Kerkelä E, Ala-aho R, Lohi J, Grénman R, M-Kähäri V, Saarialho-Kere U. Differential patterns of stromelysin-2 (MMP-10) and MT1-MMP (MMP-14) expression in epithelial skin cancers.
Br J Cancer 2001;
84:659-69. [PMID:
11237387 PMCID:
PMC2363801 DOI:
10.1054/bjoc.2000.1634]
[Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Revised: 10/03/2000] [Accepted: 10/18/2000] [Indexed: 11/23/2022] Open
Abstract
Co-expression of several members of the matrix metalloproteinase (MMP) family is characteristic of human malignant tumours. To investigate the role of stromelysin-2 (MMP-10) in growth and invasion of skin tumours, we studied cutaneous carcinomas with high metastatic capacity (squamous cell carcinomas, SCCs), only locally destructive tumours (basal cell carcinomas, BCCs) and pre-malignant lesions (Bowen's disease and actinic keratosis) using in situ hybridization. Expression of MMP-10 was compared with that of stromelysin-1 (MMP-3) and of MT1-MMP, the expression of which has been shown to correlate with tumour invasiveness. MMP-10 was expressed in 13/21 SSCs and 11/19 BCCs only in epithelial laminin-5 positive cancer cells, while premalignant lesions were entirely negative. MT1-MMP mRNA was detected in 19/21 SCCs both in epithelial cancer cells and stromal fibroblasts and in 14/18 BCCs only in fibroblasts. The level of MMP-10 was upregulated in a cutaneous SCC cell line (UT-SCC-7) by transforming growth factor-alpha and keratinocyte growth factor, and by interferon-gamma in combination with transforming growth factor-beta1 and tumour necrosis factor-alpha both in UT-SCC-7 and HaCaT cells. Our results show that MMP-10 expression does not correlate with the invasive behaviour of tumours as assessed by their histology and MT1-MMP expression, but may be induced by the wound healing and inflammatory matrix remodelling events associated with skin tumours.
Collapse