1
|
Pan J, Zhang C, Sa G, Huang H, Zhang R, Chen F. Identification of ribosomal protein S21 as a potential prognostic and immunotherapy biomarker for hepatocellular carcinoma. Asian J Surg 2024:S1015-9584(24)01315-0. [PMID: 38987142 DOI: 10.1016/j.asjsur.2024.06.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 06/05/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND Recent studies show that ribosomal protein S21 (RPS21) plays a role in the development and progression of various malignancies. However, the biological value of RPS21 in hepatocellular carcinoma (HCC) and its association with immunotherapy remain unknown. METHODS Here, we examined the differential expression of RPS21 between HCC and normal liver tissues, using the TCGA, ICGC and GEO databases, followed by verification by reverse-transcription quantitative polymerase chain reaction (RT-qPCR) in LO2, SMMC7721, HepG2, and MHCC-97H cell lines. Kaplan-Meier and Cox regression analyses were applied to investigate how RPS21 expression influenced overall survival, and a nomogram was established to predict prognosis among HCC patients. We further analyzed how RPS21 expression was related to tumor immune microenvironment, immunotherapy efficiency, and genomic alterations, and investigated potential underlying mechanisms. RESULTS RPS21 upregulation was observed in HCC tissues and cell lines, compared to normal controls. Survival analysis revealed that RPS21 overexpression was significantly associated with poor clinical outcomes (all p < 0.05). Functional enrichment analyses indicated that differentially expressed genes relative to RPS21 expression were mainly involved in tumor response, proliferation, and metabolism. Additionally, RPS21 expression was positively correlated with the infiltration of activated CD4+ T cells and tumor mutational burden (all p < 0.05). Moreover, RPS21 was co-expressed with immune-related genes and immune checkpoint genes. Analyses of drug sensitivity predict that HCC patients with low RPS21 expression were more sensitive to targeted immunotherapy. CONCLUSIONS The present results suggested that RPS21 might be a promising prognostic marker and a potential immunotherapy target for patients with HCC.
Collapse
Affiliation(s)
- Junhan Pan
- Department of Radiology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Cong Zhang
- Hepatobiliary and Pancreatic Interventional Treatment Center, Division of Hepatobiliary and Pancreatic Surgery, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Guo Sa
- Department of Radiology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Huizhen Huang
- Department of Radiology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Rui Zhang
- Department of Radiology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China
| | - Feng Chen
- Department of Radiology, Zhejiang University School of Medicine First Affiliated Hospital, Hangzhou, China.
| |
Collapse
|
2
|
Wu H, Xia L, Sun L, Li D, Liu X, Song H, Sheng J, Wang K, Feng Q. RPL35A drives ovarian cancer progression by promoting the binding of YY1 to CTCF promoter. J Cell Mol Med 2024; 28:e18115. [PMID: 38436544 PMCID: PMC10910871 DOI: 10.1111/jcmm.18115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/20/2023] [Accepted: 12/27/2023] [Indexed: 03/05/2024] Open
Abstract
Ovarian cancer is one of the most common gynaecological malignancies with poor prognosis and lack of effective treatment. The improvement of the situation of ovarian cancer urgently requires the exploration of its molecular mechanism to develop more effective molecular targeted drugs. In this study, the role of human ribosomal protein l35a (RPL35A) in ovarian cancer was explored in vitro and in vivo. Our data identified that RPL35A expression was abnormally elevated in ovarian cancer. Clinically, high expression of RPL35A predicted short survival and poor TNM staging in patients with ovarian cancer. Functionally, RPL35A knock down inhibited ovarian cancer cell proliferation and migration, enhanced apoptosis, while overexpression had the opposite effect. Mechanically, RPL35A promoted the direct binding of transcription factor YY1 to CTCF in ovarian cancer cells. Consistently, RPL35A regulated ovarian cancer progression depending on CTCF in vitro and in vivo. Furthermore, RPL35A affected the proliferation and apoptosis of ovarian cancer cells through PPAR signalling pathway. In conclusion, RPL35A drove ovarian cancer progression by promoting the binding of YY1 and CTCF promoter, and inhibiting this process may be an effective strategy for targeted therapy of this disease.
Collapse
Affiliation(s)
- Huijuan Wu
- Department of Gynecological OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Liangbin Xia
- Department of Obstetrics and GynecologyRenmin Hospital of Wuhan UniversityWuhanChina
| | - Lu Sun
- Department of Gynecological OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Dan Li
- Department of Gynecological OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Xiangyu Liu
- Department of Gynecological OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Hualin Song
- Department of Gynecological OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Jindong Sheng
- Department of Gynecological OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Ke Wang
- Department of Gynecological OncologyTianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and TherapyTianjinChina
| | - Qinmei Feng
- Department of Gynecological OncologyShanxi Province People's HospitalShanxiChina
| |
Collapse
|
3
|
Heß D, Holzhausen A, Hess WR. Insight into the nodal cells transcriptome of the streptophyte green alga Chara braunii S276. PHYSIOLOGIA PLANTARUM 2023; 175:e14025. [PMID: 37882314 DOI: 10.1111/ppl.14025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 10/27/2023]
Abstract
Charophyceae are the most complex streptophyte algae, possessing tissue-like structures, rhizoids and a cellulose-pectin-based cell wall akin to embryophytes. Together with the Zygnematophyceae and the Coleochaetophycae, the Charophyceae form a grade in which the Zygnematophyceae share a last common ancestor with land plants. The availability of genomic data, its short life cycle, and the ease of non-sterile cultivation in the laboratory have made the species Chara braunii an emerging model system for streptophyte terrestrialization and early land plant evolution. In this study, tissue containing nodal cells was prepared under the stereomicroscope, and an RNA-seq dataset was generated and compared to transcriptome data from whole plantlets. In both samples, transcript coverage was high for genes encoding ribosomal proteins and a homolog of the putative PAX3- and PAX7-binding protein 1. Gene ontology was used to classify the putative functions of the differently expressed genes. In the nodal cell sample, main upregulated molecular functions were related to protein, nucleic acid, ATP- and DNA binding. Looking at specific genes, several signaling-related genes and genes encoding sugar-metabolizing enzymes were found to be expressed at a higher level in the nodal cell sample, while photosynthesis-and chloroplast-related genes were expressed at a comparatively lower level. We detected the transcription of 21 different genes encoding DUF4360-containing cysteine-rich proteins. The data contribute to the growing understanding of Charophyceae developmental biology by providing a first insight into the transcriptome composition of Chara nodal cells.
Collapse
Affiliation(s)
- Daniel Heß
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Anja Holzhausen
- Plant Cell Biology, Department of Biology, Philipps University Marburg, Marburg, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics Group, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Ahmad U, Abdullah S, Chau DM, Chia SL, Yusoff K, Chan SC, Ong TA, Razack AH, Veerakumarasivam A. Analysis of PPI networks of transcriptomic expression identifies hub genes associated with Newcastle disease virus persistent infection in bladder cancer. Sci Rep 2023; 13:7323. [PMID: 37147328 PMCID: PMC10162992 DOI: 10.1038/s41598-022-20521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 09/14/2022] [Indexed: 05/07/2023] Open
Abstract
Bladder cancer cells can acquire persistent infection of oncolytic Newcastle disease virus (NDV) but the molecular mechanism(s) remain unelucidated. This poses a major barrier to the effective clinical translation of oncolytic NDV virotherapy of cancers. To improve our understanding of the molecular mechanism(s) associated with the development of NDV persistent infection in bladder cancer, we used mRNA expression profiles of persistently infected bladder cancer cells to construct PPI networks. Based on paths and modules in the PPI network, the bridges were found mainly in the upregulated mRNA-pathways of p53 signalling, ECM-receptor interaction, and TGF-beta signalling and downregulated mRNA-pathways of antigen processing and presentation, protein processing in endoplasmic reticulum, completement and coagulation cascades in persistent TCCSUPPi cells. In persistent EJ28Pi cells, connections were identified mainly through upregulated mRNA-pathways of renal carcinoma, viral carcinogenesis, Ras signalling and cell cycle and the downregulated mRNA-pathways of Wnt signalling, HTLV-I infection and pathways in cancers. These connections were mainly dependent on RPL8-HSPA1A/HSPA4 in TCCSUPPi cells and EP300, PTPN11, RAC1-TP53, SP1, CCND1 and XPO1 in EJ28Pi cells. Oncomine validation showed that the top hub genes identified in the networks that include RPL8, THBS1, F2 from TCCSUPPi and TP53 and RAC1 from EJ28Pi are involved in the development and progression of bladder cancer. Protein-drug interaction networks identified several putative drug targets that could be used to disrupt the linkages between the modules and prevent bladder cancer cells from acquiring NDV persistent infection. This novel PPI network analysis of differentially expressed mRNAs of NDV persistently infected bladder cancer cell lines provide an insight into the molecular mechanisms of NDV persistency of infection in bladder cancers and the future screening of drugs that can be used together with NDV to enhance its oncolytic efficacy.
Collapse
Affiliation(s)
- Umar Ahmad
- Medical Genetics Laboratory, Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Medical Genetics Unit, Faculty of Basic Medical Sciences, Bauchi State University, Gadau, PMB 65, Itas/Gadau, Nigeria
| | - Syahril Abdullah
- Medical Genetics Laboratory, Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - De Ming Chau
- Medical Genetics Laboratory, Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Suet Lin Chia
- MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor Darul Ehsan, Malaysia
- Malaysia Genome Institute, Ministry of Science, Technology and Innovation, Jalan Bangi, 43000, Kajang, Selangor Darul Ehsan, Malaysia
| | - Soon Choy Chan
- School of Liberal Arts, Science and Technology (PUScLST), Perdana University, Perdana University, 50490, Kuala Lumpur, Malaysia
| | - Teng Aik Ong
- Department of Surgery, Faculty of Medicine, University of Malaya, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Azad Hassan Razack
- Department of Surgery, Faculty of Medicine, University of Malaya, Wilayah Persekutuan, Kuala Lumpur, Malaysia
| | - Abhi Veerakumarasivam
- Medical Genetics Laboratory, Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Urwanisch L, Unger MS, Sieberer H, Dang HH, Neuper T, Regl C, Vetter J, Schaller S, Winkler SM, Kerschbamer E, Weichenberger CX, Krenn PW, Luciano M, Pleyer L, Greil R, Huber CG, Aberger F, Horejs-Hoeck J. The Class IIA Histone Deacetylase (HDAC) Inhibitor TMP269 Downregulates Ribosomal Proteins and Has Anti-Proliferative and Pro-Apoptotic Effects on AML Cells. Cancers (Basel) 2023; 15:cancers15041039. [PMID: 36831382 PMCID: PMC9953883 DOI: 10.3390/cancers15041039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Acute myeloid leukemia (AML) is a hematopoietic malignancy characterized by altered myeloid progenitor cell proliferation and differentiation. As in many other cancers, epigenetic transcriptional repressors such as histone deacetylases (HDACs) are dysregulated in AML. Here, we investigated (1) HDAC gene expression in AML patients and in different AML cell lines and (2) the effect of treating AML cells with the specific class IIA HDAC inhibitor TMP269, by applying proteomic and comparative bioinformatic analyses. We also analyzed cell proliferation, apoptosis, and the cell-killing capacities of TMP269 in combination with venetoclax compared to azacitidine plus venetoclax, by flow cytometry. Our results demonstrate significantly overexpressed class I and class II HDAC genes in AML patients, a phenotype which is conserved in AML cell lines. In AML MOLM-13 cells, TMP269 treatment downregulated a set of ribosomal proteins which are overexpressed in AML patients at the transcriptional level. TMP269 showed anti-proliferative effects and induced additive apoptotic effects in combination with venetoclax. We conclude that TMP269 exerts anti-leukemic activity when combined with venetoclax and has potential as a therapeutic drug in AML.
Collapse
Affiliation(s)
- Laura Urwanisch
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Michael Stefan Unger
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Helene Sieberer
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Hieu-Hoa Dang
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Theresa Neuper
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Julia Vetter
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg im Muehlkreis, Austria
| | - Susanne Schaller
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg im Muehlkreis, Austria
| | - Stephan M. Winkler
- Bioinformatics Research Group, University of Applied Sciences Upper Austria, Softwarepark 11, 4232 Hagenberg im Muehlkreis, Austria
| | - Emanuela Kerschbamer
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via A. Volta 21, 39100 Bolzano, Italy
| | - Christian X. Weichenberger
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Via A. Volta 21, 39100 Bolzano, Italy
| | - Peter W. Krenn
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Michela Luciano
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Lisa Pleyer
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- IIIrd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, 5020 Salzburg, Austria
| | - Richard Greil
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- IIIrd Medical Department with Hematology and Medical Oncology, Hemostaseology, Rheumatology and Infectious Diseases, Oncologic Center, Paracelsus Medical University, 5020 Salzburg, Austria
- Salzburg Cancer Research Institute with Laboratory of Immunological and Molecular Cancer Research and Center for Clinical Cancer and Immunology Trials, 5020 Salzburg, Austria
| | - Christian G. Huber
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Fritz Aberger
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
| | - Jutta Horejs-Hoeck
- Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
- Cancer Cluster Salzburg (CCS), 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-(0)662-8044-5709
| |
Collapse
|
6
|
Hu T, Shen L, Huang Q, Wu C, Zhang H, Zeng Q, Wang G, Wei S, Zhang S, Zhang J, Khan NU, Shen X, Luo P. Protective Effect of Dictyophora Polysaccharides on Sodium Arsenite-Induced Hepatotoxicity: A Proteomics Study. Front Pharmacol 2021; 12:749035. [PMID: 34899304 PMCID: PMC8660860 DOI: 10.3389/fphar.2021.749035] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
The purpose of this study is to understand the mechanism of sodium arsenite (NaAsO2)-induced apoptosis of L-02 human hepatic cells, and how Dictyophora polysaccharide (DIP) protects L-02 cells from arsenic-induced apoptosis. The results revealed that DIP pretreatment inhibited NaAsO2 induced L-02 cells apoptosis by increasing anti-apoptotic Bcl-2 expression and decreasing pro-apoptotic Bax expression. Proteomic analysis showed that arsenic treatment disrupted the expression of metabolism and apoptosis associated proteins, including ribosomal proteins (RPs). After pretreatment with DIP, the expression levels of these proteins were reversed or restored. For the first time, it was observed that the significant decrease of cytoplasmic RPs and the increase of mitochondrial RPs were related to human normal cell apoptosis induced by arsenic. This is also the first report that the protective effect of DIP on cells was related to RPs. The results highlight the relationship between RPs and apoptosis, as well as the relationship between RPs and DIP attenuating arsenic-induced apoptosis.
Collapse
Affiliation(s)
- Ting Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qun Huang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Changyan Wu
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Qibing Zeng
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Guoze Wang
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shaofeng Wei
- School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China
| | - Shuling Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Jun Zhang
- School of Public Health, Guizhou Medical University, Guiyang, China
| | - Naseer Ullah Khan
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Science and Oceanography, Shenzhen University, Shenzhen, China
| | - Xiangchun Shen
- Key Laboratory of Optimal Utilization of Natural Medicine Resources, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Peng Luo
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,School of Public Health, Guizhou Medical University, Guiyang, China.,Guizhou Provincial Engineering Research Center of Food Nutrition and Health, Guiyang, China.,State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, China
| |
Collapse
|
7
|
Xie J, Zhang W, Liang X, Shuai C, Zhou Y, Pan H, Yang Y, Han W. RPL32 Promotes Lung Cancer Progression by Facilitating p53 Degradation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:75-85. [PMID: 32516735 PMCID: PMC7281510 DOI: 10.1016/j.omtn.2020.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/12/2020] [Accepted: 05/18/2020] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer death worldwide, and the overall survival rate of advanced lung cancer patients is unsatisfactory. Ribosomal proteins (RPs) play important roles in carcinogenesis. However, the role of RPL32 in lung cancer has not been demonstrated. Here, we report that RPL32 is aberrantly, highly expressed in lung cancer tissues and that the overexpression of RPL32 is correlated with the poor prognosis of these patients. RPL32 silencing significantly inhibited the proliferation of lung cancer cells, with an observed p53 accumulation and cell-cycle arrest. Mechanistically, knockdown of RPL32 resulted in ribosomal stress and affected rRNA maturation. RPL5 and RPL11 sensed stress and translocated from the nucleus to the nucleoplasm, where they bound to murine double minute 2 (MDM2), an important p53 E3 ubiquitin ligase, which resulted in p53 accumulation and inhibition of cancer cell proliferation. As lung cancer cells usually express high levels of Toll-like receptor 9 (TLR9), we conjugated RPL32 small interfering RNA (siRNA) to the TLR9 ligand CpG to generate CpG-RPL32 siRNA, which could stabilize and guide RPL32 siRNA to lung cancer cells. Excitingly, CpG-RPL32 siRNA displayed strong anticancer abilities in lung cancer xenografts. Therefore, RPL32 is expected to be a potential target for lung cancer treatment.
Collapse
Affiliation(s)
- Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chong Shuai
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030, USA
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Yunhai Yang
- Cancer Center of Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Laboratory of Cancer Biology, Institute of Clinical Science, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
8
|
Cytotoxic potential of Artemisia absinthium extract loaded polymeric nanoparticles against breast cancer cells: Insight into the protein targets. Int J Pharm 2020; 586:119583. [PMID: 32603837 DOI: 10.1016/j.ijpharm.2020.119583] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 12/26/2022]
Abstract
Targeted drug delivery system in the form of herbal based nano-formulations is the new ray of hope for minimizing the side effects related to the anti-cancer drugs as well as conventional drug delivery system. In view of this, the present study was designed to evaluate the cytotoxic potential of A. absinthium extract loaded polymeric nanoparticles (NVA-AA) against the breast cancer cell lines (MCF-7 and MDA MB-231) and to identify the protein targets for the caused cytotoxicity. The polymeric nanoparticles (PNPs) were prepared by free radical mechanism and loaded with the whole plant extract. The cytotoxicity of these NVA-AA were evaluated on the breast cancer cell lines via different cytotoxic parameters viz. MTT assay, CFSE proliferation assay, apoptosis assay, cell cycle study. The protein targets and the interaction among them were identified by nano-LCMS/MS analysis and STRING online tool respectively, which were further validated by qPCR and BLI. The LCMS/MS analysis suggests that the caused cytotoxicity was due to the alteration of proteins involved in vesicular trafficking, apoptosis, proliferation and metastasis. Further, interactome analysis identified UBA52 in MCF-7 and TIAL1, PPP1CC in MDA MB-231 cells as the central molecule in the vesicular trafficking and apoptosis networking connection.
Collapse
|
9
|
Profiling the Protein Targets of Unmodified Bio‐Active Molecules with Drug Affinity Responsive Target Stability and Liquid Chromatography/Tandem Mass Spectrometry. Proteomics 2020; 20:e1900325. [DOI: 10.1002/pmic.201900325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/28/2019] [Indexed: 12/17/2022]
|
10
|
Zhao H, He L, Yin D, Song B. Identification of β-catenin target genes in colorectal cancer by interrogating gene fitness screening data. Oncol Lett 2019; 18:3769-3777. [PMID: 31516589 PMCID: PMC6733007 DOI: 10.3892/ol.2019.10724] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 11/06/2022] Open
Abstract
β-catenin regulates its target genes which are associated with proliferation, differentiation, migration and angiogenesis, and the dysregulation of Wnt/β-catenin signaling facilitates hallmarks of colorectal cancer (CRC). Identification of β-catenin targets and their potential roles in tumorigenesis has gained increased interest. However, the number of identified targets remains limited. The present study implemented a novel strategy, interrogating gene fitness profiles derived from large-scale RNA interference and CRISPR-CRISPR associated protein 9 screening data to identify β-catenin target genes in CRC cell lines. Using these data sets, pair wise gene fitness similarities were determined which highlighted a total of 13 genes whose functions were highly correlated with β-catenin. It was further demonstrated that the expression of these genes were altered in CRC, illustrating their potential roles in the progression of CRC. The present study further demonstrated that these targets could be used to predict disease-free survival in CRC. In conclusion, the findings provided novel approaches for the identification of β-catenin targets, which may become prognostic biomarkers or drug targets for the management of CRC.
Collapse
Affiliation(s)
- Haomin Zhao
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Liang He
- Department of Gastrointestinal Surgery, First Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Bin Song
- Department of Gastrointestinal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
11
|
Xiao R, Li L, Ma Y. A label-free proteomic approach differentiates between conventional and organic rice. J Food Compost Anal 2019. [DOI: 10.1016/j.jfca.2019.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Liang Z, Mou Q, Pan Z, Zhang Q, Gao G, Cao Y, Gao Z, Pan Z, Feng W. Identification of candidate diagnostic and prognostic biomarkers for human prostate cancer: RPL22L1 and RPS21. Med Oncol 2019; 36:56. [DOI: 10.1007/s12032-019-1283-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
|
13
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
14
|
Arthurs C, Murtaza BN, Thomson C, Dickens K, Henrique R, Patel HRH, Beltran M, Millar M, Thrasivoulou C, Ahmed A. Expression of ribosomal proteins in normal and cancerous human prostate tissue. PLoS One 2017; 12:e0186047. [PMID: 29016636 PMCID: PMC5634644 DOI: 10.1371/journal.pone.0186047] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 09/25/2017] [Indexed: 02/06/2023] Open
Abstract
Few quantifiable tissue biomarkers for the diagnosis and prognosis of prostate cancer exist. Using an unbiased, quantitative approach, this study evaluates the potential of three proteins of the 40S ribosomal protein complex as putative biomarkers of malignancy in prostate cancer. Prostate tissue arrays, constructed from 82 patient samples (245 tissue cores, stage pT3a or pT3b), were stained for antibodies against three ribosomal proteins, RPS19, RPS21 and RPS24. Semi-automated Ox-DAB signal quantification using ImageJ software revealed a significant change in expression of RPS19, RPS21 and RPS24 in malignant vs non-malignant tissue (p<0.0001). Receiver operating characteristics curves were calculated to evaluate the potential of each protein as a biomarker of malignancy in prostate cancer. Positive likelihood ratios for RPS19, RPS21 and RPS24 were calculated as 2.99, 4.21, and 2.56 respectively, indicating that the overexpression of the protein is correlated with the presence of disease. Triple-labelled, quantitative, immunofluorescence (with RPS19, RPS21 and RPS24) showed significant changes (p<0.01) in the global intersection coefficient, a measure of how often two fluorophore signals intersect, for RPS19 and RPS24 only. No change was observed in the co-localization of any other permutations of the three proteins. Our results show that RPS19, RPS21 or RPS24 are upregulated in malignant tissue and may serve as putative biomarkers for prostate cancer.
Collapse
Affiliation(s)
- Callum Arthurs
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Bibi Nazia Murtaza
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Division of Surgery, University College London, London, United Kingdom
| | - Calum Thomson
- Dundee Imaging Facility, College of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Kerry Dickens
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
| | - Rui Henrique
- Department of Pathology, Portuguese Oncology Institute, Porto, Portugal
- Department of Pathology and Molecular Immunology, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Hitendra R. H. Patel
- Division of Surgery, Oncology, Urology and Women's Health, University Hospital of Northern Norway, Tromso, Norway
- Department of Urology, Princess Alexandra Hospital NHS Trust, Harlow, Essex, United Kingdom
| | | | - Michael Millar
- Queen’s Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Thrasivoulou
- Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics, Rockefeller Building, University College London, London, United Kingdom
| | - Aamir Ahmed
- Prostate Cancer Research Centre at the Centre for Stem Cells and Regenerative Medicine, King’s College London, London, United Kingdom
- Division of Surgery, University College London, London, United Kingdom
| |
Collapse
|
15
|
Identification of novel cancer therapeutic targets using a designed and pooled shRNA library screen. Sci Rep 2017; 7:43023. [PMID: 28223711 PMCID: PMC5320502 DOI: 10.1038/srep43023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 01/08/2023] Open
Abstract
Targeted cancer therapeutics aim to exploit tumor-specific, genetic vulnerabilities specifically affecting neoplastic cells without similarly affecting normal cells. Here we performed sequencing-based screening of an shRNA library on a panel of cancer cells of different origins as well as normal cells. The shRNA library was designed to target a subset of genes previously identified using a whole genome screening approach. This focused shRNA library was infected into cells followed by analysis of enrichment and depletion of the shRNAs over the course of cell proliferation. We developed a bootstrap likelihood ratio test for the interpretation of the effects of multiple shRNAs over multiple cell line passages. Our analysis identified 44 genes whose depletion preferentially inhibited the growth of cancer cells. Among these genes ribosomal protein RPL35A, putative RNA helicase DDX24, and coatomer complex I (COPI) subunit ARCN1 most significantly inhibited growth of multiple cancer cell lines without affecting normal cell growth and survival. Further investigation revealed that the growth inhibition caused by DDX24 depletion is independent of p53 status underlining its value as a drug target. Overall, our study establishes a new approach for the analysis of proliferation-based shRNA selection strategies and identifies new targets for the development of cancer therapeutics.
Collapse
|
16
|
Lomonosova AV, Ulitin AB, Kazakov AS, Mirzabekov TA, Permyakov EA, Permyakov SE. Derivative of Extremophilic 50S Ribosomal Protein L35Ae as an Alternative Protein Scaffold. PLoS One 2017; 12:e0170349. [PMID: 28103321 PMCID: PMC5245882 DOI: 10.1371/journal.pone.0170349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 01/03/2017] [Indexed: 12/01/2022] Open
Abstract
Small antibody mimetics, or alternative binding proteins (ABPs), extend and complement antibody functionality with numerous applications in research, diagnostics and therapeutics. Given the superiority of ABPs, the last two decades have witnessed development of dozens of alternative protein scaffolds (APSs) for the design of ABPs. Proteins from extremophiles with their high structural stability are especially favorable for APS design. Here, a 10X mutant of the 50S ribosomal protein L35Ae from hyperthermophilic archaea Pyrococcus horikoshii has been probed as an APS. A phage display library of L35Ae 10X was generated by randomization of its three CDR-like loop regions (repertoire size of 2×108). Two L35Ae 10X variants specific to a model target, the hen egg-white lysozyme (HEL), were isolated from the resulting library using phage display. The affinity of these variants (L4 and L7) to HEL ranges from 0.10 μM to 1.6 μM, according to surface plasmon resonance data. While L4 has 1-2 orders of magnitude lower affinity to HEL homologue, bovine α-lactalbumin (BLA), L7 is equally specific to HEL and BLA. The reference L35Ae 10X is non-specific to both HEL and BLA. L4 and L7 are more resistant to denaturation by guanidine hydrochloride compared to the reference L35Ae 10X (mid-transition concentration is higher by 0.1-0.5 M). Chemical crosslinking experiments reveal an increased propensity of L4 and L7 to multimerization. Overall, the CDR-like loop regions of L35Ae 10X represent a proper interface for generation of functional ABPs. Hence, L35Ae is shown to extend the growing family of protein scaffolds dedicated to the design of novel binding proteins.
Collapse
Affiliation(s)
- Anna V. Lomonosova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | | | - Alexei S. Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Tajib A. Mirzabekov
- Antherix, Pushchino, Moscow region, Russia
- Biomirex Inc., Watertown, Massachusetts, United States of America
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Pushchino, Moscow region, Russia
| |
Collapse
|
17
|
Lomonosova AV, Ovchinnikova EV, Kazakov AS, Denesyuk AI, Sofin AD, Mikhailov RV, Ulitin AB, Mirzabekov TA, Permyakov EA, Permyakov SE. Extremophilic 50S Ribosomal RNA-Binding Protein L35Ae as a Basis for Engineering of an Alternative Protein Scaffold. PLoS One 2015; 10:e0134906. [PMID: 26247602 PMCID: PMC4527664 DOI: 10.1371/journal.pone.0134906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/15/2015] [Indexed: 01/05/2023] Open
Abstract
Due to their remarkably high structural stability, proteins from extremophiles are particularly useful in numerous biological applications. Their utility as alternative protein scaffolds could be especially valuable in small antibody mimetic engineering. These artificial binding proteins occupy a specific niche between antibodies and low molecular weight substances, paving the way for development of innovative approaches in therapeutics, diagnostics, and reagent use. Here, the 50S ribosomal RNA-binding protein L35Ae from the extremophilic archaea Pyrococcus horikoshii has been probed for its potential to serve as a backbone in alternative scaffold engineering. The recombinant wild type L35Ae has a native-like secondary structure, extreme thermal stability (mid-transition temperature of 90°C) and a moderate resistance to the denaturation by guanidine hydrochloride (half-transition at 2.6 M). Chemical crosslinking and dynamic light scattering data revealed that the wild type L35Ae protein has a propensity for multimerization and aggregation correlating with its non-specific binding to a model cell surface of HEK293 cells, as evidenced by flow cytometry. To suppress these negative features, a 10-amino acid mutant (called L35Ae 10X) was designed, which lacks the interaction with HEK293 cells, is less susceptible to aggregation, and maintains native-like secondary structure and thermal stability. However, L35Ae 10X also shows lowered resistance to guanidine hydrochloride (half-transition at 2.0M) and is more prone to oligomerization. This investigation of an extremophile protein’s scaffolding potential demonstrates that lowered resistance to charged chemical denaturants and increased propensity to multimerization may limit the utility of extremophile proteins as alternative scaffolds.
Collapse
Affiliation(s)
- Anna V. Lomonosova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Elena V. Ovchinnikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexei S. Kazakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Alexander I. Denesyuk
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Department of Biosciences, Åbo Akademi University, Turku, 20520, Finland
| | - Alexander D. Sofin
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Roman V. Mikhailov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Andrei B. Ulitin
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Tajib A. Mirzabekov
- Antherix, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- Biomirex Inc., 304 Pleasant Street, Watertown, Massachusetts, 02472, United States of America
| | - Eugene A. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
| | - Sergei E. Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Institutskaya str., 7, Pushchino, Moscow region, 142290, Russia
- * E-mail:
| |
Collapse
|
18
|
Liu JS, He SC, Zhang ZL, Chen R, Fan L, Qiu GL, Chang S, Li L, Che XM. Anticancer effects of β-elemene in gastric cancer cells and its potential underlying proteins: a proteomic study. Oncol Rep 2014; 32:2635-47. [PMID: 25333415 DOI: 10.3892/or.2014.3490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 08/26/2014] [Indexed: 01/19/2023] Open
Abstract
Gastric cancer is a common malignancy with a poor prognosis. β-elemene is a broad-spectrum anticancer drug extracted from the traditional Chinese medicinal herb Curcuma wenyujin. In the present study, we investigated the anticancer effects of β-elemene in gastric cancer cells and the potential proteins involved. Human SGC7901 and MKN45 gastric cancer cells were treated with different concentrations of β-elemene. Cell viability, clonogenic survival and apoptotic cell death were assessed. β-elemene inhibited viability and decreased clonogenic survival of gastric cancer cells in a dose-dependent manner. Apoptosis induction contributed to the anticancer effects. We then employed a proteomic method, isobaric tags for relative and absolute quantitation (iTRAQ), to detect the proteins altered by β-elemene. In total, 147 upregulated proteins and 86 downregulated proteins were identified in response to β-elemene treatment in SGC7901 gastric cancer cells. Among them, expression of p21-activated protein kinase‑interacting protein 1 (PAK1IP1), Bcl-2-associated transcription factor 1 (BTF) and topoisomerase 2-α (TOPIIα) were validated by western blot analyses and the trends were consistent with iTRAQ results. Top pathways involved in β-elemene treatment in SGC7901 gastric cancer cells included ribosome signaling, peroxisome proliferator-activated receptors (PPARs) signaling pathway, regulation of actin cytoskeleton, phagosome, biosynthesis and metabolism of some amino acids. Collectively, our results suggest a promising therapeutic role of β-elemene in gastric cancer. The differentially expressed proteins provide further insight into the potential mechanisms involved in gastric cancer treatment using β-elemene.
Collapse
Affiliation(s)
- Jun-Song Liu
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shi-Cai He
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zheng-Liang Zhang
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Chen
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lin Fan
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Guang-Lin Qiu
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuai Chang
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Liang Li
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiang-Ming Che
- Department of General Surgery, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
19
|
Tung PY, Varlakhanova NV, Knoepfler PS. Identification of DPPA4 and DPPA2 as a novel family of pluripotency-related oncogenes. Stem Cells 2014; 31:2330-42. [PMID: 23963736 DOI: 10.1002/stem.1526] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 07/07/2013] [Accepted: 07/07/2013] [Indexed: 11/07/2022]
Abstract
In order to identify novel pluripotency-related oncogenes, an expression screen for oncogenic foci-inducing genes within a retroviral human embryonic stem cell cDNA library was conducted. From this screen, we identified not only known oncogenes but also intriguingly the key pluripotency factor, DPPA4 (developmental pluripotency-associated four) that encodes a DNA binding SAP domain-containing protein. DPPA4 has not been previously identified as an oncogene but is highly expressed in embryonal carcinomas, pluripotent germ cell tumors, and other cancers. DPPA4 is also mutated in some cancers. In direct transformation assays, we validated that DPPA4 is an oncogene in both mouse 3T3 cells and immortalized human dermal fibroblasts. Overexpression of DPPA4 generates oncogenic foci (sarcoma cells) and causes anchorage-independent growth. The in vitro transformed cells also give rise to tumors in immunodeficient mice. Furthermore, functional analyses indicate that both the DNA-binding SAP domain and the histone-binding C-terminal domain are critical for the oncogenic transformation activity of DPPA4. Downregulation of DPPA4 in E14 mouse embryonic stem cells and P19 mouse embryonic carcinoma cells causes decreased cell proliferation in each case. In addition, DPPA4 overexpression induces cell proliferation through genes related to regulation of G1/S transition. Interestingly, we observed similar findings for family member DPPA2. Thus, we have identified a new family of pluripotency-related oncogenes consisting of DPPA2 and DPPA4. Our findings have important implications for stem cell biology and tumorigenesis.
Collapse
Affiliation(s)
- Po-Yuan Tung
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, USA; University of California Davis Genome Center, University of California Davis, Davis, California, USA; UC Davis Comprehensive Cancer Center, Shriners Hospital For Children Northern California, Sacramento, California, USA; Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, USA
| | | | | |
Collapse
|
20
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
21
|
Li J, Hou Y, Ding X, Hou W, Song B, Zeng Y. Overexpression, purification, molecular characterization and the effect on tumor growth of ribosomal protein L22 from the Giant Panda (Ailuropoda melanoleuca). Mol Biol Rep 2014; 41:3529-39. [PMID: 24504451 DOI: 10.1007/s11033-014-3217-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
Abstract
The ribosomal protein L22 (RPL22) protein belongs to the L22E family of ribosomal proteins. It is located in the cytoplasm. The purpose of this paper was to explore the structure and anti-cancer function of RPL22 of the Giant Panda (Ailuropoda melanoleuca). The cDNA of RPL22 was cloned successfully from the Giant Panda using RT-PCR technology. We constructed a recombinant expression vector containing RPL22 cDNA and over-expressed it in Escherichia coli using pET28a plasmids. The expression product obtained was purified by using Ni chelating affinity chromatography. The result indicated that the length of the fragment cloned is 414 bp, and it contains an open-reading frame of 387 bp encoding 128 amino acids. Primary structure analysis revealed that the molecular weight of the putative RPL22 protein is 14.74 kDa with a theoretical pI 9.21. The RPL22 gene can be really expressed in E. coli and the RPL22 protein, fusioned with the N-terminally His-tagged protein, gave rise to the accumulation of an expected 20.1 kDa polypeptide. The data showed that the recombinant protein RPL22 had a time- and dose-dependency on the cell growth inhibition rate. The human laryngeal carcinoma Hep-2 cells treated with 0.05-6 μg/ml of RPL22 for 24 h displayed significant cell growth inhibition (p<0.05, n=8) in assayed using MTT compared to the control (untreated) cells. The data indicate that the effect at low concentrations is better than high concentrations, and the concentration of 1.5 μg/ml has the best rate of growth inhibition of 47.70%. The inhibitory rate in mice treated with 1.5 μg/ml RPL22 protein can reach 43.75%. Histology of tumor organs shows that the tissues arranged looser in RPL22 group than those in control group. Meanwhile, there is no obvious damage to other organs, such as heart, lung and kidney. Further research is on going to determine the bioactive principle(s) of recombinant protein RPL22 responsible for its anticancer activity.
Collapse
Affiliation(s)
- Jian Li
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, 1# Shida Road, Nanchong, 637009, Sichuan, China
| | | | | | | | | | | |
Collapse
|
22
|
Eid R, Sheibani S, Gharib N, Lapointe JF, Horowitz A, Vali H, Mandato CA, Greenwood MT. Human ribosomal protein L9 is a Bax suppressor that promotes cell survival in yeast. FEMS Yeast Res 2013; 14:495-507. [DOI: 10.1111/1567-1364.12121] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 10/21/2013] [Accepted: 10/24/2013] [Indexed: 11/27/2022] Open
Affiliation(s)
- Rawan Eid
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Sara Sheibani
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Nada Gharib
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| | - Jason F. Lapointe
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Avital Horowitz
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Craig A. Mandato
- Department of Anatomy and Cell Biology; McGill University; Montreal QC Canada
| | - Michael T. Greenwood
- Department of Chemistry and Chemical Engineering; Royal Military College; Kingston ON Canada
| |
Collapse
|
23
|
Expression, purification, and evaluation for anticancer activity of ribosomal protein L31 gene (RPL31) from the giant panda (Ailuropoda melanoleuca). Mol Biol Rep 2012; 39:8945-54. [DOI: 10.1007/s11033-012-1763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
|
24
|
Snyder DA, Aramini JM, Yu B, Huang YJ, Xiao R, Cort JR, Shastry R, Ma LC, Liu J, Rost B, Acton TB, Kennedy MA, Montelione GT. Solution NMR structure of the ribosomal protein RP-L35Ae from Pyrococcus furiosus. Proteins 2012; 80:1901-6. [PMID: 22422653 DOI: 10.1002/prot.24071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/03/2012] [Indexed: 11/08/2022]
Abstract
The ribosome consists of small and large subunits each composed of dozens of proteins and RNA molecules. However, the functions of many of the individual protomers within the ribosome are still unknown. In this article, we describe the solution NMR structure of the ribosomal protein RP-L35Ae from the archaeon Pyrococcus furiosus. RP-L35Ae is buried within the large subunit of the ribosome and belongs to Pfam protein domain family PF01247, which is highly conserved in eukaryotes, present in a few archaeal genomes, but absent in bacteria. The protein adopts a six-stranded anti-parallel β-barrel analogous to the "tRNA binding motif" fold. The structure of the P. furiosus RP-L35Ae presented in this article constitutes the first structural representative from this protein domain family.
Collapse
Affiliation(s)
- David A Snyder
- Department of Chemistry, College of Science and Health, William Paterson University, Wayne, New Jersey 07470, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lai MD, Xu J. Ribosomal proteins and colorectal cancer. Curr Genomics 2011; 8:43-9. [PMID: 18645623 DOI: 10.2174/138920207780076938] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/12/2006] [Accepted: 08/20/2006] [Indexed: 12/26/2022] Open
Abstract
The ribosome is essential for protein synthesis. The composition and structure of ribosomes from several organisms have been determined, and it is well documented that ribosomal RNAs (rRNAs) and ribosomal proteins (RPs) constitute this important organelle. Many RPs also fill various roles that are independent of protein biosynthesis, called extraribosomal functions. These functions include DNA replication, transcription and repair, RNA splicing and modification, cell growth and proliferation, regulation of apoptosis and development, and cellular transformation. Previous investigations have revealed that RP regulation in colorectal carcinomas (CRC) differs from that found in colorectal adenoma or normal mucosa, with some RPs being up-regulated while others are down-regulated. The expression patterns of RPs are associated with the differentiation, progression or metastasis of CRC. Additionally, the recent literature has shown that the perturbation of specific RPs may promote certain genetic diseases and tumorigenesis. Because of the implications of RPs in disease, especially malignancy, our review sought to address several questions. Why do expression levels or categories of RPs differ in different diseases, most notably in CRC? Is this a cause or consequence of the diseases? What are their possible roles in the diseases? We review the known extraribosomal functions of RPs and associated changes in colorectal cancer and attempt to clarify the possible roles of RPs in colonic malignancy.
Collapse
Affiliation(s)
- Mao-De Lai
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China.
| | | |
Collapse
|
26
|
Reynolds JA, Hand SC. Embryonic diapause highlighted by differential expression of mRNAs for ecdysteroidogenesis, transcription and lipid sparing in the cricket Allonemobius socius. ACTA ACUST UNITED AC 2009; 212:2075-84. [PMID: 19525434 DOI: 10.1242/jeb.027367] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Embryos of the ground cricket, Allonemobius socius, enter diapause 4-5 days post-oviposition and overwinter in this dormant state that is characterized by developmental arrest. Suppressive subtractive hybridization and quantitative real-time PCR reveal eight candidate genes in pre-diapause embryos that show promise as regulators of diapause entry, when compared with embryos not destined for diapause. Identifications are based both on the magnitude/consistency of differential mRNA abundances and the predicted functions of their products when placed in context of the physiological and biochemical events of diapause characterized in our companion paper. The proteins CYP450, AKR and RACK1 (associated with ecdysteroid synthesis and signaling) are consistently upregulated in pre-diapause, followed by major downregulation later in diapause. The pattern suggests that elevated ecdysone may facilitate onset of diapause in A. socius. Upregulation seen for the transcription factors Reptin and TFDp2 may serve to depress transcription and cell cycle progression. Cathpesin B-like protease, ACLY and MSP are three downregulated genes associated with yolk mobilization and/or metabolism that we predict may promote lipid sparing. Finally, embryos that have been in diapause for 10 days show a substantially different pattern of mRNA expression compared with either pre-diapause or embryos not destined for diapause, with the majority of mRNAs examined being downregulated. These transcript levels in later diapause suggest that a number of upregulated genes in pre-diapause are transiently expressed and are less essential as diapause progresses.
Collapse
Affiliation(s)
- Julie A Reynolds
- Division of Cellular, Developmental and Integrative Biology, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
27
|
Klussmann JP, Mooren JJ, Lehnen M, Claessen SMH, Stenner M, Huebbers CU, Weissenborn SJ, Wedemeyer I, Preuss SF, Straetmans JMJAA, Manni JJ, Hopman AHN, Speel EJM. Genetic signatures of HPV-related and unrelated oropharyngeal carcinoma and their prognostic implications. Clin Cancer Res 2009; 15:1779-86. [PMID: 19223504 DOI: 10.1158/1078-0432.ccr-08-1463] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Patients with human papillomavirus (HPV)-containing oropharyngeal squamous cell carcinomas (OSCC) have a better prognosis than patients with HPV-negative OSCC. This may be attributed to different genetic pathways promoting cancer. EXPERIMENTAL DESIGN We used comparative genomic hybridization to identify critical genetic changes in 60 selected OSCC, 28 of which were associated with HPV-16 as determined by HPV-specific PCR and fluorescence in situ hybridization analysis and positive p16(INK4A) immunostaining. The results were correlated with HPV status and clinical data from patients. RESULTS Two thirds of OSCC harbored gain at 3q26.3-qter irrespective of HPV status. In HPV-negative tumors this alteration was associated with advanced tumor stage (P=0.013). In comparison with HPV-related OSCC, the HPV-negative tumors harbored: (a) a higher number of chromosomal alterations and amplifications (P=0.03 and 0.039, respectively); (b) significantly more losses at 3p, 5q, 9p, 15q, and 18q, and gains/amplifications at 11q13 (P=0.002, 0.03; <0.001, 0.02, 0.004, and 0.001, respectively); and (c) less often 16q losses and Xp gains (P=0.02 and 0.03). Survival analysis revealed a significantly better disease-free survival for HPV-related OSCC (P=0.02), whereas chromosome amplification was an unfavorable prognostic indicator for disease-free and overall survival (P=0.01 and 0.05, respectively). Interestingly, 16q loss, predominantly identified in HPV-related OSCC, was a strong indicator of favorable outcome (overall survival, P=0.008; disease-free survival, P=0.01) and none of these patients had a tumor recurrence. CONCLUSIONS Genetic signatures of HPV-related and HPV-unrelated OSCC are different and most likely underlie differences in tumor development and progression. In addition, distinct chromosomal alterations have prognostic significance.
Collapse
Affiliation(s)
- Jens P Klussmann
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Jean-Uhrmacher Institute, University of Cologne, Cologne, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lindström MS. Emerging functions of ribosomal proteins in gene-specific transcription and translation. Biochem Biophys Res Commun 2009; 379:167-70. [PMID: 19114035 DOI: 10.1016/j.bbrc.2008.12.083] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Accepted: 12/17/2008] [Indexed: 12/15/2022]
|
29
|
Piggott AM, Karuso P. Rapid Identification of a Protein Binding Partner for the Marine Natural Product Kahalalide F by Using Reverse Chemical Proteomics. Chembiochem 2008; 9:524-30. [DOI: 10.1002/cbic.200700608] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Lockwood WW, Coe BP, Williams AC, MacAulay C, Lam WL. Whole genome tiling path array CGH analysis of segmental copy number alterations in cervical cancer cell lines. Int J Cancer 2007; 120:436-43. [PMID: 17096350 DOI: 10.1002/ijc.22335] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Cervical cancer is the second most common malignancy in women worldwide, with high risk subtypes of human papillomavirus (HPV) constituting the major etiological agent. However, only a small percentage of women infected by the virus develop disease, suggesting that additional host genetic alterations are necessary for disease progression. In this study we examined the genomes of a panel of commonly used model cervical cancer cell lines using a recently developed whole genome tiling path array for CGH analysis. Detailed analysis of genomic profiles enabled the detection of many novel aberrations, which may have been missed by conventional cytogenetic methods. In total, 27 minimal regions of recurrent copy number alteration were identified that are potentially involved in tumorigenesis. Interestingly, fine mapping of the 3q gain, which is associated with the progression of precursor lesions to invasive cervical cancer, identified a minimal region of alteration harboring genes distinct from previous candidates. Novel regions of gene amplification, including the coamplification of both the Birc and MMP gene clusters on 11q22, were also evident. Lastly, characterization of genomic structure at sites of HPV integration identified the copy number gain of host cellular sequences between the viral-host genomic boundaries in both SiHa and SW756, suggesting a direct role for HPV integration in the development of genetic abnormalities that initiate cervical cancer. This work represents the highest resolution look at a cervical cancer genome to date and offers definitive characterization of the alteration status of these cancer cell lines.
Collapse
Affiliation(s)
- William W Lockwood
- Department of Cancer Genetics and Developmental Biology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
| | | | | | | | | |
Collapse
|
31
|
Extra-Ribosomal Functions of the Ribosomal Protein, RPS3 as Predicted by In Silico Analysis. BORNEO JOURNAL OF RESOURCE SCIENCE AND TECHNOLOGY 1970. [DOI: 10.33736/bjrst.236.2014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Products of ribosomal protein (RP) genes have been found to play extra-ribosomal roles that range from DNA repair to RNA splicing. Their association with congenital disorders or cancers has also been widely documented. However, the relatively large number of different RPs, each with perhaps unique biological roles, has compounded the comprehensive elucidation of the physiological functions of each RPs. Experimental functional studies on the many and variegated RPs are labour intensive, time-consuming and costly. Moreover, experimental studies unguided by theoretically insights entail inaccurate results. Therefore, knowledge on the actual roles of these proteins remains largely undefined. A valid alternative is the use of bioinformatics resources to computationally predict functional roles of these biomolecules. Findings from such in silico studies of the RPS3 are reported herein. We reveal an array of possible extra-ribosomal functions that includes regulation of transcription (including via NF-κB-mediated, POK-induced and DNA-dependent), regulation of p53 activities and its stabilisation, inflammatory immune response, modulation of nNOS activities, and anti-oxidative capabilities. Our findings provide computational prediction of de novo extra-ribosomal functions of RPS3. These results will enhance the theoretical basis for designing future experimental studies on elucidating its definitive physiological roles.
Collapse
|