11:145. [PMID: 23110339 PMCID: PMC3494566 DOI: 10.1186/1476-511x-11-145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 10/26/2012] [Indexed: 01/21/2023] Open
Abstract
Background Lipid metabolism is altered in subjects with liver steatosis. FAS is a key enzyme in de novo lipogenesis and both FAS gene expression and enzymatic activity are primarily regulated by metabolic signals in the liver. Lipoprotein lipase (LPL), the rate-limiting enzyme for the hydrolysis of core triglycerides, plays a pivotal role in lipid metabolism. This study aims to investigate if circulating levels of FAS and LPL could be clinically associated with liver steatosis. Methods In this work, we present data obtained from a subsample of 94 subjects with liver steatosis enrolled by NUTRIEPA study, a nutritional trial in subjects with liver steatosis. Serum levels of FAS protein and LPL activity were evaluated by ELISA test and by a fluorescent method, respectively. The diagnosis and the degree of liver steatosis were based on laboratory and ecographic measurements. Statistical methods included Kruskal-Wallis analysis of variance and Wilcoxon signed-rank test, where appropriate. The χ2 test has been performed to analyse categorical variables. Results The subjects with severe steatosis had significantly higher serum levels of FAS protein and LPL activity compared to subjects with mild and moderate liver steatosis. Moreover, a positive trend in serum levels of FAS expression from lower to higher degree of steatosis was also detected. Conclusions We describe a relationship between human liver steatosis and elevated levels of circulating lipogenic enzymes. Increased serum levels of FAS expression and LPL activity could be considered a marker of severe liver steatosis.
Collapse
Affiliation(s)
- Maria Notarnicola
- Laboratory of Biochemistry, National Institute for Digestive Diseases, Castellana Grotte, 70013, Bari, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Sahn JJ, Martin SF. Expedient synthesis of norbenzomorphan library via multicomponent assembly process coupled with ring-closing reactions. ACS COMBINATORIAL SCIENCE 2012; 14:496-502. [PMID: 22857149 DOI: 10.1021/co300068a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A 124-member norbenzomorphan library has been prepared utilizing a novel multicomponent assembly process (MCAP) followed by a variety of ring-closing reactions to generate norbenzomorphan scaffolds that were readily derivatized via a series of aryl halide cross-coupling and nitrogen functionalization reactions. Biological screening has revealed some novel activities that have not been previously associated with this class of compounds.
Collapse
Affiliation(s)
- James J. Sahn
- Department of Chemistry and Biochemistry,
The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry,
The Texas
Institute for Drug and Diagnostic Development, The University of Texas, Austin, Texas 78712, United States
| |
Collapse
|
41
|
Masood MA, Rao RP, Acharya JK, Blonder J, Veenstra TD. Quantitation of multiple sphingolipid classes using normal and reversed-phase LC-ESI-MS/MS: comparative profiling of two cell lines. Lipids 2012; 47:209-26. [PMID: 22124806 PMCID: PMC7480952 DOI: 10.1007/s11745-011-3633-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/04/2011] [Indexed: 12/17/2022]
Abstract
Sphingolipids are an important class of compounds that regulate signal transduction and other vital cellular processes. Herein, we report sensitive normal and reversed phase LC-MS/MS methods for quantitation of multiple sphingolipid classes. In the normal-phase ESI/MS/MS method, a high content of organic solvents was utilized, which, although it included hexane, ethyl acetate, acetonitrile containing 2% methanol, 1-2% acetic acid, and 5 mM ammonium acetate, resulted in a very efficient electrospray ionization of the ceramides (Cers) and hexosylceramides (MHCers). Three normal-phase LC-MS/MS methods using segmented phases were developed to specifically target Cers, MHCers, or sphingomyelins (SMs). This segmentation scheme increases the number of data points acquired for a given analyte and enhances the sensitivity and specificity of the measurements. Nine separate reversed phase chromatography methods were developed for the three classes of compounds. These assays were used for comparing the levels of Cers, SMs, and MHCers from mouse embryonic fibroblast (pMEF) and human embryonic kidney (HEK293) cells. These findings were then compared with the reported data from RAW264.7 mouse macrophage cells, BHK21 hamster cells, and human plasma and serum samples. The analysis of cell lines, using both normal and reversed phase chromatography, revealed discrimination based on the type of chromatography chosen, while sphingolipid assays of samples containing different amounts of protein showed different results, even after normalizing for protein content. Also, LC/MS/MS profiles were provided for the classes and individual compounds so that they could be used as "molecular profiles" for class or individual sample analysis.
Collapse
Affiliation(s)
- M Athar Masood
- Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick, Inc., National Cancer Institute at Frederick, Frederick, MD 21702-1201, USA.
| | | | | | | | | |
Collapse
|
42
|
Little GH, Noushmehr H, Baniwal SK, Berman BP, Coetzee GA, Frenkel B. Genome-wide Runx2 occupancy in prostate cancer cells suggests a role in regulating secretion. Nucleic Acids Res 2011; 40:3538-47. [PMID: 22187159 PMCID: PMC3333873 DOI: 10.1093/nar/gkr1219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Runx2 is a metastatic transcription factor (TF) increasingly expressed during prostate cancer (PCa) progression. Using PCa cells conditionally expressing Runx2, we previously identified Runx2-regulated genes with known roles in epithelial-mesenchymal transition, invasiveness, angiogenesis, extracellular matrix proteolysis and osteolysis. To map Runx2-occupied regions (R2ORs) in PCa cells, we first analyzed regions predicted to bind Runx2 based on the expression data, and found that recruitment to sites upstream of the KLK2 and CSF2 genes was cyclical over time. Genome-wide ChIP-seq analysis at a time of maximum occupancy at these sites revealed 1603 high-confidence R2ORs, enriched with cognate motifs for RUNX, GATA and ETS TFs. The R2ORs were distributed with little regard to annotated transcription start sites (TSSs), mainly in introns and intergenic regions. Runx2-upregulated genes, however, displayed enrichment for R2ORs within 40 kb of their TSSs. The main annotated functions enriched in 98 Runx2-upregulated genes with nearby R2ORs were related to invasiveness and membrane trafficking/secretion. Indeed, using SDS-PAGE, mass spectrometry and western analyses, we show that Runx2 enhances secretion of several proteins, including fatty acid synthase and metastasis-associated laminins. Thus, combined analysis of Runx2's transcriptome and genomic occupancy in PCa cells lead to defining its novel role in regulating protein secretion.
Collapse
Affiliation(s)
- Gillian H Little
- Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | | | | | |
Collapse
|
43
|
do Prado RF, da Silva Machado AL, Colombo CED, Carvalho YR. Immunohistochemical study of the expression of fatty acid synthase and Ki-67 in salivary gland tumors. J Oral Pathol Med 2011; 40:467-75. [DOI: 10.1111/j.1600-0714.2011.01023.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
44
|
Oliveras G, Blancafort A, Urruticoechea A, Campuzano O, Gómez-Cabello D, Brugada R, López-Rodríguez ML, Colomer R, Puig T. Novel anti-fatty acid synthase compounds with anti-cancer activity in HER2+ breast cancer. Ann N Y Acad Sci 2010; 1210:86-92. [PMID: 20973802 DOI: 10.1111/j.1749-6632.2010.05777.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fatty acid synthase (FASN) expression and activity has emerged as a common phenotype in most human carcinomas, including breast cancer, and its expression is tightly linked to HER2 signaling pathways. The development of inhibitors of FASN activity has consequently appeared as a novel antitarget modality for treating cancer. However, the clinical use of FASN inhibitors, such as cerulenin, C75, and epigallocatechin 3-gallate (EGCG), is limited by anorexia and induced body weight loss or by its low in vivo potency and stability. Here, we summarize the design and development of G28UCM, the lead-compound of a novel family of synthetic FASN inhibitors, with both in vitro and in vivo activity in a human breast cancer model of FASN(+) and HER2(+) .
Collapse
Affiliation(s)
- G Oliveras
- Institut d'Investigació Biomèdica de Girona - Facultat de Medicina, Girona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Aragonès G, Alonso-Villaverde C, Oliveras-Ferraros C, Beltrán-Debón R, Rull A, Rodríguez-Sanabria F, Camps J, Martín AV, Menéndez JA, Joven J. Infection with HIV and HCV enhances the release of fatty acid synthase into circulation: evidence for a novel indicator of viral infection. BMC Gastroenterol 2010; 10:92. [PMID: 20707918 PMCID: PMC2928758 DOI: 10.1186/1471-230x-10-92] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 08/13/2010] [Indexed: 01/01/2023] Open
Abstract
Background Fatty acid synthase (FASN) is an enzyme synthesized by the liver and plays an important role in lipogenesis. The present study aimed to investigate whether serum FASN concentration may provide a direct link between HIV and/or HCV viral infections and lipid metabolic disorders commonly observed in HIV/HCV-infected patients. Methods We evaluated serum FASN concentration in 191 consecutive HIV-infected patients in the absence or presence of HCV co-infection. For comparison, 102 uninfected controls were included. Metabolic and inflammatory phenotype was also compared with respect to the presence of HCV co-infection. Results Serum FASN concentration was significantly higher in HIV-infected patients than in healthy participants and HCV co-infected patients showed higher levels than those without co-infection. Levels were also affected by treatment regimen, but marginally influenced by virological variables. Insulin concentration was the sole variable among metabolic parameters that demonstrated a significant correlation with serum FASN concentrations. Serum alanine aminotransferase (ALT) values correlated significantly with serum FASN concentration and provided the best discrimination with respect to the presence or absence of HCV co-infection. In multivariate analysis, only ALT, monocyte chemoattractant protein-1 (MCP-1) and the presence of antiretroviral treatment regimen significantly contributed to explain serum FASN concentration in HIV/HCV co-infected patients. Conclusion Serum FASN concentration is significantly increased in HIV-infected individuals. The release of FASN into the circulation is further enhanced in patients who are co-infected with HCV. Subsequent studies should explore the usefulness of this indicator to monitor the effect of viral infections on disease progression and survival.
Collapse
Affiliation(s)
- Gerard Aragonès
- Centre de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Fernandez-Real JM, Menendez JA, Moreno-Navarrete JM, Blüher M, Vazquez-Martin A, Vázquez MJ, Ortega F, Diéguez C, Frühbeck G, Ricart W, Vidal-Puig A. Extracellular fatty acid synthase: a possible surrogate biomarker of insulin resistance. Diabetes 2010; 59:1506-11. [PMID: 20299470 PMCID: PMC2874712 DOI: 10.2337/db09-1756] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
CONTEXT Circulating fatty acid synthase (FASN) is a biomarker of metabolically demanding human diseases. The aim of this study was to determine whether circulating FASN could be a biomarker of overnutrition-induced metabolic stress and insulin resistance in common metabolic disorders. RESEARCH DESIGN AND METHODS Circulating FASN was evaluated in two cross-sectional studies in association with insulin sensitivity and in four longitudinal studies investigating the effect of diet- and surgery-induced weight loss, physical training, and adipose tissue expansion using peroxisome proliferator-activated receptor agonist rosiglitazone on circulating FASN. RESULTS Age- and BMI-adjusted FASN concentrations were significantly increased in association with obesity-induced insulin resistance in two independent cohorts. Both visceral and subcutaneous FASN expression and protein levels correlated inversely with extracellular circulating FASN (P = -0.63; P < 0.0001), suggesting that circulating FASN is linked to depletion of intracellular FASN. Improved insulin sensitivity induced by therapeutic strategies that decreased fat mass (diet induced, surgery induced, or physical training) all led to decreased FASN levels in blood (P values between 0.02 and 0.04). To discriminate whether this was an effect related to insulin sensitization, we also investigated the effects of rosiglitazone. Rosiglitazone did not lead to significant changes in circulating FASN concentration. CONCLUSIONS Our results suggest that circulating FASN is a biomarker of overnutrition-induced insulin resistance that could provide diagnostic and prognostic advantages by providing insights on the individualized metabolic stress.
Collapse
Affiliation(s)
- Jose Manuel Fernandez-Real
- Department of Diabetes, Endocrinology and Nutrition, Institutd' Investigació Biomédica de Girona, CIBEROBN Fisiopatología de la Obesidad y Nutrición CB06/03/010, Girona, Catalonia, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Furuta E, Okuda H, Kobayashi A, Watabe K. Metabolic genes in cancer: their roles in tumor progression and clinical implications. Biochim Biophys Acta Rev Cancer 2010; 1805:141-52. [PMID: 20122995 DOI: 10.1016/j.bbcan.2010.01.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/11/2010] [Accepted: 01/24/2010] [Indexed: 12/12/2022]
Abstract
Re-programming of metabolic pathways is a hallmark of physiological changes in cancer cells. The expression of certain genes that directly control the rate of key metabolic pathways including glycolysis, lipogenesis and nucleotide synthesis are drastically altered at different stages of tumor progression. These alterations are generally considered as an adaptation of tumor cells; however, they also contribute to the progression of tumor cells to become more aggressive phenotypes. This review summarizes the recent information about the mechanistic link of these genes to oncogenesis and their potential utility as diagnostic markers as well as for therapeutic targets. We particularly focus on three groups of genes; GLUT1, G6PD, TKTL1 and PGI/AMF in glycolytic pathway, ACLY, ACC1 and FAS in lipogenesis and RRM2, p53R2 and TYMS for nucleotide synthesis. All these genes are highly up-regulated in a variety of tumor cells in cancer patients, and they play active roles in tumor progression rather than expressing merely as a consequence of phenotypic change of the cancer cells. Molecular dissection of their orchestrated networks and understanding the exact mechanism of their expression will provide a window of opportunity to target these genes for specific cancer therapy. We also reviewed existing database of gene microarray to validate the utility of these genes for cancer diagnosis.
Collapse
Affiliation(s)
- Eiji Furuta
- Department of Medical Microbiology and Immunology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | |
Collapse
|
48
|
Marsillach J, Oliveras-Ferraros C, Beltrán R, Rull A, Aragonès G, Alonso-Villaverde C, Vázquez-Martín A, Joven J, Menéndez JA, Camps J. Serum concentrations of extracellular fatty acid synthase in patients with steatohepatitis. Clin Chem Lab Med 2009; 47:1097-9. [PMID: 19728851 DOI: 10.1515/cclm.2009.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Fatty acid synthase (FASN) is an enzyme synthesized by the liver and plays an important role in lipogenesis. The present study aimed to assess whether serum FASN concentrations are altered in patients with chronic liver disease, and to investigate whether its measurement may be a useful tool in the clinical evaluation of this derangement. METHODS We investigated 93 patients with chronic liver disease (14 minimal change disease, 79 steatohepatitis) and 100 control subjects. Serum FASN concentrations were measured using ELISA. RESULTS Patients had a significant increase in serum FASN concentration (p<0.001), which was specifically associated with the hepatic Knodell sub-index III of portal inflammation (p=0.019). In addition, serum FASN concentrations were significantly correlated with the circulating levels of the monocyte chemoattractant protein-1 (MCP-1) (Spearman rho=0.375; p<0.001) and type III procollagen-N-peptide (P-III-P) (Spearman rho=0.297; p<0.001). CONCLUSIONS Serum FASN concentrations are increased in patients with chronic liver impairment, and are associated with specific histological alterations and biochemical markers of portal inflammation. These data suggest that FASN measurement may contribute significantly to the evaluation of these patients.
Collapse
Affiliation(s)
- Judit Marsillach
- Centre de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Walter K, Hong SM, Nyhan S, Canto M, Fedarko N, Klein A, Griffith M, Omura N, Medghalchi S, Kuhajda F, Goggins M. Serum fatty acid synthase as a marker of pancreatic neoplasia. Cancer Epidemiol Biomarkers Prev 2009; 18:2380-5. [PMID: 19723916 DOI: 10.1158/1055-9965.epi-09-0144] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Markers of early pancreatic cancer and its precursors are needed to improve the uniformly poor prognosis of this disease. Fatty acid synthase (FAS) catalyzes the synthesis of long-chain fatty acids and is overexpressed in most human solid tumors. We therefore evaluated serum FAS as a marker of pancreatic adenocarcinoma. FAS expression patterns in primary pancreatic adenocarcinomas, intraductal papillary mucinous neoplasms (IPMN), and chronic pancreatitis tissues were analyzed by immunohistochemistry. Serum FAS levels were determined by ELISA in 102 patients with pancreatic adenocarcinomas, in 42 patients with IPMNs, in 27 patients with chronic pancreatitis, and in 39 healthy control subjects. FAS protein was overexpressed in the ductal epithelium of 343 of 399 primary pancreatic adenocarcinomas (86.0%) and 28 of 30 IPMNs (93.3%), and in the islet and ductal cells in 3 of 54 chronic pancreatitis tissues (5.6%), whereas normal ductal epithelium lacked FAS expression. Serum FAS levels were significantly higher in patients with pancreatic ductal adenocarcinoma (first quartile median, 22.0; 4.5 ng/mL), in patients with IPMNs (20.7; 9.4 ng/mL), and in patients with chronic pancreatitis (31.1; 11.9 ng/mL) than in healthy controls (0; 0 ng/mL). FAS levels declined postoperatively in 8 of 9 patients with pancreatic adenocarcinoma and elevations of their preoperative serum FAS. In conclusion, serum FAS levels are elevated in patients with pancreatic cancer and IPMNs and are associated with neoplastic overexpression of FAS.
Collapse
Affiliation(s)
- Kim Walter
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu H, Li J, Zhao W, Bao L, Song X, Xia Y, Wang X, Zhang C, Wang X, Yao X, Li M. Fatty acid synthase inhibitors from Geum japonicum Thunb. var. chinense. Chem Biodivers 2009; 6:402-10. [PMID: 19319862 DOI: 10.1002/cbdv.200700462] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bioassay-guided fractionation of the MeOH extract of Geum japonicum Thunb. var. chinense using the fatty acid synthase inhibition assay led to the isolation of a new dimeric ellagitannin, gemin G (1), together with six known compounds, gemin A (2), casuarinin (3), pedunculagin (4), potentillin (5) , tellimagrandin II (6), and ellagic acid (7). Their structures were determined on the basis of spectroscopic analyses. Compounds 1-7 displayed strong inhibitory activities on fatty acid synthase with IC(50) values in the range of 0.21-41.4 microM. Compounds 1-4 exhibited significant antioxidant activities higher than vitamin C in the ORAC assay. Compounds 1 and 2 also showed weak cytotoxic effects on BGC-823 cell.
Collapse
Affiliation(s)
- Hongwei Liu
- Institute of Microbiology, Chinese Academy of Sciences, No. 8 Zhongguancun Beiertiao Road, Haidian District, Beijing, P. R. China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|