1
|
The unfolding role of ceramide in coordinating retinoid-based cancer therapy. Biochem J 2021; 478:3621-3642. [PMID: 34648006 DOI: 10.1042/bcj20210368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/30/2022]
Abstract
Sphingolipid-mediated regulation in cancer development and treatment is largely ceramide-centered with the complex sphingolipid metabolic pathways unfolding as attractive targets for anticancer drug discovery. The dynamic interconversion of sphingolipids is tightly controlled at the level of enzymes and cellular compartments in response to endogenous or exogenous stimuli, such as anticancer drugs, including retinoids. Over the past two decades, evidence emerged that retinoids owe part of their potency in cancer therapy to modulation of sphingolipid metabolism and ceramide generation. Ceramide has been proposed as a 'tumor-suppressor lipid' that orchestrates cell growth, cell cycle arrest, cell death, senescence, autophagy, and metastasis. There is accumulating evidence that cancer development is promoted by the dysregulation of tumor-promoting sphingolipids whereas cancer treatments can kill tumor cells by inducing the accumulation of endogenous ceramide levels. Resistance to cancer therapy may develop due to a disrupted equilibrium between the opposing roles of tumor-suppressor and tumor-promoter sphingolipids. Despite the undulating effect and complexity of sphingolipid pathways, there are emerging opportunities for a plethora of enzyme-targeted therapeutic interventions that overcome resistance resulting from perturbed sphingolipid pathways. Here, we have revisited the interconnectivity of sphingolipid metabolism and the instrumental role of ceramide-biosynthetic and degradative enzymes, including bioactive sphingolipid products, how they closely relate to cancer treatment and pathogenesis, and the interplay with retinoid signaling in cancer. We focused on retinoid targeting, alone or in combination, of sphingolipid metabolism nodes in cancer to enhance ceramide-based therapeutics. Retinoid and ceramide-based cancer therapy using novel strategies such as combination treatments, synthetic retinoids, ceramide modulators, and delivery formulations hold promise in the battle against cancer.
Collapse
|
2
|
Abstract
Colorectal cancer (CRC) remains a leading cause of cancer-related morbidity and mortality worldwide. Although targeted therapy in combination with chemotherapy in CRC prolongs the overall survival of patients with metastatic disease, acquired resistance and relapse hinder their clinical benefits. Moreover, patients with some specific genetic profile are unlikely to benefit from targeted therapy, suggesting the need for safe and effective treatment strategies. Retinoids, comprising of natural and synthetic analogs, are a class of chemical compounds that regulate cellular proliferation, differentiation, and cell death. Retinoids have been used in the clinic for several leukemias and solid tumors, either as single agents or in combination therapy. Furthermore, retinoids have shown potent chemotherapeutic and chemopreventive properties in different cancer models, including CRC. In this review, we summarize the major preclinical findings in CRC in which natural and synthetic retinoids showed promising antitumor activities and stress on the proposed mechanisms of action. Understanding of the retinoids' antitumor mechanisms would provide insights to support and warrant their development in the management of CRC.
Collapse
|
3
|
Xia Z, Farhana L, Correa RG, Das JK, Castro DJ, Yu J, Oshima RG, Reed JC, Fontana JA, Dawson MI. Heteroatom-Substituted Analogues of Orphan Nuclear Receptor Small Heterodimer Partner Ligand and Apoptosis Inducer (E)-4-[3-(1-Adamantyl)-4-hydroxyphenyl]-3-chlorocinnamic Acid. J Med Chem 2011; 54:3793-816. [DOI: 10.1021/jm200051z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zebin Xia
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Lulu Farhana
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Ricardo G. Correa
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Jayanta K. Das
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - David J. Castro
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Jinghua Yu
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Robert G. Oshima
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - John C. Reed
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| | - Joseph A. Fontana
- Department of Veterans Affairs Medical Center and Wayne State University School of Medicine, Detroit, Michigan 48201, United States
| | - Marcia I. Dawson
- Cancer Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Alvarez S, Alvarez R, Khanwalkar H, Germain P, Lemaire G, Rodríguez-Barrios F, Gronemeyer H, de Lera AR. Retinoid receptor subtype-selective modulators through synthetic modifications of RARgamma agonists. Bioorg Med Chem 2009; 17:4345-59. [PMID: 19482478 DOI: 10.1016/j.bmc.2009.05.035] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 05/06/2009] [Accepted: 05/11/2009] [Indexed: 12/31/2022]
Abstract
A series of retinoids designed to interfere with the repositioning of H12 have been synthesized to identify novel RARgamma antagonists based on the structure of known RARgamma agonists. The transcriptional activities of the novel ligands were revealed by cell-based reporting assays, using engineered cells containg RAR subtype-selective fusions of the RAR ligand-binding domains with the yeast GAL4 activator DNA-binding domain and the cognate luciferase reporter gene. Whereas none of the ligands exhibited features of a selective RARgamma antagonist, some of them are endowed with interesting activities. In particular 24a acts as a pan-RAR agonist that induces at high concentration a higher transactivation potential on RARalpha than TTNPB and synergizes at low concentration with TTNPB-bound RARalpha but not RARbeta or RARgamma. Similarly, 24c synergizes with TTNPB-bound RARgamma and exhibits RARalpha,beta antagonist activity. Compounds 24b and 25b are strong RARalpha,beta-selective antagonists without agonist or antagonist activities for RARgamma. Compounds 24b and 24c display weak RXR antagonist activity. In addition several pan-antagonists and partial agonist/antagonists have been defined.
Collapse
Affiliation(s)
- Susana Alvarez
- Departamento de Química Orgánica, Universidade de Vigo, Vigo, Spain
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Fields AL, Soprano DR, Soprano KJ. Retinoids in biological control and cancer. J Cell Biochem 2008; 102:886-98. [PMID: 17902161 DOI: 10.1002/jcb.21530] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
More than 80 years ago, Wolbach and Howe provided the first evidence suggesting a link between alterations within human cells that lead to malignancies and vitamin A deficiencies (Wolbach and Howe 1925 Nutr. Rev. 36: 16-19). Since that time, epidemiological, preclinical and clinical studies have established a causative relationship between vitamin A deficiency and cancer. Laboratory research has provided insight into the intracellular targets, various signaling cascades and physiological effects of the biologically-active natural and synthetic derivatives of vitamin A, known as retinoids. Collectively, this body of research supports the concept of retinoids as chemopreventive and chemotherapeutic agents that can prevent epithelial cell tumorigenesis by directing the cells to either differentiate, growth arrest, or undergo apoptosis, thus preventing or reversing neoplasia. Continued refinement of the retinoid signaling pathway is essential to establishing their use as effective therapeutics for tumor subtypes whose oncogenic intracellular signaling pathways can be blocked or reversed by treatment with retinoids.
Collapse
Affiliation(s)
- Anthonise Louis Fields
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
6
|
Soprano KJ, Purev E, Vuocolo S, Soprano DR. Rb2/p130 and protein phosphatase 2A: key mediators of ovarian carcinoma cell growth suppression by all-trans retinoic acid. Oncogene 2006; 25:5315-25. [PMID: 16936753 DOI: 10.1038/sj.onc.1209679] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite a number of attempts to improve treatment of ovarian cancer, it remains the most common cause of death from gynecological cancers. Thus, it is very important to identify more effective drugs for treatment and prevention of ovarian cancer. All-trans-retinoic acid (ATRA) has been shown to arrest the growth of ovarian carcinoma cells in G0/G1 and to significantly elevate levels of Rb2/p130 protein, a member of the retinoblastoma family of tumor suppressors. As ATRA treatment leads to a significant increase in the amount of Rb2/p130 protein but not mRNA, the elevated levels of Rb2/p130 protein is likely the result of increased stability. In studies to elucidate the mechanism by which ATRA alters Rb2/p130 stability in ovarian cancer cells, it was determined that PP2A, a serine/threonine phosphatase, binds and dephosphorylates Rb2/p130. Dephosphorylated Rb2/p130 exhibits decreased ubiquitination and thus is not degraded by the proteasome. The sites at which PP2A catalytic subunit (PP2Ac) interacts with Rb2/p130 have been localized to the NLS in the C-terminus of Rb2/p130. These sites are also involved in the interaction of Rb/p130 with importin beta and importin alpha, members of the nuclear transport machinery. It is known that importin alpha recognizes a NLS on a target protein and importin beta binds the nuclear pore complex. Moreover, it has been shown that the binding of importin alpha to NLS significantly decreases with phosphorylation of NLS. In ATRA-treated ovarian carcinoma cells, PP2A binds to Rb2/p130 and dephosphorylates the NLS of Rb2/p130 leading to the interaction of importin alpha with Rb2/p130. Importin beta then binds to the importin alpha-Rb2/p130 complex, leading to the translocation of the Rb2/p130 to the nucleus where it acts to arrest ovarian cancer cells in G1 and suppress proliferation.
Collapse
Affiliation(s)
- K J Soprano
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| | | | | | | |
Collapse
|
7
|
Ramírez CJ, Haberbusch JM, Soprano DR, Soprano KJ. Retinoic acid induced repression of AP-1 activity is mediated by protein phosphatase 2A in ovarian carcinoma cells. J Cell Biochem 2005; 96:170-82. [PMID: 16052510 DOI: 10.1002/jcb.20520] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In previous studies we have shown that all-trans retinoic acid (atRA)-treatment of the atRA-sensitive ovarian carcinoma cell line CA-OV3 repressed AP-1 activity by about 50%, while a similar effect was not observed in the atRA-resistant ovarian carcinoma cell line, SK-OV3. These results suggested that the repression of AP-1 activity may be one of the mechanisms by which atRA inhibits the growth of atRA-sensitive CA-OV3 cells. In the present studies, we investigated further the molecular mechanism by which AP-1 activity is repressed by atRA. We show that the repression of AP-1 activity correlates with an increase in JunB protein expression and a decrease in N-terminal phosphorylation of c-Jun. The decrease in N-terminal phosphorylation of c-Jun does not appear to be modulated by JNK or ERK, since their protein expression patterns and kinase activity do not correlate with the repression of AP-1 activity following treatment with atRA. However, the activity of the protein phosphatase PP2A was found to increase 24 h following atRA treatment in CA-OV3 cells. Moreover, the catalytic subunit of PP2A was found to associate with c-Jun in vivo following atRA treatment. Since the inhibition of AP-1 activity following atRA treatment of CA-OV3 cells was abolished in the presence of specific PP2A inhibitors, it is likely that PP2A plays an important role in the atRA-induced repression of AP-1.
Collapse
Affiliation(s)
- Carmilia Jiménez Ramírez
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
8
|
Reitmair A, Shurland DL, Tsang KY, Chandraratna RAS, Brown G. Retinoid-related molecule AGN193198 potently induces G2M arrest and apoptosis in bladder cancer cells. Int J Cancer 2005; 115:917-23. [PMID: 15729717 DOI: 10.1002/ijc.20961] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The novel synthetic retinoid-related molecule 4-[3-(1-heptyl-4,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)-3-oxo-propenyl]benzoic acid (AGN193198) neither binds effectively to retinoic acid receptors (RARs) and retinoid X receptors (RXRs) nor transactivates in RAR- and RXR-mediated reporter assays. Even so, AGN193198 is potent in inducing apoptosis in human prostate and breast carcinoma cells (Keedwell et al., Cancer Res 2004;64:3302-12). Here, we extend these findings to show that AGN193198 potently and rapidly induces apoptosis in bladder carcinoma cell lines. One micromolar of AGN193198 completely abolished the growth of the transitional cell carcinoma lines UM-UC-3 and J82, and the squamous cell carcinoma line SCaBER; the transitional cell papilloma line RT-4 was slightly less sensitive to the growth inhibitory effect of AGN193198. Treated cells accumulated in the G2M phase of the cell cycle. This was accompanied by apoptosis, as revealed by staining cells for exposure of phosphatidylserine at their surface (binding of Annexin V) and FACS analysis of propidium iodide labeled cells. As reported for prostate cancer cells, AGN193198 provoked rapid activation of caspases-3 (by 6 hr), -8 (by 16 hr) and -9 (by 6 hr) in bladder cancer cells. These findings suggest that AGN193198 and related compounds, whose mechanism of action does not appear to involve RARs and RXRs, may be useful in the treatment of bladder cancer.
Collapse
Affiliation(s)
- Armin Reitmair
- Department of Biological Sciences, Allergan, Inc., Irvine, CA, USA
| | | | | | | | | |
Collapse
|
9
|
Suzuki N, Aoki D, Oie S, Horiuchi M, Hasegawa Y, Ezawa S, Suzuki A, Susumu N, Hosoi F, Kitazato K, Nozawa S. A novel retinoid, 4-[3,5-bis (trimethylsilyl) benzamido] benzoic acid (TAC-101), induces apoptosis of human ovarian carcinoma cells and shows potential as a new antitumor agent for clear cell adenocarcinoma. Gynecol Oncol 2004; 94:643-9. [PMID: 15350353 DOI: 10.1016/j.ygyno.2004.06.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2003] [Indexed: 11/19/2022]
Abstract
OBJECTIVES A novel retinobenzoic acid derivative, 4-[3,5-bis (trimethylsilyl) benzamido] benzoic acid (TAC-101), was reported to suppress the growth and invasion of human gastric cancer or hepatocellular carcinoma by induction of apoptosis. We examined the antitumor activity of TAC-101 against human ovarian carcinoma cell lines. METHODS Apoptosis of human epithelial ovarian carcinoma-derived cell lines (RMG-I, RMG-II, RTSG, RMUG-S, RMUG-L, and KF) was investigated by detecting DNA laddering and was quantified by an enzyme-linked immunosorbent assay. Inhibition of apoptosis was also examined using a caspase inhibitor. Furthermore, TAC-101 (8 mg kg(-1) day(-1) orally for 30 days) was investigated in nude mice with subcutaneous RMG-II tumors. A prominent apoptotic response to TAC-101 was observed. The antitumor effects of cisplatin (7 mg/kg intravenously on day 1) and paclitaxel (36 mg/kg intravenously on days 1 and 5) were also assessed for comparison. RESULTS Apoptosis occurred in all of the cell lines (except KF) in a concentration-dependent manner after exposure to TAC-101 and was markedly induced in RMG-I and RMG-II cells (derived from ovarian clear cell adenocarcinomas). A caspase inhibitor blocked the induction of apoptosis by TAC-101. The maximum inhibition of RMG-II tumor growth in nude mice by TAC-101, cisplatin, and paclitaxel was 45%, 34%, and 47%, respectively. CONCLUSION Oral TAC-101 shows potential as a novel antitumor agent for ovarian carcinoma, especially ovarian clear cell adenocarcinoma.
Collapse
MESH Headings
- Adenocarcinoma, Clear Cell/drug therapy
- Adenocarcinoma, Clear Cell/genetics
- Adenocarcinoma, Clear Cell/metabolism
- Adenocarcinoma, Clear Cell/pathology
- Animals
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Benzoates/pharmacology
- Cell Line, Tumor
- Female
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Ovarian Neoplasms/drug therapy
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/genetics
- Retinoic Acid Receptor alpha
- Trimethylsilyl Compounds/pharmacology
- Xenograft Model Antitumor Assays
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Nao Suzuki
- Department of Obstetrics and Gynecology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Keedwell RG, Zhao Y, Hammond LA, Qin S, Tsang KY, Reitmair A, Molina Y, Okawa Y, Atangan LI, Shurland DL, Wen K, Wallace DMA, Bird R, Chandraratna RAS, Brown G. A Retinoid-Related Molecule that Does Not Bind to Classical Retinoid Receptors Potently Induces Apoptosis in Human Prostate Cancer Cells through Rapid Caspase Activation. Cancer Res 2004; 64:3302-12. [PMID: 15126374 DOI: 10.1158/0008-5472.can-03-2763] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthetic retinoid-related molecules, such as N-(4-hydroxyphenyl)retinamide (fenretinide) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) induce apoptosis in a variety of malignant cells. The mechanism(s) of action of these compounds does not appear to involve retinoic acid receptors (RARs) and retinoid X receptors (RXRs), although some investigators disagree with this view. To clarify whether some retinoid-related molecules can induce apoptosis without involving RARs and/or RXRs, we used 4-[3-(1-heptyl-4,4-dimethyl-2-oxo-1,2,3,4-tetrahydroquinolin-6-yl)-3-oxo-E-propenyl] benzoic acid (AGN193198) that neither binds effectively to RARs and RXRs nor transactivates in RAR- and RXR-mediated reporter assays. AGN193198 potently induced apoptosis in prostate, breast, and gastrointestinal carcinoma cells and in leukemia cells. AGN193198 also abolished growth (by 50% at 130-332 nM) and induced apoptosis in primary cultures established from prostatic carcinoma (13 patients) and gastrointestinal carcinoma (1 patient). Apoptosis was induced rapidly, as indicated by mitochondrial depolarization and DNA fragmentation. Molecular events provoked by AGN193198 included activation of caspase-3, -8, -9, and -10 (by 4-6 h) and the production of BID/p15 (by 6 h). These findings show that caspase-mediated induction of apoptosis by AGN193198 is RAR/RXR-independent and suggest that this compound may be useful in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Richard G Keedwell
- Division of Immunity and Infection, University of Birmingham Medical School, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Holmes WF, Soprano DR, Soprano KJ. Early events in the induction of apoptosis in ovarian carcinoma cells by CD437: activation of the p38 MAP kinase signal pathway. Oncogene 2003; 22:6377-86. [PMID: 14508518 DOI: 10.1038/sj.onc.1206694] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoids have great potential in the areas of cancer therapy and chemoprevention. 6-[3-(1-admantyl)]-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437) is a conformationally restricted synthetic retinoid that has been reported to induce growth arrest and apoptosis in ovarian tumor cell lines but the entire mechanism for apoptotic induction has not been fully defined. We set out to identify the early events of CD437-induced apoptosis of the CA-OV-3 cell line and determine if these occur in a CA-OV-3 cell line resistant to CD437 (CA-CD437R). Using inhibitors for the MAP kinase cascade, we determined that MEK and p38 inhibitors could block CD437-induced apoptosis of the CA-OV-3 cell line. Moreover, treatment of CA-OV-3 and CA-CD437R cells with CD437 resulted in increased phosphorylation and activity of p38 independent of caspase-3 activation. Furthermore, p38 induced the phosphorylation of MEF2 in both CA-OV-3 and CA-CD437R cells after CD437 treatment. Finally, GFP-TR3 protein translocated to the cytosol and associated with mitochondria in both cell lines in response to CD437 treatment. This leads to depolarization of mitochondria and subsequent induction of apoptosis only in CA-OV-3 cells. These results identify a number of initial molecular events in the induction of apoptosis by CD437 in CA-OV-3 cells and demonstrate that the alteration in CA-CD437R cells, which results in resistance to CD437 maps downstream of these early events after TR3 translocation but prior to mitochondrial depolarization.
Collapse
Affiliation(s)
- William F Holmes
- Department of Microbiology & Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, PA 19140, USA
| | | | | |
Collapse
|
12
|
Holmes WF, Soprano DR, Soprano KJ. Comparison of the mechanism of induction of apoptosis in ovarian carcinoma cells by the conformationally restricted synthetic retinoids CD437 and 4-HPR. J Cell Biochem 2003; 89:262-78. [PMID: 12704790 DOI: 10.1002/jcb.10505] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
All-trans-retinoic acid (ATRA) has been shown to inhibit the growth of a number of ovarian tumor cell lines while others have been found to be resistant to retinoid suppression of growth. Interestingly, two synthetic retinoids, CD437 and 4-HPR, inhibit the growth of both ATRA-sensitive (CA-OV-3) and ATRA-resistant (SK-OV-3) ovarian tumor cells. However, in contrast to ATRA, both induce apoptosis. Our goal was to elucidate the mechanism by which these two synthetic retinoids induce apoptosis in ovarian tumor cells. Since it has been documented that apoptosis induction is often mediated by the activation of a cascade of proteases known as caspases, we initially studied the role of caspases in induction of apoptosis by CD437 and 4-HPR. We found that both retinoids induced caspase-3 and caspase-9 enzyme activity. Furthermore, using caspase specific inhibitors we determined that caspase-3 and caspase-9 activity was essential for the induction of apoptosis by these synthetic retinoids since these inhibitors completely blocked CD437 and 4-HPR induced apoptosis. Interestingly, we found that treatment with bongkriekic acid (BA), a mitochondrial membrane depolarization inhibitor, blocked apoptosis, caspase-9 activation and caspase-3 activation induced by both retinoids. Finally, we were able to determine that CD437 treatment induced the translocation of TR3, a nuclear orphan receptor, whereas, 4-HPR did not. Our results suggest that CD437 and 4-HPR initially activate separate pathways to induce mitochondrial depolarization but both utilize mitochondrial depolarization, caspase-9 activation, and caspase-3 activation in the later stages of apoptosis induction.
Collapse
Affiliation(s)
- William F Holmes
- Department of Microbiology & Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
13
|
Papadimou E, Pavlidou D, Séraphin B, Tsambaos D, Drainas D. Retinoids inhibit human epidermal keratinocyte RNase P activity. Biol Chem 2003; 384:457-62. [PMID: 12715896 DOI: 10.1515/bc.2003.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ribonuclease P (RNase P) is a ubiquitous and essential enzyme that endonucleolytically cleaves all tRNA precursors to produce the mature 5'-end. We have investigated the effect of synthetic rertinoids (all-trans retinoic acid, acitretin) and arotinoids (Ro 13-7410, Ro 15-0778, Ro, 13-6298 and Ro 15-1570) on RNase P activity isolated for the first time from normal human epidermal keratinocytes (NHEK). All tested compounds but one (Ro 15-1570) revealed a dose-dependent inhibition of RNase P activity, indicating that they may have a direct effect on tRNA biogenesis. Detailed kinetic analysis showed that all retinoids behave as classic competitive inhibitors. On the basis of the Ki values Ro 13-7410 was found to be the strongest inhibitor among all compounds tested.
Collapse
|
14
|
Holmes WF, Soprano DR, Soprano KJ. Elucidation of molecular events mediating induction of apoptosis by synthetic retinoids using a CD437-resistant ovarian carcinoma cell line. J Biol Chem 2002; 277:45408-19. [PMID: 12237293 DOI: 10.1074/jbc.m204600200] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoids have great promise in the area of cancer therapy and chemoprevention. Although some tumor cells are sensitive to the growth inhibitory effect of all-trans-retinoic acid (ATRA), many ovarian tumor cells are not. 6-((1-Admantyl)-4-hydroxyphenyl)-2-naphthalenecarboxylic acid (CD437) is a conformationally restricted synthetic retinoid that induces growth arrest and apoptosis in both ATRA-sensitive and ATRA-resistant ovarian tumor cell lines. To better understand the mechanism by which CD437 induces apoptosis in ovarian tumor cell lines, we prepared a cell line, CA-CD437R, from the ATRA-sensitive ovarian cell line, CA-OV-3, which was resistant to CD437. We found that the CD437-resistant cell line was also resistant to the induction of apoptosis by tumor necrosis factor-alpha but not resistant to the induction of apoptosis by another synthetic retinoid, fenretinide N-(4-hydroxyphenyl)retinamide. We also show that this cell line remains ATRA-sensitive and exhibits no deficiencies in RAR function. Analysis of this CD437-resistant cell line suggests that the pathway for induction of apoptosis by CD437 is similar to the pathway utilized by tumor necrosis factor-alpha and different from the pathway induced by the synthetic retinoid, fenretinide N-(4-hydroxyphenyl)retinamide. The CA-CD437R cell line is a valuable tool, permitting us to further elucidate the molecular events that mediate apoptosis induced by CD437 and other synthetic retinoids. Results of experiments utilizing this cell line suggest that the alteration responsible for resistance of CA-CD437R cells to CD437 induced event maps after the activation of p38 and TR3 expression, prior to mitochondrial depolarization, subsequent release of cytochrome c and activation of caspase-9 and caspase-3.
Collapse
Affiliation(s)
- William F Holmes
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
15
|
Zhang Y, Dawson MI, Mohammad R, Rishi AK, Farhana L, Feng KC, Leid M, Peterson V, Zhang XK, Edelstein M, Eilander D, Biggar S, Wall N, Reichert U, Fontana JA. Induction of apoptosis of human B-CLL and ALL cells by a novel retinoid and its nonretinoidal analog. Blood 2002; 100:2917-25. [PMID: 12351403 DOI: 10.1182/blood.v100.8.2917] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
We have recently described a novel retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (CD437/AHPN) that induces apoptosis in a number of malignant cell types. We now describe our studies examining the effects of CD437 and a nonretinoidal analog (MM002) on the in vitro proliferation of the ALL-REH cell line, the in vitro and in vivo growth of a novel Epstein-Barr virus-negative (EBV(-)) B-cell chronic lymphocytic leukemia (B-CLL) cell line (WSU-CLL), and primary cultures of human B-CLL and acute lymphoblastic leukemia (ALL) cells. CD437 and MM002 induce apoptosis in both cell lines, as indicated by the activation of caspase-2 and caspase-3, cleavage of poly(adenosine diphosphate-ribose) (poly(ADP-ribose)) polymerase, increase in annexin V binding, and subsequent nuclear fragmentation. CD437-mediated apoptosis was not associated with the modulation of Bcl-2, Bax, or Mcl-1 levels, but was associated with the cleavage of the antiapoptotic protein Bcl-X(L) to a proapoptotic 18-kD form. This cleavage of Bcl-X(L) was dependent on caspase-3 activation since Bcl-X(L) cleavage and apoptosis were inhibited by the caspase-3 inhibitor Z-DVED-fmk. CD437 markedly inhibited the growth of WSU-CLL cells in severe combined immunodeficiency (SCID) mice. Tumor growth inhibition, growth delay, and log cell kill were 85.7%, 21 days, and 2.1, respectively, in the treated mice. Moreover, 1 of the 5 treated mice was tumor-free longer than 150 days and thus was considered cured. Exposure of primary cultures of both B-CLL and ALL cells obtained from patients to CD437 and MM002 resulted in their apoptosis. These results suggest that CD437 and MM002 analogs may have a potential role in the treatment of B-CLL and ALL.
Collapse
Affiliation(s)
- Yuxiang Zhang
- Department of Medicine, Karmanos Cancer Institute, Wayne State University, and the John D Dingell VA Medical Center, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Fontana JA, Rishi AK. Classical and novel retinoids: their targets in cancer therapy. Leukemia 2002; 16:463-72. [PMID: 11960323 DOI: 10.1038/sj.leu.2402414] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2001] [Accepted: 12/17/2001] [Indexed: 11/09/2022]
Abstract
Retinoids are important mediators of cellular growth and differentiation. Retinoids modulate the growth of both normal and malignant cells through their binding to retinoid nuclear receptors and their subsequent activation. While retinoids have demonstrated therapeutic efficacy in the treatment of acute promyelocytic leukemia, their spectrum of activity remains limited. Other agents such as histone deacetylase inhibitors may significantly increase retinoid activity in a number of malignant cell types. The novel retinoids N-(4-hydroxyphenyl) retinamide (4-HPR) and 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (CD437; AHPN) induce apoptosis in a wide variety of malignant cells. Their mechanism(s) of action remain unclear, although a number of potential targets have been identified. Whether the retinoid receptors are involved in 4-HPR and CD473/AHPN mediated apoptosis remains unclear. Both 4-HPR and CD437/AHPN display significant potential as therapeutic agents in the treatment of a number of premalignant and malignant conditions.
Collapse
Affiliation(s)
- J A Fontana
- John D Dingell VA Medical Center and the Department of Medicine and Karmanos Cancer Institute, Wayne State University Detroit, MI 48201, USA
| | | |
Collapse
|
17
|
Peterson VJ, Barofsky E, Deinzer ML, Dawson MI, Feng KC, Zhang XK, Madduru MR, Leid M. Mass-spectrometric analysis of agonist-induced retinoic acid receptor gamma conformational change. Biochem J 2002; 362:173-81. [PMID: 11829754 PMCID: PMC1222374 DOI: 10.1042/0264-6021:3620173] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Apo and holo forms of retinoic acid receptors, and other nuclear receptors, display differential sensitivity to proteolytic digestion that likely reflects the distinct conformational states of the free and liganded forms of the receptor. We have developed a method for rapid peptide mapping of holo-retinoic acid receptor gamma that utilizes matrix-assisted laser-desorption-ionization time-of-flight MS to identify peptide fragments that are derived from the partially proteolysed holo-receptor. The peptide maps of retinoic acid receptor gamma bound by four different agonists were identical, suggesting that all four ligands induced a similar conformational change within the ligand-binding domain of the receptor. In all cases, this agonist-induced conformational change promoted the direct association of retinoic acid receptor gamma with the transcriptional co-activator p300 and inhibited interaction of the receptor with the nuclear receptor co-repressor. SR11253, a compound previously reported to exert mixed retinoic acid receptor gamma agonist/antagonist activities in cultured cells, was found to bind directly to, but only weakly altered the protease-sensitivity of, the receptor and failed to promote interaction of the receptor with p300 or induce dissociation of receptor-nuclear receptor co-repressor complexes. This technique should be generally applicable to other members of the nuclear receptor superfamily that undergo an induced structural alteration upon agonist or antagonist binding, DNA binding and/or protein-protein interaction.
Collapse
Affiliation(s)
- Valerie J Peterson
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97331, U.S.A
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhang D, Vuocolo S, Masciullo V, Sava T, Giordano A, Soprano DR, Soprano KJ. Cell cycle genes as targets of retinoid induced ovarian tumor cell growth suppression. Oncogene 2001; 20:7935-44. [PMID: 11753676 DOI: 10.1038/sj.onc.1204971] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2001] [Revised: 08/29/2001] [Accepted: 09/13/2001] [Indexed: 11/09/2022]
Abstract
We have examined the effect of all-trans-retinoic acid (RA) on cell cycle gene expression in RA sensitive CA-OV3 and RA resistant SK-OV3 ovarian carcinoma cell lines. Gene expression was analysed by multiprobe RNAse protection, Western blotting and in vitro kinase assays. No differences were observed between RA sensitive and RA resistant ovarian carcinoma cells in the levels of expression of many cell cycle genes including cyclin A, B and E, cdk 2,4 and 6, E2F-1, E2F-2, E2F-3, E2F-4, E2F-5, DP-1 and DP-2. However, RA sensitive CA-OV3 cells expressed higher levels of p53, p27, p21, and p16 compared to RA resistant SK-OV3 cells. In addition, RA treatment of CA-OV3 cells resulted in a significant decrease in hyperphosphorylated RB and RB-2/p130 and corresponding significant increases in the levels of hypophosphorylated and/or partially phosphorylated RB-2/p130 protein and hypophosphorylated RB. Also, RA treatment increased expression of the cdk inhibitor p27 and decreased activity of cdk 2, cdk 4 and cdk 6. Finally, amounts of p27-cyclin E and RB-2/p130-E2F4 complexes were found to increase in CA-OV3 cells growth arrested by RA. These results suggest that the pocket protein pathways are critical targets for retinoid suppression of ovarian carcinoma cell growth.
Collapse
Affiliation(s)
- D Zhang
- Department of Microbiology & Immunology, Temple University School of Medicine, 3400 North Broad Street, Philadelphia, Pennsylvania, PA 19140, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Dawson MI, Park JH, Chen G, Chao W, Dousman L, Waleh N, Hobbs PD, Jong L, Toll L, Zhang X, Gu J, Agadir A, Merchant JL, Bai L, Verma AK, Thacher SM, Chandraratna RA, Shroot B, Hill DL. Retinoic acid (RA) receptor transcriptional activation correlates with inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced ornithine decarboxylase (ODC) activity by retinoids: a potential role for trans-RA-induced ZBP-89 in ODC inhibition. Int J Cancer 2001; 91:8-21. [PMID: 11149424 DOI: 10.1002/1097-0215(20010101)91:1<8::aid-ijc1007>3.0.co;2-h] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Evaluation of retinoic acid receptor (RAR) subtype-selective alpha and gamma agonists and antagonists and a retinoid X receptor (RXR) class-selective agonist for efficacy at inhibiting both induction of ornithine decarboxylase (ODC) by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) in mouse epidermis and rat tracheal epithelial cells and the appearance of papillomas in mouse epidermis treated in the 2-stage tumor initiation-promotion model indicated that (i) RXR class-selective transcriptional agonists, such as MM11246, were not involved in ODC inhibition; (ii) RAR-selective agonists that induce gene transcription from RA-responsive elements (RAREs) were active at low concentrations; (iii) RAR-selective antagonists that bind RARs and inhibit AP-1 activation on the collagenase promoter but do not activate RAREs to induce gene transcription were less effective inhibitors; and (iv) RARgamma-selective retinoid agonists were more effective inhibitors of TPA-induced ODC activity than RARalpha-selective agonists. These results suggest that RARE activation has a more important role in inhibition of ODC activity than RXR activation or AP-1 inhibition and that RARgamma-selective agonists would be the most useful inhibitors of epithelial cell proliferation induced by tumor promoters. The natural retinoid all-trans-RA induced expression of transcription factor ZBP-89, which represses activation of the GC box in the ODC promoter by the transcription factor Sp1.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Animals
- Antineoplastic Agents/pharmacology
- Blotting, Northern
- Blotting, Western
- Carcinogens
- Cell Survival/drug effects
- Collagenases/genetics
- DNA-Binding Proteins/physiology
- Dose-Response Relationship, Drug
- Epidermis/metabolism
- Epithelial Cells/metabolism
- Female
- HeLa Cells
- Humans
- Mice
- Mice, Hairless
- Neoplasms, Experimental/metabolism
- Ornithine Decarboxylase Inhibitors
- Papilloma/metabolism
- Promoter Regions, Genetic
- Protein Binding
- Protein Kinases/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptors, Retinoic Acid/chemistry
- Receptors, Retinoic Acid/metabolism
- Response Elements
- Retinoic Acid Receptor alpha
- Retinoids/metabolism
- Retinoids/pharmacology
- Tetradecanoylphorbol Acetate/pharmacology
- Time Factors
- Trachea/metabolism
- Transcription Factor AP-1/antagonists & inhibitors
- Transcription Factors/physiology
- Transcription, Genetic
- Transcriptional Activation
- Transfection
- Ultraviolet Rays
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- M I Dawson
- Molecular Medicine Research Institute, Mountain View, CA 94043, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
Each year, an estimated 26,000 women in the United States are diagnosed with ovarian cancer. During any given year, approximately 14,500 women die from this disease. Ovarian cancer is the seventh most common cancer in women worldwide, after breast, cervix, colon/rectum, stomach, corpus uteri, and lung cancers. In the U.S., ovarian cancer is the second most common gynecologic cancer, and is the fourth leading cause of solid tumor cancer deaths among women. Currently, postoperative chemotherapy of ovarian cancer is still suboptimal. Drug resistance is a common problem resulting in only 20 approximately 30% overall 5-year survival rates. Clearly, continued development of alternative therapeutic strategies is essential for the management of this fatal disease. A number of recent studies have suggested that retinoids may play a potential role as an ovarian cancer chemotherapeutic agent. Retinoids, the natural and synthetic derivatives of vitamin A, have been shown to inhibit the growth of human ovarian cancer cells both in vivo and in culture. This review will initially summarize what is known about the pathological and molecular characteristics of ovarian carcinoma. It will then describe retinoid metabolism and the role of the cellular and nuclear retinoid binding proteins in mediating retinoid action. Following this general review of retinoids and their function, data supporting the role of retinoic acid as a suppresser of ovarian carcinoma cell growth will be presented. Particular attention will be paid to studies suggesting that members of the RB family of proteins and RB2/p130, in particular, are the molecular targets responsible for retinoid mediated inhibition of ovarian carcinoma cell growth. This review will then conclude with a brief discussion of two synthetic retinoids, 4 HPR R(fenretinide) and AHPN/CD437, which have been shown to induce apoptosis in ovarian tumor cells. It will be clear from the studies summarized in this review that retinoids represent a potentially powerful alternative to present chemotherapeutic approaches to the treatment of late stage ovarian cancer.
Collapse
Affiliation(s)
- D Zhang
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | |
Collapse
|
21
|
Holmes WF, Dawson MI, Soprano RD, Soprano KJ. Induction of apoptosis in ovarian carcinoma cells by AHPN/CD437 is mediated by retinoic acid receptors. J Cell Physiol 2000; 185:61-7. [PMID: 10942519 DOI: 10.1002/1097-4652(200010)185:1<61::aid-jcp5>3.0.co;2-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Retinoids have great promise in the area of cancer therapy and chemoprevention. These natural and synthetic derivatives of vitamin A have been shown to play an important role in regulating cell differentiation and proliferation. While all-trans-retinoic acid (ATRA) has been demonstrated to inhibit the growth of several ovarian tumor cell lines, other ovarian carcinoma cell lines have been found to be resistant to retinoid dependent growth suppression. Interestingly, a novel synthetic retinoid, CD437 or AHPN, has been demonstrated to inhibit the growth of both ATRA-sensitive (CA-OV3) and ATRA-resistant (SK-OV3) ovarian tumor cell lines as well as to induce apoptosis. The overall goal of this research was to understand the mechanism by which AHPN/CD437 induces apoptosis in ovarian tumor cell lines. Since a number of studies have demonstrated the importance of nuclear receptors (RARs and RXRs) in mediating cellular responses to retinoids, we wished to determine the role of RARs in mediating the AHPN/CD437 response. We modulated RAR level and function by overexpressing either wild type RAR-gamma or a pan dominant negative mutant of all RAR subtypes called RAR-beta (R269Q), or through the use of an RAR-gamma antagonist, MM11253. We found that inhibition of RAR function reduced but did not eliminate induction of apoptosis in both CA-OV3 and SK-OV3 cells by AHPN/CD437. Likewise, overexpression of wild type RAR-gamma was found to increase apoptosis after treatment with AHPN/CD437. Our results suggest that in ovarian carcinomas, AHPN/CD437 induced apoptosis is mediated at least in part via an RAR pathway.
Collapse
Affiliation(s)
- W F Holmes
- Department of Microbiology & Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | |
Collapse
|
22
|
Dawson MI, Jong L, Hobbs PD, Xiao D, Feng KC, Chao WR, Pan C, Fontana JA, Zhang XK. 4-[3-(5,6,7,8-Tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)phenyl]benzoic acid and heterocyclic-bridged analogues are novel retinoic acid receptor subtype and retinoid X receptor alpha agonists. Bioorg Med Chem Lett 2000; 10:1311-3. [PMID: 10890153 DOI: 10.1016/s0960-894x(00)00244-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aromatic retinoids having a meta-substituted aromatic ring bridge, such as 4-[3-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenyl)phenyl]benzo ic acid and its 3,5-diaryl-substituted 4,5-dihydroisoxazole analogue, function as retinoid receptor panagonists by activating both retinoic acid and retinoid X receptors to induce gene transcription, and thereby provide novel scaffolds for retinoid drug development. Both classes of these ligand-inducible transcription factors are involved in mediating the inhibitory effects of retinoids on cancer cell growth.
Collapse
Affiliation(s)
- M I Dawson
- Medicinal Chemistry Department, Molecular Medicine Research Institute, Mountain View, CA 94043, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dawson MI, Hobbs PD, Jong L, Xiao D, Chao WR, Pan C, Zhang XK. sp2-bridged diaryl retinoids: effects of bridge-region substitution on retinoid X receptor (RXR) selectivity. Bioorg Med Chem Lett 2000; 10:1307-10. [PMID: 10890152 DOI: 10.1016/s0960-894x(00)00243-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
RXR class selectivity and RXR transcriptional activation activity compared to those for the retinoic acid receptor subtypes were enhanced on the 4-(5,6,7,8-tetrahydro-5,5,8,8-tetramethyl-2-naphthalenylethenyl)be nzoic acid scaffold and its 3-methyl analogue by replacing their 1,1-ethenyl bridge by a 1,1-(2-methylpropenyl) or cyclopropylidenylmethylene group.
Collapse
Affiliation(s)
- M I Dawson
- Medicinal Chemistry Department, Molecular Medicine Research Institute, Mountain View, CA 94043, USA.
| | | | | | | | | | | | | |
Collapse
|
24
|
Fontana JA, Dawson MI, Leid M, Rishi AK, Zhang Y, Hsu CA, Lu JS, Peterson VJ, Jong L, Hobbs P, Chao WR, Shroot B, Reichert U. Identification of a unique binding protein specific for a novel retinoid inducing cellular apoptosis. Int J Cancer 2000; 86:474-9. [PMID: 10797258 DOI: 10.1002/(sici)1097-0215(20000515)86:4<474::aid-ijc5>3.0.co;2-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN, CD437) induces apoptosis in a variety of cell types, many of which are cancer cells that resist the antiproliferative and/or differentiating effects of retinoids. While the retinoids exert their effects by binding to the retinoic acid nuclear receptors (RARs) or retinoid X receptors (RXRs), AHPN (CD437) binds to another protein with different ligand specificity. In nuclear extracts from HL-60R cells the binding of AHPN (CD437) was only minimally competed by either retinoic acid (tRA)or 9-cis-retinoic acid (9-cis-RA), the natural ligands for the RARs and RXRs, respectively. Moreover, AHPN (CD437) was unable to compete with either tRA or 9-cis-RA for binding to endogenous retinoid receptors in nuclear extracts from the MDA-MB-468 breast carcinoma cell line. Size exclusion chromatography revealed AHPN binding to a 95 kDa protein(s) which is neither an RAR or RXR. Our results suggest that apoptosis induction by AHPN (CD437) may occur through interaction with another protein and is independent of the RAR/RXR-signaling pathways.
Collapse
Affiliation(s)
- J A Fontana
- Department of Medicine, Karmanos Cancer Institute, Wayne State University, Detroit, Michigan, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Le Q, Dawson MI, Soprano DR, Soprano KJ. Modulation of retinoic acid receptor function alters the growth inhibitory response of oral SCC cells to retinoids. Oncogene 2000; 19:1457-65. [PMID: 10723137 DOI: 10.1038/sj.onc.1203436] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/1999] [Revised: 01/06/2000] [Accepted: 01/13/2000] [Indexed: 11/09/2022]
Abstract
Retinoids have been shown to inhibit the growth of many human tumor cells including breast, ovarian and squamous cell carcinoma (SCC). While the exact mechanism of retinoid mediated growth suppression is not known, a role for the retinoic acid receptors (RARs) and retinoid X receptors (RXRs) has been established in both the breast and ovarian tumor cell models. We set out to determine if modulation of RAR/RXR function would alter the retinoid sensitivity of oral SCC cells. We found that the growth of SCC cells was significantly inhibited by treatment with either all-trans-retinoic acid (trans-RA) or the synthetic, conformationally restricted RARgamma selective retinoids MM11254 and MM11389. In order to demonstrate a role for RAR/RXR function in this process, stable oral SCC cell clones constitutively overexpressing the dominant negative mutant RARbeta2 (R269Q) were prepared and shown to exhibit reduced RAR/RXR transcriptional transactivation activity. We found that oral SCC cells exhibiting reduced RAR/RXR function became resistant to growth inhibition by all-trans-RA, MM11254 and MM11389. Likewise, treatment of oral SCC cells with the RARgamma antagonist MM11253 was found to block the ability of MM11254 and MM11389 to inhibit SCC cell growth. Thus, modulation of RAR function through the use of RAR-gamma selective agonists, an RAR-gamma selective antagonist or a pan-RAR dominant negative mutant significantly alters the growth inhibitory response of oral SCC cells to retinoids.
Collapse
MESH Headings
- Arginine/genetics
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Division/drug effects
- Cell Division/genetics
- Gene Transfer Techniques
- Glutamine/genetics
- Growth Inhibitors/genetics
- Growth Inhibitors/metabolism
- Growth Inhibitors/pharmacology
- Humans
- Mouth Neoplasms/genetics
- Mouth Neoplasms/metabolism
- Mouth Neoplasms/pathology
- Mutagenesis, Site-Directed
- Receptors, Retinoic Acid/agonists
- Receptors, Retinoic Acid/antagonists & inhibitors
- Receptors, Retinoic Acid/biosynthesis
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Retinoic Acid/physiology
- Retinoids/chemical synthesis
- Retinoids/pharmacology
- Tretinoin/pharmacology
- Tumor Cells, Cultured
- Retinoic Acid Receptor gamma
Collapse
Affiliation(s)
- Q Le
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, Pennsylvania, PA 19140, USA
| | | | | | | |
Collapse
|
26
|
Srivastava RK, Srivastave AR, Cho-Chung YS. Synergistic effects of 8-Cl-cAMP and retinoic acids in the inhibition of growth and induction of apoptosis in ovarian cancer cells: induction of retinoic acid receptor beta. Mol Cell Biochem 2000; 204:1-9. [PMID: 10718618 DOI: 10.1023/a:1007074814676] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Both cAMP and retinoids play a role in cell differentiation and the control of cell growth. A site-selective cAMP analog, 8-Cl-cAMP and retinoic acid synergistically inhibit growth and induce apoptosis in certain cancer cells. In advanced or recurrent malignant diseases, retinoic acid (RA) is not effective even at doses that are toxic to the host. The objective of our present study was to examine the mechanism(s) of synergistic effects of retinoic acid (9-cis, 13-cis or all-trans RA) and 8-Cl-cAMP on apoptosis in human ovarian cancer NIH: OVCAR-3 and OVCAR-8 cells. RA induced growth inhibition and apoptosis in OVCAR-3 and OVCAR-8 cells. 8-Cl-cAMP acted synergistically with RA in inducing and activating retinoic acid receptor beta (RARbeta) which correlates with growth inhibition and apoptosis in both cell types. In addition, induction of apoptosis by RA plus 8-Cl-cAMP requires caspase-3 activation followed by cleavage of anti-poly(ADP-ribose) polymerase. Furthermore, mutations in CRE-related motif within the RARbeta promoter resulted in loss of both transcriptional activation of RARbeta and synergy between RA and 8-Cl-cAMP. RARbeta expression appears to be associated with induction of apoptosis. Introduction of the RARbeta gene into OVCAR-3 cells resulted in gain of RA sensitivity. Loss of RARbeta expression, therefore, may contribute to the tumorigenicity of human ovarian cancer cells. Thus, combined treatment with RA and 8-Cl-cAMP may provide an effective means for inducing RARbeta expression leading to apoptosis in ovarian cancer cells.
Collapse
Affiliation(s)
- R K Srivastava
- Cellular Biochemistry Section, Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, MD 20892-1750, USA
| | | | | |
Collapse
|
27
|
Dawson MI, Chao WR, Hobbs PD, Zhang XK. Effects of trans-retinoic acid, 9-cis-retinoic acid, 1alpha,25-(dihydroxy)vitamin D3 and a novel apoptosis-inducing retinoid on breast cancer and endothelial cell growth. Cancer Lett 1998; 133:1-8. [PMID: 9929154 DOI: 10.1016/s0304-3835(98)00147-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Breast cancer cell growth inhibition was not synergistically enhanced by trans-retinoic acid (RA) or 9-cis-RA plus 1alpha,25-(dihydroxy)vitamin D3 (DHVD). The retinoid/DHVD combinations did lower their 50% effective concentrations for inhibiting retinoid-sensitive MCF-7, but not retinoid-refractory BT-20, breast cancer cell growth. In contrast, the synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylic acid (AHPN) and its analog SR11389 inhibited the growth of both cell lines. Unlike RA, 9-cis-RA and DHVD, AHPN and SR11389 also potently inhibited human umbilical vascular endothelial cell growth. These results on AHPN and SR11389 suggest that angiogenesis of tumor microvasculature should also be an effective therapeutic target for this new compound class.
Collapse
Affiliation(s)
- M I Dawson
- Retinoid Program, SRI International, Menlo Park, CA 94025, USA.
| | | | | | | |
Collapse
|
28
|
Papadimou E, Georgiou S, Tsambaos D, Drainas D. Inhibition of ribonuclease P activity by retinoids. J Biol Chem 1998; 273:24375-8. [PMID: 9733726 DOI: 10.1074/jbc.273.38.24375] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The effect of two naturally occurring (retinol and all-trans retinoic acid) and two synthetic (isotretinoin and acitretin) analogs of vitamin A (retinoids) on tRNA biogenesis was investigated employing the RNase P of Dictyostelium discoideum as an in vitro experimental system. RNase P is an ubiquitous and essential enzyme that endonucleolytically cleaves all tRNA precursors to produce the mature 5' end. All retinoids tested revealed a dose-dependent inhibition of RNase P activity, indicating that these compounds may have a direct effect on tRNA biogenesis. Detailed kinetic analysis showed that all retinoids behave as classical competitive inhibitors. The Ki values determined were 1475 microM for retinol, 15 microM for all-trans retinoic acid, 20 microM for isotretinoin, and 8.0 microM for acitretin. On the basis of these values acitretin is a 184, 2.5, and 1.9 times more potent inhibitor, as compared with retinol, isotretinoin, and all-trans retinoic acid, respectively. Taking into account that retinoids share no structural similarities to precursor tRNA, it is suggested that their kinetic behavior reflects allosteric interactions of these compounds with hydrophobic site(s) of D. discoideum RNase P.
Collapse
Affiliation(s)
- E Papadimou
- Department of Biochemistry, School of Medicine, University of Patras, 26500 Patras, Greece
| | | | | | | |
Collapse
|
29
|
Li Y, Lin B, Agadir A, Liu R, Dawson MI, Reed JC, Fontana JA, Bost F, Hobbs PD, Zheng Y, Chen GQ, Shroot B, Mercola D, Zhang XK. Molecular determinants of AHPN (CD437)-induced growth arrest and apoptosis in human lung cancer cell lines. Mol Cell Biol 1998; 18:4719-31. [PMID: 9671482 PMCID: PMC109058 DOI: 10.1128/mcb.18.8.4719] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/1997] [Accepted: 02/19/1998] [Indexed: 02/08/2023] Open
Abstract
6-[3-(1-Adamantyl)-4-hydroxyphenyl]-2-naphthalene carboxylic acid (AHPN or CD437), originally identified as a retinoic acid receptor gamma-selective retinoid, was previously shown to induce growth inhibition and apoptosis in human breast cancer cells. In this study, we investigated the role of AHPN/CD437 and its mechanism of action in human lung cancer cell lines. Our results demonstrated that AHPN/CD437 effectively inhibited lung cancer cell growth by inducing G0/G1 arrest and apoptosis, a process that is accompanied by rapid induction of c-Jun, nur77, and p21(WAF1/CIP1). In addition, we found that expression of p53 and Bcl-2 was differentially regulated by AHPN/CD437 in different lung cancer cell lines and may play a role in regulating AHPN/CD437-induced apoptotic process. On constitutive expression of the c-JunAla(63,73) protein, a dominant-negative inhibitor of c-Jun, in A549 cells, nur77 expression and apoptosis induction by AHPN/CD437 were impaired, whereas p21(WAF1/CIP1) induction and G0/G1 arrest were not affected. Furthermore, overexpression of antisense nur77 RNA in A549 and H460 lung cancer cell lines largely inhibited AHPN/CD437-induced apoptosis. Thus, expression of c-Jun and nur77 plays a critical role in AHPN/CD437-induced apoptosis. Together, our results reveal a novel pathway for retinoid-induced apoptosis and suggest that AHPN/CD437 or analogs may have a better therapeutic efficacy against lung cancer.
Collapse
Affiliation(s)
- Y Li
- The Burnham Institute, Cancer Research Center, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Liu R, Takayama S, Zheng Y, Froesch B, Chen GQ, Zhang X, Reed JC, Zhang XK. Interaction of BAG-1 with retinoic acid receptor and its inhibition of retinoic acid-induced apoptosis in cancer cells. J Biol Chem 1998; 273:16985-92. [PMID: 9642262 DOI: 10.1074/jbc.273.27.16985] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BAG-1 (also known as RAP46) is an anti-apoptotic protein, which has been shown previously to interact with a number of nuclear hormone receptors, including receptors for glucocorticoid, estrogen, and thyroid hormone. We show here that BAG-1 also interacts with retinoic acid receptor (RAR). Gel retardation assays demonstrated that in vitro translated BAG-1 protein could effectively inhibit the binding of RAR but not retinoid X receptor (RXR) to a number of retinoic acid (RA) response elements (RAREs). A glutathione S-transferase-BAG-1 fusion protein also specifically bound RAR but not RXR. Interaction of BAG-1 and RAR could also be demonstrated by yeast two-hybrid assays. In transient transfection assays, co-transfection of BAG-1 expression plasmid inhibited the transactivation activity of RAR/RXR heterodimers but not RXR/RXR homodimers. When stably expressed in breast cancer cell lines, BAG-1 inhibited binding of RAR/RXR heterodimer to a number of RAREs and suppressed RA-induced growth inhibition and apoptosis. In addition, RA-induced suppression of Bcl-2 expression was abrogated by overexpression of BAG-1. These results demonstrate that BAG-1 can regulate retinoid activities through its interaction with RAR and suggest that elevated levels of BAG-1 protein could potentially contribute to retinoid resistance in cancer cells.
Collapse
Affiliation(s)
- R Liu
- The Burnham Institute, Cancer Research Center, La Jolla, California 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Wu S, Zhang D, Donigan A, Dawson MI, Soprano DR, Soprano KJ. Effects of conformationally restricted synthetic retinoids on ovarian tumor cell growth. J Cell Biochem 1998; 68:378-88. [PMID: 9518263 DOI: 10.1002/(sici)1097-4644(19980301)68:3<378::aid-jcb8>3.0.co;2-r] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have used conformationally restricted retinoids to investigate the role of individual RAR subtypes and RXR in mediating the growth response of ovarian tumor cells to retinoids. Our results show that treatment of all-trans-RA-sensitive CAOV-3 cells with retinoids that bind and activate a single RAR or RXR led to a partial inhibition of growth. Treatment of all-trans-RA- resistant SKOV-3 cells did not alter growth. Maximum inhibition of growth, comparable to that observed following treatment with natural retinoids such as all-trans-RA and 9-cis-RA, was obtained only following treatment with a combination of an RAR-selective compound and an RXR-selective one. These results suggest that activation of both RAR and RXR classes is required in order to obtain maximum inhibition of ovarian tumor cell growth by retinoids. In addition, one compound, AHPN, was found to inhibit both RA-sensitive CAOV-3 and RA-resistant SKOV-3 cells. Further study of the effects of this retinoid showed that AHPN acts through an apoptotic pathway. Taken together, our results suggest that retinoids may serve as effective anti-proliferative agents in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- S Wu
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | | | | | | | |
Collapse
|