1
|
Bemidinezhad A, Radmehr S, Moosaei N, Efati Z, Kesharwani P, Sahebkar A. Enhancing radiotherapy for melanoma: the promise of high-Z metal nanoparticles in radiosensitization. Nanomedicine (Lond) 2024; 19:2391-2411. [PMID: 39382020 PMCID: PMC11492696 DOI: 10.1080/17435889.2024.2403325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/09/2024] [Indexed: 10/10/2024] Open
Abstract
Melanoma is a type of skin cancer that can be challenging to treat, especially in advanced stages. Radiotherapy is one of the main treatment modalities for melanoma, but its efficacy can be limited due to the radioresistance of melanoma cells. Recently, there has been growing interest in using high-Z metal nanoparticles (NPs) to enhance the effectiveness of radiotherapy for melanoma. This review provides an overview of the current state of radiotherapy for melanoma and discusses the physical and biological mechanisms of radiosensitization through high-Z metal NPs. Additionally, it summarizes the latest research on using high-Z metal NPs to sensitize melanoma cells to radiation, both in vitro and in vivo. By examining the available evidence, this review aims to shed light on the potential of high-Z metal NPs in improving radiotherapy outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Abolfazl Bemidinezhad
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Negin Moosaei
- Materials Science & Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Zohreh Efati
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi110062, India
| | - Amirhossein Sahebkar
- Center for Global health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, India
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Mandot S, Zannoni EM, Cai L, Nie X, Riviere PJL, Wilson MD, Meng LJ. A High-Sensitivity Benchtop X-Ray Fluorescence Emission Tomography (XFET) System With a Full-Ring of X-Ray Imaging-Spectrometers and a Compound-Eye Collimation Aperture. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1782-1791. [PMID: 38696285 PMCID: PMC11129545 DOI: 10.1109/tmi.2023.3348791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
The advent of metal-based drugs and metal nanoparticles as therapeutic agents in anti-tumor treatment has motivated the advancement of X-ray fluorescence computed tomography (XFCT) techniques. An XFCT imaging modality can detect, quantify, and image the biodistribution of metal elements using the X-ray fluorescence signal emitted upon X-ray irradiation. However, the majority of XFCT imaging systems and instrumentation developed so far rely on a single or a small number of detectors. This work introduces the first full-ring benchtop X-ray fluorescence emission tomography (XFET) system equipped with 24 solid-state detectors arranged in a hexagonal geometry and a 96-pinhole compound-eye collimator. We experimentally demonstrate the system's sensitivity and its capability of multi-element detection and quantification by performing imaging studies on an animal-sized phantom. In our preliminary studies, the phantom was irradiated with a pencil beam of X-rays produced using a low-powered polychromatic X-ray source (90kVp and 60W max power). This investigation shows a significant enhancement in the detection limit of gadolinium to as low as 0.1 mg/mL concentration. The results also illustrate the unique capabilities of the XFET system to simultaneously determine the spatial distribution and accurately quantify the concentrations of multiple metal elements.
Collapse
|
3
|
Dana PM, Hallajzadeh J, Asemi Z, Mansournia MA, Yousefi B. Advances in Chitosan-based Drug Delivery Systems in Melanoma: A Narrative Review. Curr Med Chem 2024; 31:3488-3501. [PMID: 37202890 DOI: 10.2174/0929867330666230518143654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/20/2023]
Abstract
Melanoma accounts for the minority of skin cancer cases. However, it has the highest mortality rate among the subtypes of skin cancer. At the early stages of the disease, patients show a good prognosis after the surgery, but developing metastases leads to a remarkable drop in patients' 5-year survival rate. Despite the advances made in the therapeutic approaches to this disease, melanoma treatment is still facing several obstacles. Systemic toxicity, water insolubility, instability, lack of proper biodistribution, inadequate cellular penetration, and rapid clearance are some of the challenges that should be addressed in the field of melanoma treatment. While various delivery systems have been developed to circumvent these challenges, chitosan-based delivery platforms have indicated significant success. Chitosan that is produced by the deacetylation of chitin can be formulated into different materials (e.g., nanoparticle, film, and hydrogel) due to its characteristics. Both in vitro and in vivo studies have reported that chitosan-based materials can be used in drug delivery systems while offering a solution for the common problems in this area, such as enhancing biodistribution and skin penetration as well as the sustained release of the drugs. Herein, we reviewed the studies concerning the role of chitosan as a drug delivery system in melanoma and discussed how these drug systems are used for delivering chemotherapeutic drugs (e.g., doxorubicin and paclitaxel), genes (e.g., TRAIL), and RNAs (e.g., miRNA199a and STAT3 siRNA) successfully. Furthermore, we take a look into the role of chitosan-based nanoparticles in neutron capture therapy.
Collapse
Affiliation(s)
- Parisa Maleki Dana
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Jamal Hallajzadeh
- Department of Biochemistry and Nutrition, Research Center for Evidence-based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, I.R. Iran
| | - Mohammad Ali Mansournia
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
4
|
Chen X, Hou M, Zhang X, Liu H, Li W, Hong W. Active Targeted Janus Theranostic Nanoplatforms Enable Chemo-Photothermal Therapy to Inhibit the Growth of Breast Cancer. Mol Pharm 2023; 20:5800-5810. [PMID: 37822062 DOI: 10.1021/acs.molpharmaceut.3c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Nanoscale structures have been developed to serve various functions in cancer therapy, encompassing areas such as diagnosis, biomedical visualization, tissue regeneration, and drug delivery. Based on biocompatible chitosan oligosaccharides (COS) and gold nanorods (GNRs), we designed the drug delivery systems (GNR@polyacrylic acid-Mn@COS Janus nanoparticles (JNPs)), which achieved paclitaxel (PTX) loaded on the side of GNRs, and the PAA-Mn domain served as magnetic resonance imaging contrast agents. This system was found to be effectively delivered to tumor sites through the enhanced permeability and retention (EPR) effect and the active target of the COS. The uniform JNPs selectively targeted cancer cells instead of normal cells through interacting with the COS on the surface of tumor cells, and the pH/NIR-responsive drug release behavior further enhanced their therapeutic effects. The in vivo effects of JNPs against tumors were evaluated using subcutaneous and orthotopic lung metastasis models, yielding promising outcomes for both tumor diagnosis and cancer treatment. In conclusion, the obtained JNPs hold great promise as a theranostic nanoplatform with synergistic chemotherapeutic and photothermal effects.
Collapse
Affiliation(s)
- Xiangjun Chen
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Mingyi Hou
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Xinzhong Zhang
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Haixin Liu
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wenting Li
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| | - Wei Hong
- School of Pharmacy, Shandong New Drug Loading & Release Technology and Preparation Engineering Laboratory, Binzhou Medical University, 346 Guanhai Road, Yantai 264003, P. R. China
| |
Collapse
|
5
|
Jegadeesan P, Sen S, Padmaprabu C, Srivastava S, Das A, Amirthapandian S. Morphological and optical investigations on Gd2O3 nanostructures. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
6
|
Tabbakh F, Hosmane NS, Tajudin SM, Ghorashi AH, Morshedian N. Using 157Gd doped carbon and 157GdF4 nanoparticles in proton-targeted therapy for effectiveness enhancement and thermal neutron reduction: a simulation study. Sci Rep 2022; 12:17404. [PMID: 36258012 PMCID: PMC9579128 DOI: 10.1038/s41598-022-22429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/14/2022] [Indexed: 01/10/2023] Open
Abstract
There are two major problems in proton therapy. (1) In comparison with the gamma-ray therapy, proton therapy has only ~ 10% greater biological effectiveness, and (2) the risk of the secondary neutrons in proton therapy is another unsolved problem. In this report, the increase of biological effectiveness in proton therapy has been evaluated with better performance than 11B in the presence of two proposed nanomaterials of 157GdF4 and 157Gd doped carbon with the thermal neutron reduction due to the presence of 157Gd isotope. The present study is based on the microanalysis calculations using GEANT4 Monte Carlo tool and GEANT4-DNA package for the strand breaks measurement. It was found that the proposed method will increase the effectiveness corresponding to the alpha particles by more than 100% and also, potentially will decrease the thermal neutrons fluence, significantly. Also, in this work, a discussion is presented on a significant contribution of the secondary alpha particles in total effectiveness in proton therapy.
Collapse
Affiliation(s)
- Farshid Tabbakh
- grid.459846.20000 0004 0611 7306Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, 14155-1339 Iran
| | - Narayan S. Hosmane
- grid.261128.e0000 0000 9003 8934Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, IL 60115-2862 USA
| | - Suffian M. Tajudin
- grid.449643.80000 0000 9358 3479Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Terengganu, Terengganu Malaysia
| | - Amir-Hossein Ghorashi
- grid.459846.20000 0004 0611 7306Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, 14155-1339 Iran
| | - Nader Morshedian
- grid.459846.20000 0004 0611 7306Plasma and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, Tehran, 14155-1339 Iran
| |
Collapse
|
7
|
Roy I, Krishnan S, Kabashin AV, Zavestovskaya IN, Prasad PN. Transforming Nuclear Medicine with Nanoradiopharmaceuticals. ACS NANO 2022; 16:5036-5061. [PMID: 35294165 DOI: 10.1021/acsnano.1c10550] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nuclear medicine is expected to make major advances in cancer diagnosis and therapy; tumor-targeted radiopharmaceuticals preferentially eradicate tumors while causing minimal damage to healthy tissues. The current scope of nuclear medicine can be significantly expanded by integration with nanomedicine, which utilizes nanoparticles for cancer diagnosis and therapy by capitalizing on the increased surface area-to-volume ratio, the passive/active targeting ability and high loading capacity, the greater interaction cross section with biological tissues, the rich surface properties of nanomaterials, the facile decoration of nanomaterials with a plethora of functionalities, and the potential for multiplexing several functionalities within one construct. This review provides a comprehensive discussion of nuclear nanomedicine using tumor-targeted nanoparticles for cancer radiation therapy with either pre-embedded radionuclides or nonradioactive materials which can be extrinsically triggered using various external nuclear particle sources to produce in situ radioactivity. In addition, it describes the prospect of combining nuclear nanomedicine with other modalities to enable synergistically enhanced combination therapies. The review also discusses advances in the fabrication of radionuclides as well as describes laser ablation technologies for producing nanoradiopharmaceuticals, which combine the ease of production with exceptional purity and rapid biodegradability, along with additional imaging or therapeutic functionalities. From a practical standpoint, these attributes of nanoradiopharmaceuticals may provide distinct advantages in diagnostic/therapeutic sensitivity and specificity, imaging resolution, and scalability of turnkey platforms. Coupling image-guided targeted radiation therapy with the possibility of in situ activation of nanomaterials as well as combining with other therapeutic modalities using a multifunctional nanoplatform could herald an era of exciting technological and therapeutic advances to radically transform the landscape of nuclear medicine. The review concludes with a discussion of current challenges and presents the authors' views on future opportunities to stimulate further research in this rewarding field of high societal impact.
Collapse
Affiliation(s)
- Indrajit Roy
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic Florida, Jacksonville, Florida 32224, United States
| | - Andrei V Kabashin
- Aix Marseille University, CNRS, LP3, Campus de Luminy - Case 917, 13288 Marseille, France
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
| | - Irina N Zavestovskaya
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Nuclear Physics and Astrophysics Department, LPI of RAS, 119991 Moscow, Russia
| | - Paras N Prasad
- MEPhI, Institute of Engineering Physics for Biomedicine (PhysBio), 115409 Moscow, Russia
- Department of Chemistry and Institute for Lasers, Photonics, and Biophotonics, University at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| |
Collapse
|
8
|
Ho SL, Yue H, Tegafaw T, Ahmad MY, Liu S, Nam SW, Chang Y, Lee GH. Gadolinium Neutron Capture Therapy (GdNCT) Agents from Molecular to Nano: Current Status and Perspectives. ACS OMEGA 2022; 7:2533-2553. [PMID: 35097254 PMCID: PMC8793081 DOI: 10.1021/acsomega.1c06603] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/31/2021] [Indexed: 05/03/2023]
Abstract
157Gd (natural abundance = 15.7%) has the highest thermal neutron capture cross section (σ) of 254,000 barns (1 barn = 10-28 m2) among stable (nonradioactive) isotopes in the periodic table. Another stable isotope, 155Gd (natural abundance = 14.8%), also has a high σ value of 60,700 barns. These σ values are higher than that of 10B (3840 barns, natural abundance = 19.9%), which is currently used as a neutron-absorbing isotope for boron neutron capture therapy agents. Energetic particles such as electrons and γ-rays emitted from Gd-isotopes after neutron beam absorption kill cancer cells by damaging DNAs inside cancer-cell nuclei without damaging normal cells if Gd-chemicals are positioned in cancer cells. To date, various Gd-chemicals such as commercial Gd-chelates used as magnetic resonance imaging contrast agents, modified Gd-chelates, nanocomposites containing Gd-chelates, fullerenes containing Gd, and solid-state Gd-nanoparticles have been investigated as gadolinium neutron capture therapy (GdNCT) agents. All GdNCT agents had exhibited cancer-cell killing effects, and the degree of the effects depended on the GdNCT agents used. This confirms that GdNCT is a promising cancer therapeutic technique. However, the commercial Gd-chelates were observed to be inadequate in clinical use because of their low accumulation in cancer cells due to their extracellular and noncancer targeting properties and rapid excretion. The other GdNCT agents exhibited higher accumulation in cancer cells, compared to Gd-chelates; consequently, they demonstrated higher cancer-cell killing effects. However, they still displayed limitations such as poor specificity to cancer cells. Therefore, continuous efforts should be made to synthesize GdNCT agents suitable in clinical applications. Herein, the principle of GdNCT, current status of GdNCT agents, and general design strategy for GdNCT agents in clinical use are discussed and reviewed.
Collapse
Affiliation(s)
- Son Long Ho
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Huan Yue
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Tirusew Tegafaw
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Mohammad Yaseen Ahmad
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Shuwen Liu
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| | - Sung-Wook Nam
- Department
of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, South
Korea
| | - Yongmin Chang
- Department
of Molecular Medicine, School of Medicine, Kyungpook National University, Taegu 41405, South
Korea
| | - Gang Ho Lee
- Department
of Chemistry, College of Natural Sciences, Kyungpook National University, Taegu 41566, South
Korea
| |
Collapse
|
9
|
Zhang Z, Wang X. Gadolinium delivery agents for neutron capture therapy. CHINESE SCIENCE BULLETIN-CHINESE 2021. [DOI: 10.1360/tb-2021-0937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
10
|
Zhai X, Li C, Ren D, Wang J, Ma C, Abd El-Aty AM. The impact of chitooligosaccharides and their derivatives on the in vitro and in vivo antitumor activity: A comprehensive review. Carbohydr Polym 2021; 266:118132. [PMID: 34044948 DOI: 10.1016/j.carbpol.2021.118132] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/06/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022]
Abstract
Chitooligosaccharides (COS) are the degraded products of chitin or chitosan. COS is water-soluble, non-cytotoxic to organisms, readily absorbed through the intestine, and eliminated primarily through the kidneys. COS possess a wide range of biological activities, including immunomodulation, cholesterol-lowering, and antitumor activity. Although work on COS goes back at least forty years, several aspects remain unclear. This review narrates the recent developments in COS antitumor activities, while paying considerable attention to the impacts of physicochemical properties (such as molecular weight and degrees of deacetylation) and chemical modifications both in vitro and in vivo. COS derivatives not only improve some physicochemical properties, but also expand the range of applications in drug and gene delivery. COS (itself or as a drug carrier) can inhibit tumor cell proliferation and metastasis, which might be attributed to its ability to stimulate the immune response along with its anti-angiogenic activity. Further, an attempt has been made to report limitations and future research. The potential health benefits of COS and its derivatives against cancer may offer a new insight on their applications in food and medical fields.
Collapse
Affiliation(s)
- Xingchen Zhai
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, 100083 Beijing, PR China.
| | - Chaonan Li
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Difeng Ren
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - Jing Wang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standard and Testing Technology for Agro-Product, Chinese Academy of Agricultural Sciences, 100081 Beijing, PR China.
| | - Chao Ma
- Beijing Key Laboratory of Forest Food Processing and Safety, College of Biological Science and Technology, Beijing Forestry University, 100083 Beijing, PR China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey.
| |
Collapse
|
11
|
Malouff TD, Seneviratne DS, Ebner DK, Stross WC, Waddle MR, Trifiletti DM, Krishnan S. Boron Neutron Capture Therapy: A Review of Clinical Applications. Front Oncol 2021; 11:601820. [PMID: 33718149 PMCID: PMC7952987 DOI: 10.3389/fonc.2021.601820] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/27/2021] [Indexed: 01/22/2023] Open
Abstract
Boron neutron capture therapy (BNCT) is an emerging treatment modality aimed at improving the therapeutic ratio for traditionally difficult to treat tumors. BNCT utilizes boronated agents to preferentially deliver boron-10 to tumors, which, after undergoing irradiation with neutrons, yields litihium-7 and an alpha particle. The alpha particle has a short range, therefore preferentially affecting tumor tissues while sparing more distal normal tissues. To date, BNCT has been studied clinically in a variety of disease sites, including glioblastoma multiforme, meningioma, head and neck cancers, lung cancers, breast cancers, hepatocellular carcinoma, sarcomas, cutaneous malignancies, extramammary Paget's disease, recurrent cancers, pediatric cancers, and metastatic disease. We aim to provide an up-to-date and comprehensive review of the studies of each of these disease sites, as well as a review on the challenges facing adoption of BNCT.
Collapse
Affiliation(s)
- Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | | | - Daniel K Ebner
- Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - William C Stross
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Mark R Waddle
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Daniel M Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| | - Sunil Krishnan
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
12
|
Influence of the particle size of gadolinium-loaded chitosan nanoparticles on their tumor-killing effect in neutron capture therapy in vitro. Appl Radiat Isot 2020; 164:109270. [DOI: 10.1016/j.apradiso.2020.109270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022]
|
13
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
14
|
Ho SL, Choi G, Yue H, Kim HK, Jung KH, Park JA, Kim MH, Lee YJ, Kim JY, Miao X, Ahmad MY, Marasini S, Ghazanfari A, Liu S, Chae KS, Chang Y, Lee GH. In vivo neutron capture therapy of cancer using ultrasmall gadolinium oxide nanoparticles with cancer-targeting ability. RSC Adv 2020; 10:865-874. [PMID: 35494457 PMCID: PMC9047061 DOI: 10.1039/c9ra08961f] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022] Open
Abstract
Gadolinium neutron capture therapy (GdNCT) is considered as a new promising cancer therapeutic technique. Nevertheless, limited GdNCT applications have been reported so far. In this study, surface-modified ultrasmall gadolinium oxide nanoparticles (UGNPs) with cancer-targeting ability (davg = 1.8 nm) were for the first time applied to the in vivo GdNCT of cancer using nude model mice with cancer, primarily because each nanoparticle can deliver hundreds of Gd to the cancer site. For applications, the UGNPs were grafted with polyacrylic acid (PAA) for biocompatibility and colloidal stability, which was then conjugated with cancer-targeting arginylglycylaspartic acid (RGD) (shortly, RGD-PAA-UGNPs). The solution sample was intravenously administered into the tails of nude model mice with cancer. At the time of the maximum accumulation of the RGD-PAA-UGNPs at the cancer site, which was monitored using magnetic resonance imaging, the thermal neutron beam was locally irradiated onto the cancer site and the cancer growth was monitored for 25 days. The cancer growth suppression was observed due to the GdNCT effects of the RGD-PAA-UGNPs, indicating that the surface-modified UGNPs with cancer-targeting ability are potential materials applicable to the in vivo GdNCT of cancer. A cancer growth suppression was observed due to the GdNCT effects of the RGD-PAA-UGNPs.![]()
Collapse
|
15
|
Abstract
Radiation therapy has made tremendous progress in oncology over the last decades due to advances in engineering and physical sciences in combination with better biochemical, genetic and molecular understanding of this disease. Local delivery of optimal radiation dose to a tumor, while sparing healthy surrounding tissues, remains a great challenge, especially in the proximity of vital organs. Therefore, imaging plays a key role in tumor staging, accurate target volume delineation, assessment of individual radiation resistance and even personalized dose prescription. From this point of view, radiotherapy might be one of the few therapeutic modalities that relies entirely on high-resolution imaging. Magnetic resonance imaging (MRI) with its superior soft-tissue resolution is already used in radiotherapy treatment planning complementing conventional computed tomography (CT). Development of systems integrating MRI and linear accelerators opens possibilities for simultaneous imaging and therapy, which in turn, generates the need for imaging probes with therapeutic components. In this review, we discuss the role of MRI in both external and internal radiotherapy focusing on the most important examples of contrast agents with combined therapeutic potential.
Collapse
|
16
|
Abello J, Nguyen TDT, Marasini R, Aryal S, Weiss ML. Biodistribution of gadolinium- and near infrared-labeled human umbilical cord mesenchymal stromal cell-derived exosomes in tumor bearing mice. Theranostics 2019; 9:2325-2345. [PMID: 31149047 PMCID: PMC6531310 DOI: 10.7150/thno.30030] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 02/11/2019] [Indexed: 02/06/2023] Open
Abstract
We speculate that exosomes derived from human umbilical cord mesenchymal stromal cells (HUC-MSCs) will accumulate within tumors and have the potential for both tumor location or drug delivery. Methods: To determine proof of concept, HUC-MSC exosomes were labeled with an MRI contrast agent, gadolinium, or a near infrared dye. Exosome accumulation within ectopic osteosarcoma tumor-bearing mice was determined by 14.1 T MRI or bioimaging over 24-48 h after injection. In vitro studies examine the accumulation and physiological effect of exosomes on human and mouse osteosarcoma cell lines by MTT assay, confocal microscopy, and flow cytometry. Results: Systemic HUC-MSC exosomes accumulated continuously in tumor over a 24-48 h post-injection period. In contrast, synthetic lipid nanoparticles accumulate in tumor only for the first 3 h post-injection. Conclusion: These results suggest that HUC-MSCs exosomes accumulate within human or mouse osteosarcoma cells in vitro and in vivo over a 24 to 48 h after infusion.
Collapse
|
17
|
Safavi-Naeini M, Chacon A, Guatelli S, Franklin DR, Bambery K, Gregoire MC, Rosenfeld A. Opportunistic dose amplification for proton and carbon ion therapy via capture of internally generated thermal neutrons. Sci Rep 2018; 8:16257. [PMID: 30390002 PMCID: PMC6215016 DOI: 10.1038/s41598-018-34643-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022] Open
Abstract
This paper presents Neutron Capture Enhanced Particle Therapy (NCEPT), a method for enhancing the radiation dose delivered to a tumour relative to surrounding healthy tissues during proton and carbon ion therapy by capturing thermal neutrons produced inside the treatment volume during irradiation. NCEPT utilises extant and in-development boron-10 and gadolinium-157-based drugs from the related field of neutron capture therapy. Using Monte Carlo simulations, we demonstrate that a typical proton or carbon ion therapy treatment plan generates an approximately uniform thermal neutron field within the target volume, centred around the beam path. The tissue concentrations of neutron capture agents required to obtain an arbitrary 10% increase in biological effective dose are estimated for realistic treatment plans, and compared to concentrations previously reported in the literature. We conclude that the proposed method is theoretically feasible, and can provide a worthwhile improvement in the dose delivered to the tumour relative to healthy tissue with readily achievable concentrations of neutron capture enhancement drugs.
Collapse
Affiliation(s)
- Mitra Safavi-Naeini
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia.
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia.
| | - Andrew Chacon
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Susanna Guatelli
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Daniel R Franklin
- Faculty of Engineering & IT, University of Technology Sydney, Sydney, Australia
| | - Keith Bambery
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
| | - Marie-Claude Gregoire
- Australian Nuclear Science and Technology Organisation (ANSTO), Sydney, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics, University of Wollongong, Sydney, Australia
| |
Collapse
|
18
|
Image-Guided Neutron Capture Therapy Using the Gd-DO3A-BTA Complex as a New Combinatorial Treatment Approach. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3727109. [PMID: 30515066 PMCID: PMC6236812 DOI: 10.1155/2018/3727109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/17/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
Gadolinium-neutron capture therapy (Gd-NCT) is based on the nuclear capture reaction that occurs when 157Gd is irradiated with low energy thermal neutrons to primarily produce gamma photons. Herein, we investigated the effect of neutron capture therapy (NCT) using a small molecular gadolinium complex, Gd-DO3A-benzothiazole (Gd-DO3A-BTA), which could be a good candidate for use as an NCT drug due to its ability to enter the intracellular nuclei of tumor cells. Furthermore, MRI images of Gd-DO3A-BTA showed a clear signal enhancement in the tumor, and the images also played a key role in planning NCT by providing accurate information on the in vivo uptake time and duration of Gd-DO3A-BTA. We injected Gd-DO3A-BTA into MDA-MB-231 breast tumor-bearing mice and irradiated the tumors with cyclotron neutrons at the maximum accumulation time (postinjection 6 h); then, we observed the size of the growing tumor for 60 days. Gd-DO3A-BTA showed good therapeutic effects of chemo-Gd-NCT for the in vivo tumor models. Simultaneously, the Gd-DO3A-BTA groups ([Gd-DO3A-BTA(+), NCT(+)]) showed a significant reduction in tumor size (p < 0.05), and the inhibitory effect on tumor growth was exhibited in the following order: [Gd-DO3A-BTA(+), NCT(+)] > [Gd-DO3A-BTA(+), NCT(−)] > [Gd-DO3A-BTA(−), NCT(+)] > [Gd-DO3A-BTA(−), NCT(−)]. On day 60, the [Gd-DO3A-BTA(+), NCT(+)] and [Gd-DO3A-BTA(−), NCT(−)] groups exhibited an approximately 4.5-fold difference in tumor size. Immunohistochemistry studies demonstrated that new combinational therapy with chemo-Gd-NCT could treat breast cancer by both the inhibition of tumor cell proliferation and induction of apoptosis-related proteins, with in vivo tumor monitoring by MRI.
Collapse
|
19
|
Jeong Y, Hwang HS, Na K. Theranostics and contrast agents for magnetic resonance imaging. Biomater Res 2018; 22:20. [PMID: 30065849 PMCID: PMC6062937 DOI: 10.1186/s40824-018-0130-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/18/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Magnetic resonance imaging is one of the diagnostic tools that uses magnetic particles as contrast agents. It is noninvasive methodology which provides excellent spatial resolution. Although magnetic resonance imaging offers great temporal and spatial resolution and rapid in vivo images acquisition, it is less sensitive than other methodologies for small tissue lesions, molecular activity or cellular activities. Thus, there is a desire to develop contrast agents with higher efficiency. Contrast agents are known to shorten both T1 and T2. Gadolinium based contrast agents are examples of T1 agents and iron oxide contrast agents are examples of T2 agents. In order to develop high relaxivity agents, gadolinium or iron oxide-based contrast agents can be synthesized via conjugation with targeting ligands or functional moiety for specific interaction and achieve accumulation of contrast agents at disease sites. MAIN BODY This review discusses the principles of magnetic resonance imaging and recent efforts focused on specificity of contrast agents on specific organs such as liver, blood, lymph nodes, atherosclerotic plaque, and tumor. Furthermore, we will discuss the combination of theranostic such as contrast agent and drug, contrast agent and thermal therapy, contrast agent and photodynamic therapy, and neutron capture therapy, which can provide for cancer diagnosis and therapeutics. CONCLUSION These applications of magnetic resonance contrast agents demonstrate the usefulness of theranostic agents for diagnosis and treatment.
Collapse
Affiliation(s)
- Yohan Jeong
- Department of Biotechnology, Center for Photomedicine, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do 14662 South Korea
| | - Hee Sook Hwang
- Department of Biotechnology, Center for Photomedicine, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do 14662 South Korea
| | - Kun Na
- Department of Biotechnology, Center for Photomedicine, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi do 14662 South Korea
| |
Collapse
|
20
|
Ahmad MY, Cha H, Oh IT, Tegafaw T, Miao X, Ho SL, Marasini S, Ghazanfari A, Yue H, Chae KS, Chang Y, Lee GH. Synthesis, Characterization, and Enhanced Cancer-Imaging Application of Trans-activator of Transcription Peptide-conjugated Ultrasmall Gadolinium Oxide Nanoparticles. B KOREAN CHEM SOC 2018. [DOI: 10.1002/bkcs.11404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohammad Yaseen Ahmad
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU), Taegu; Taegu 41566 South Korea
| | - Hyunsil Cha
- Department of Molecular Medicine and Medical & Biological Engineering and DNN; School of Medicine and Hospital, KNU, Taegu; Taegu 41566 South Korea
| | - In-Taek Oh
- Department of Biology Education and DNN; Teachers’ College, KNU, Taegu; Taegu 41566 South Korea
| | - Tirusew Tegafaw
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU), Taegu; Taegu 41566 South Korea
| | - Xu Miao
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU), Taegu; Taegu 41566 South Korea
| | - Son Long Ho
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU), Taegu; Taegu 41566 South Korea
| | - Shanti Marasini
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU), Taegu; Taegu 41566 South Korea
| | - Adibehalsadat Ghazanfari
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU), Taegu; Taegu 41566 South Korea
| | - Huan Yue
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU), Taegu; Taegu 41566 South Korea
| | - Kwon Seok Chae
- Department of Biology Education and DNN; Teachers’ College, KNU, Taegu; Taegu 41566 South Korea
| | - Yongmin Chang
- Department of Molecular Medicine and Medical & Biological Engineering and DNN; School of Medicine and Hospital, KNU, Taegu; Taegu 41566 South Korea
| | - Gang Ho Lee
- Department of Chemistry and Department of Nanoscience and Nanotechnology (DNN), College of Natural Sciences; Kyungpook National University (KNU), Taegu; Taegu 41566 South Korea
| |
Collapse
|
21
|
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849. [PMID: 29556359 PMCID: PMC5858503 DOI: 10.7150/thno.22172] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Jin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| |
Collapse
|
22
|
Ho SL, Cha H, Oh IT, Jung KH, Kim MH, Lee YJ, Miao X, Tegafaw T, Ahmad MY, Chae KS, Chang Y, Lee GH. Magnetic resonance imaging, gadolinium neutron capture therapy, and tumor cell detection using ultrasmall Gd2O3 nanoparticles coated with polyacrylic acid-rhodamine B as a multifunctional tumor theragnostic agent. RSC Adv 2018; 8:12653-12665. [PMID: 35541232 PMCID: PMC9079332 DOI: 10.1039/c8ra00553b] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 03/28/2018] [Indexed: 01/10/2023] Open
Abstract
Monodisperse and ultrasmall gadolinium oxide (Gd2O3) nanoparticle colloids (davg = 1.5 nm) (nanoparticle colloid = nanoparticle coated with hydrophilic ligand) were synthesized and their performance as a multifunctional tumor theragnostic agent was investigated. The aqueous ultrasmall nanoparticle colloidal suspension was stable and non-toxic owing to hydrophilic polyacrylic acid (PAA) coating that was partly conjugated with rhodamine B (Rho) for an additional functionalization (mole ratio of PAA : Rho = 5 : 1). First, the ultrasmall nanoparticle colloids performed well as a powerful T1 magnetic resonance imaging (MRI) contrast agent: they exhibited a very high longitudinal water proton relaxivity (r1) of 22.6 s−1 mM−1 (r2/r1 = 1.3, r2 = transverse water proton relaxivity), which was ∼6 times higher than those of commercial Gd-chelates, and high positive contrast enhancements in T1 MR images in a nude mouse after intravenous administration. Second, the ultrasmall nanoparticle colloids were applied to gadolinium neutron capture therapy (GdNCT) in vitro and exhibited a significant U87MG tumor cell death (28.1% net value) after thermal neutron beam irradiation, which was 1.75 times higher than that obtained using commercial Gadovist. Third, the ultrasmall nanoparticle colloids exhibited stronger fluorescent intensities in tumor cells than in normal cells owing to conjugated Rho, proving their pH-sensitive fluorescent tumor cell detection ability. All these results together demonstrate that ultrasmall Gd2O3 nanoparticle colloids are the potential multifunctional tumor theragnostic agent. Ultrasmall Gd2O3 nanoparticle colloids coated with PAA and Rho-PAA were synthesized and applied to T1 MRI, GdNCT and fluorescent tumor cell detection.![]()
Collapse
|
23
|
Raveendran S, Rochani AK, Maekawa T, Kumar DS. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E929. [PMID: 28796191 PMCID: PMC5578295 DOI: 10.3390/ma10080929] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are popularly being used in an increasing number of fields in the past few decades. The popularity and favorability of these materials are due to their remarkable properties, enabling a wide range of applications and market requirements to be met. Polymer biodegradable systems are a promising arena of research for targeted and site-specific controlled drug delivery, for developing artificial limbs, 3D porous scaffolds for cellular regeneration or tissue engineering and biosensing applications. Several natural polymers have been identified, blended, functionalized and applied for designing nanoscaffolds and drug carriers as a prerequisite for enumerable bionano technological applications. Apart from these, natural polymers have been well studied and are widely used in material science and industrial fields. The present review explains the prominent features of commonly used natural polymers (polysaccharides and proteins) in various nanomedical applications and reveals the current status of the polymer research in bionanotechnology and science sectors.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Ankit K Rochani
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Toru Maekawa
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - D Sakthi Kumar
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| |
Collapse
|
24
|
Song G, Cheng L, Chao Y, Yang K, Liu Z. Emerging Nanotechnology and Advanced Materials for Cancer Radiation Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700996. [PMID: 28643452 DOI: 10.1002/adma.201700996] [Citation(s) in RCA: 449] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 04/11/2017] [Indexed: 05/22/2023]
Abstract
Radiation therapy (RT) including external beam radiotherapy (EBRT) and internal radioisotope therapy (RIT) has been widely used for clinical cancer treatment. However, owing to the low radiation absorption of tumors, high doses of ionizing radiations are often needed during RT, leading to severe damages to normal tissues adjacent to tumors. Meanwhile, the RT efficacies are limited by different mechanisms, among which the tumor hypoxia-associated radiation resistance is a well-known one, as there exists hypoxia inside most solid tumors while oxygen is essential to enhance radiation-induced DNA damages. With the development in nanotechnology, there have been great interests in using nanomedicine strategies to enhance radiation responses of tumors. Nanomaterials containing high-Z elements to absorb radiation rays (e.g. X-ray) can act as radio-sensitizers to deposit radiation energy within tumors and promote treatment efficacy. Nanoscale carriers are able to deliver therapeutic radioisotopes into tumors for internal RIT, or chemotherapeutic drugs for synergistically combined chemo-radiotherapy. As uncovered in recent studies, the tumor microenvironment could be modulated by various nanomedicine approaches to overcome hypoxia-associated radiation resistance. Herein, the authors will summarize the applications of nanomedicine for RT cancer treatment, and pay particular attention to the latest development of 'advanced materials' for enhanced cancer RT.
Collapse
Affiliation(s)
- Guosheng Song
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University School of Medicine, 1201 Welch Road, Stanford, California, 94305-5484, USA
| | - Liang Cheng
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Yu Chao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Kai Yang
- School of Radiation Medicine and Protection and School for Radiological and Interdisciplinary Sciences (RAD-X), Medical College of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhuang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
25
|
Savvidou OD, Bolia IK, Chloros GD, Goumenos SD, Sakellariou VI, Galanis EC, Papagelopoulos PJ. Applied Nanotechnology and Nanoscience in Orthopedic Oncology. Orthopedics 2016; 39:280-6. [PMID: 27636683 DOI: 10.3928/01477447-20160823-03] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nanomedicine is based on the fact that biological molecules behave similarly to nanomolecules, which have a size of less than 100 nm, and is now affecting most areas of orthopedics. In orthopedic oncology, most of the in vitro and in vivo studies have used osteosarcoma or Ewing sarcoma cell lineages. In this article, tumor imaging and treatment nanotechnology applications, including nanostructure delivery of chemotherapeutic agents, gene therapy, and the role of nano-selenium-coated implants, are outlined. Finally, the potential role of nanotechnology in addressing the challenges of drug and radiotherapy resistance is discussed. [Orthopedics. 2016; 39(5):280-286.].
Collapse
|
26
|
Rafique A, Mahmood Zia K, Zuber M, Tabasum S, Rehman S. Chitosan functionalized poly(vinyl alcohol) for prospects biomedical and industrial applications: A review. Int J Biol Macromol 2016; 87:141-54. [DOI: 10.1016/j.ijbiomac.2016.02.035] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/03/2016] [Accepted: 02/11/2016] [Indexed: 01/27/2023]
|
27
|
Insights into the use of gadolinium and gadolinium/boron-based agents in imaging-guided neutron capture therapy applications. Future Med Chem 2016; 8:899-917. [PMID: 27195428 DOI: 10.4155/fmc-2016-0022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Gadolinium neutron capture therapy (Gd-NCT) is currently under development as an alternative approach for cancer therapy. All of the clinical experience to date with NCT is done with (10)B, known as boron neutron capture therapy (BNCT), a binary treatment combining neutron irradiation with the delivery of boron-containing compounds to tumors. Currently, the use of Gd for NCT has been getting more attention because of its highest neutron cross-section. Although Gd-NCT was first proposed many years ago, its development has suffered due to lack of appropriate tumor-selective Gd agents. This review aims to highlight the recent advances for the design, synthesis and biological testing of new Gd- and B-Gd-containing compounds with the task of finding the best systems able to improve the NCT clinical outcome.
Collapse
|
28
|
Nanoparticles in radiation oncology: From bench-side to bedside. Cancer Lett 2016; 375:256-262. [PMID: 26987625 DOI: 10.1016/j.canlet.2016.03.011] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/13/2022]
Abstract
Nanoparticles (NP) are "in vogue" in medical research. Pre-clinical studies accumulate evidence of NP enhancing radiation therapy. On one hand, NP, selected for their intrinsic physicochemical characteristics, are radio-sensitizers. Thus, when NP accumulate in cancer cells, they increase the radiation absorption coefficient specifically in tumour tissue, sparing healthy surrounding tissue from toxicity. On the other hand, NP, by being drug vectors, can carry radio-sensitizer therapeutics to cancer cells. Finally, NP present theranostic effects. Indeed they are used in imaging as contrast agents. NP therefore can be multi-tasking and have promising prospect in radiotherapy field. In spite of the numerous encouraging preclinical evidence, the very small number of clinical trials investigating NP possible involvement in the radiotherapy clinical practice suggests a physicians' unwillingness. Many prerequisites seem necessary including define biological mechanisms of NP radiosensitization pathways and of NP clearance. NP biocompatibility and toxicities should be better investigated to select, among the extensive range of possible systems, the harmless and most efficient one, and to finally come to a safe and successful clinical use. The present review focuses on the various interests of NP in the radiotherapy area and proposes a discussion about their role in the future clinical practice.
Collapse
|
29
|
|
30
|
Dewi N, Mi P, Yanagie H, Sakurai Y, Morishita Y, Yanagawa M, Nakagawa T, Shinohara A, Matsukawa T, Yokoyama K, Cabral H, Suzuki M, Sakurai Y, Tanaka H, Ono K, Nishiyama N, Kataoka K, Takahashi H. In vivo evaluation of neutron capture therapy effectivity using calcium phosphate-based nanoparticles as Gd-DTPA delivery agent. J Cancer Res Clin Oncol 2015; 142:767-75. [PMID: 26650198 DOI: 10.1007/s00432-015-2085-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/20/2015] [Indexed: 12/31/2022]
Abstract
PURPOSE A more immediate impact for therapeutic approaches of current clinical research efforts is of major interest, which might be obtained by developing a noninvasive radiation dose-escalation strategy, and neutron capture therapy represents one such novel approach. Furthermore, some recent researches on neutron capture therapy have focused on using gadolinium as an alternative or complementary for currently used boron, taking into account several advantages that gadolinium offers. Therefore, in this study, we carried out feasibility evaluation for both single and multiple injections of gadolinium-based MRI contrast agent incorporated in calcium phosphate nanoparticles as neutron capture therapy agent. METHODS In vivo evaluation was performed on colon carcinoma Col-26 tumor-bearing mice irradiated at nuclear reactor facility of Kyoto University Research Reactor Institute with average neutron fluence of 1.8 × 10(12) n/cm(2). Antitumor effectivity was evaluated based on tumor growth suppression assessed until 27 days after neutron irradiation, followed by histopathological analysis on tumor slice. RESULTS The experimental results showed that the tumor growth of irradiated mice injected beforehand with Gd-DTPA-incorporating calcium phosphate-based nanoparticles was suppressed up to four times higher compared to the non-treated group, supported by the results of histopathological analysis. CONCLUSION The results of antitumor effectivity observed on tumor-bearing mice after neutron irradiation indicated possible effectivity of gadolinium-based neutron capture therapy treatment.
Collapse
Affiliation(s)
- Novriana Dewi
- Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Peng Mi
- Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki, 212-0013, Japan.,Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hironobu Yanagie
- Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan. .,Department of Innovative Cancer Therapeutics: Alpha Particle and Immunotherapeutics, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo, 204-8588, Japan.
| | - Yuriko Sakurai
- Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yasuyuki Morishita
- Department of Human and Molecular Pathology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Masashi Yanagawa
- Department of Applied Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Nishi 2 Sen-11 Inadacho, Obihiro, Hokkaido, 080-0834, Japan
| | - Takayuki Nakagawa
- Laboratory of Veterinary Surgery, Graduate School of Agricultural and Life Sciences, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Atsuko Shinohara
- Department of Humanities, Graduate School of Seisen University, 3-16-21 Higashi-Gotanda, Shinagawa-ku, Tokyo, 141-8642, Japan
| | - Takehisa Matsukawa
- Department of Epidemiology and Environmental Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kazuhito Yokoyama
- Department of Epidemiology and Environmental Health, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Minoru Suzuki
- Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Yoshinori Sakurai
- Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Hiroki Tanaka
- Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Koji Ono
- Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka, 590-0494, Japan
| | - Nobuhiro Nishiyama
- Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki, 212-0013, Japan.,Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8503, Japan
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki, 212-0013, Japan.,Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Materials Engineering, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Takahashi
- Department of Nuclear Engineering and Management, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Cooperative Unit of Medicine and Engineering, University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
31
|
Bergs JWJ, Wacker MG, Hehlgans S, Piiper A, Multhoff G, Rödel C, Rödel F. The role of recent nanotechnology in enhancing the efficacy of radiation therapy. Biochim Biophys Acta Rev Cancer 2015; 1856:130-43. [PMID: 26142869 DOI: 10.1016/j.bbcan.2015.06.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 05/29/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Radiation therapy is one of the most commonly used non-surgical interventions in tumor treatment and is often combined with other modalities to enhance its efficacy. Despite recent advances in radiation oncology, treatment responses, however, vary considerably between individual patients. A variety of approaches have been developed to enhance radiation response or to counteract resistance to ionizing radiation. Among them, a relatively novel class of radiation sensitizers comprises nanoparticles (NPs) which are highly efficient and selective systems in the nanometer range. NPs can either encapsulate radiation sensitizing agents, thereby protecting them from degradation, or sensitize cancer cells to ionizing radiation via their physicochemical properties, e.g. high Z number. Moreover, they can be chemically modified for active molecular targeting and the imaging of tumors. In this review we will focus on recent developments in nanotechnology, different classes and modifications of NPs and their radiation sensitizing properties.
Collapse
Affiliation(s)
- Judith W J Bergs
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany
| | - Matthias G Wacker
- Fraunhofer-Institute for Molecular Biology and Applied Ecology, Department of Pharmaceutical Technology, Goethe University, Frankfurt am Main, Germany
| | - Stephanie Hehlgans
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Albrecht Piiper
- Department of Medicine I, Goethe-University, Frankfurt am Main, Germany
| | - Gabriele Multhoff
- German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany; Department of Radiation Oncology, Technische Universität München, Ismaninger Str. 22, D-81675 Munich, Germany; Clinical Cooperation Group (CCG) "Innate Immunity in Tumor Biology", Helmholtz Zentrum München, German Research Center for Environmental Health Munich, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany
| | - Claus Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany; German Cancer Consortium (DKTK) partner site: Frankfurt, Germany
| | - Franz Rödel
- Department of Radiotherapy and Oncology, Goethe-University, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany.
| |
Collapse
|
32
|
Coulter JA, Butterworth KT, Jain S. Prostate cancer radiotherapy: potential applications of metal nanoparticles for imaging and therapy. Br J Radiol 2015; 88:20150256. [PMID: 26051659 DOI: 10.1259/bjr.20150256] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer (CaP) is the most commonly diagnosed cancer in males. There have been dramatic technical advances in radiotherapy delivery, enabling higher doses of radiotherapy to primary cancer, involved lymph nodes and oligometastases with acceptable normal tissue toxicity. Despite this, many patients relapse following primary radical therapy, and novel treatment approaches are required. Metal nanoparticles are agents that promise to improve diagnostic imaging and image-guided radiotherapy and to selectively enhance radiotherapy effectiveness in CaP. We summarize current radiotherapy treatment approaches for CaP and consider pre-clinical and clinical evidence for metal nanoparticles in this condition.
Collapse
Affiliation(s)
- J A Coulter
- 1 School of Pharmacy, McClay Research Centre, Queen's University Belfast, Belfast, UK
| | - K T Butterworth
- 2 Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| | - S Jain
- 2 Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, UK
| |
Collapse
|
33
|
Sancey L, Lux F, Kotb S, Roux S, Dufort S, Bianchi A, Crémillieux Y, Fries P, Coll JL, Rodriguez-Lafrasse C, Janier M, Dutreix M, Barberi-Heyob M, Boschetti F, Denat F, Louis C, Porcel E, Lacombe S, Le Duc G, Deutsch E, Perfettini JL, Detappe A, Verry C, Berbeco R, Butterworth KT, McMahon SJ, Prise KM, Perriat P, Tillement O. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol 2014; 87:20140134. [PMID: 24990037 PMCID: PMC4453146 DOI: 10.1259/bjr.20140134] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A new efficient type of gadolinium-based theranostic agent (AGuIX®) has recently been developed for MRI-guided radiotherapy (RT). These new particles consist of a polysiloxane network surrounded by a number of gadolinium chelates, usually 10. Owing to their small size (<5 nm), AGuIX typically exhibit biodistributions that are almost ideal for diagnostic and therapeutic purposes. For example, although a significant proportion of these particles accumulate in tumours, the remainder is rapidly eliminated by the renal route. In addition, in the absence of irradiation, the nanoparticles are well tolerated even at very high dose (10 times more than the dose used for mouse treatment). AGuIX particles have been proven to act as efficient radiosensitizers in a large variety of experimental in vitro scenarios, including different radioresistant cell lines, irradiation energies and radiation sources (sensitizing enhancement ratio ranging from 1.1 to 2.5). Pre-clinical studies have also demonstrated the impact of these particles on different heterotopic and orthotopic tumours, with both intratumoural or intravenous injection routes. A significant therapeutical effect has been observed in all contexts. Furthermore, MRI monitoring was proven to efficiently aid in determining a RT protocol and assessing tumour evolution following treatment. The usual theoretical models, based on energy attenuation and macroscopic dose enhancement, cannot account for all the results that have been obtained. Only theoretical models, which take into account the Auger electron cascades that occur between the different atoms constituting the particle and the related high radical concentrations in the vicinity of the particle, provide an explanation for the complex cell damage and death observed.
Collapse
Affiliation(s)
- L Sancey
- 1 Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Team FENNEC, Université de Lyon, Villeurbanne Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Luchette M, Korideck H, Makrigiorgos M, Tillement O, Berbeco R. Radiation dose enhancement of gadolinium-based AGuIX nanoparticles on HeLa cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:1751-5. [PMID: 24941464 DOI: 10.1016/j.nano.2014.06.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 05/17/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
UNLABELLED Radiation dose enhancement of high-Z nanoparticles is an active area of research in cancer therapeutics. When kV and MV energy photon beams interact with high-Z nanoparticles in a tumor, the release of secondary electrons can injure tumor cells, leading to a higher treatment efficacy than radiation alone. We present a study that characterizes the radiation dose enhancing effects of gadolinium-based AGuIX nanoparticles on HeLa cells. Our in vitro clonogenic survival assays showed an average dose enhancement of 1.54× for 220 kVp radiation and 1.15× for 6 MV radiation. The sensitivity enhancement ratio at 4 Gy (SER4Gy) was 1.54 for 220 kVp and 1.28 for 6 MV, indicating that these nanoparticles may be useful for clinical radiation therapy. FROM THE CLINICAL EDITOR This study characterized the radiation dose enhancing effects of gadolinium-based AGuIX nanoparticles on HeLa cells, showing clear effects at 220 kV as well as 6 MV, suggesting that after additional studies, these nanoparticles may be beneficial in human radiation therapy.
Collapse
Affiliation(s)
- Matthew Luchette
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA.
| | - Houari Korideck
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Mike Makrigiorgos
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| | - Olivier Tillement
- Institut Lumière Matière, CNRS, Universite Claude Bernard Lyon 1, Villeurbanne, France
| | - Ross Berbeco
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Yamamoto Y, Yamamoto T, Horiguchi Y, Shirakawa M, Satoh T, Koka M, Nagasaki Y, Nakai K, Matsumura A. Intra-tumor distribution of metallofullerene using micro-particle induced X-ray emission (PIXE). Appl Radiat Isot 2014; 88:114-7. [DOI: 10.1016/j.apradiso.2013.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 12/27/2013] [Accepted: 12/27/2013] [Indexed: 11/28/2022]
|
36
|
Ichikawa H, Uneme T, Andoh T, Arita Y, Fujimoto T, Suzuki M, Sakurai Y, Shinto H, Fukasawa T, Fujii F, Fukumori Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl Radiat Isot 2014; 88:109-13. [DOI: 10.1016/j.apradiso.2013.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 11/26/2022]
|
37
|
Enger SA, Giusti V, Fortin MA, Lundqvist H, af Rosenschöld PM. Dosimetry for gadolinium neutron capture therapy (GdNCT). RADIAT MEAS 2013. [DOI: 10.1016/j.radmeas.2013.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Salah R, Michaud P, Mati F, Harrat Z, Lounici H, Abdi N, Drouiche N, Mameri N. Anticancer activity of chemically prepared shrimp low molecular weight chitin evaluation with the human monocyte leukaemia cell line, THP-1. Int J Biol Macromol 2013; 52:333-9. [DOI: 10.1016/j.ijbiomac.2012.10.009] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/09/2012] [Accepted: 10/10/2012] [Indexed: 11/26/2022]
|
39
|
|
40
|
Cheng JJ, Zhu J, Liu XS, He DN, Xu JR, Wu LM, Zhou J, Feng Q. Gadolinium-chitosan nanoparticles as a novel contrast agent for potential use in clinical bowel-targeted MRI: a feasibility study in healthy rats. Acta Radiol 2012; 53:900-7. [PMID: 22919051 DOI: 10.1258/ar.2012.110017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND MRI is of increasing importance in the diagnostic evaluation of gastrointestinal diseases, with depiction of mucosal enhancement obtained with conventional intravenous contrast. Routine clinical use of contrast agents has been carried out using intravenous injection for mucosal imaging. Contrast agents that specifically target the intestinal mucosa are therefore needed to improve clinical imaging of the mucosal surface. PURPOSE To synthesize a novel contrast agent for gadopentetic acid (Gd-DTPA)-loaded chitosan nanoparticles and observe the absorption of the nanoparticles in the colon wall of healthy rats by MR imaging in vivo. MATERIAL AND METHODS A contrast agent was successfully synthesized by a modified emulsion coalescence method, and the resulting agents were characterized in detail by dynamic light-scattering spectroscopy and inductively coupled plasma emission spectroscopy. The cytotoxicity of Gd-chitosan nanoparticles was evaluated by an MTT assay. Gadolinium-chitosan (Gd@chitosan) nanoparticles were administered to the colon mucosa of healthy rats by rectal administration, and MRI scans in vivo were carried out with a 3.0 T imaging scanner at various time points. RESULTS The prepared Gd@chitosan nanoparticles were ~420 nm in diameter with a 74.4% Gd-DTPA content. The MTT assay indicated little cytotoxicity. MRI results showed that nanoparticles can be retained in both the stratum submucosum and epithelial cells of the colon for almost 80 min. Transmission electron microscopy images further revealed that Gd@chitosan nanoparticles were localized inside the mucosal cells or intercellular space, while tissue from Gd-DTPA aqueous solution administration showed nothing. Due to the infusion of Gd@chitosan nanoparticles, the MR signal intensity of colon mucosa increased from about 6% to 35%, and the contrast enhancement was highest at 20 min after administration. CONCLUSION Gd@chitosan nanoparticles with high Gd-DTPA content were successfully prepared for use as a novel MRI contrast agent. All results indicated that rectally administered Gd@chitosan nanoparticles have the potential for MRI diagnosis of colon mucosal disease.
Collapse
Affiliation(s)
- Jie-Jun Cheng
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University Medical School
- Department of Research and Development, National Engineering Research Center for Nanotechnology, Shanghai, PR China
| | - Jun Zhu
- Department of Research and Development, National Engineering Research Center for Nanotechnology, Shanghai, PR China
| | - Xiao-Sheng Liu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University Medical School
| | - Dan-Nong He
- Department of Research and Development, National Engineering Research Center for Nanotechnology, Shanghai, PR China
| | - Jian-Rong Xu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University Medical School
- Department of Research and Development, National Engineering Research Center for Nanotechnology, Shanghai, PR China
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University Medical School
| | - Juan Zhou
- Department of Research and Development, National Engineering Research Center for Nanotechnology, Shanghai, PR China
| | - Qi Feng
- Department of Radiology, Ren Ji Hospital, Shanghai Jiao Tong University Medical School
| |
Collapse
|
41
|
|
42
|
Soares DCF, de Oliveira MC, de Barros ALB, Cardoso VN, Ramaldes GA. Liposomes radiolabeled with 159Gd: In vitro antitumoral activity, biodistribution study and scintigraphic image in Ehrlich tumor bearing mice. Eur J Pharm Sci 2011; 43:290-6. [DOI: 10.1016/j.ejps.2011.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/18/2011] [Accepted: 05/07/2011] [Indexed: 12/01/2022]
|
43
|
Hatakeyama W, Sanchez TJ, Rowe MD, Serkova NJ, Liberatore MW, Boyes SG. Synthesis of gadolinium nanoscale metal-organic framework with hydrotropes: manipulation of particle size and magnetic resonance imaging capability. ACS APPLIED MATERIALS & INTERFACES 2011; 3:1502-10. [PMID: 21456529 DOI: 10.1021/am200075q] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Gadolinium metal-organic framework (Gd MOF) nanoparticles are an interesting and novel class of nanomaterials that are being studied as a potential replacement for small molecule positive contrast agents in magnetic resonance imaging (MRI). Despite the tremendous interest in these nanoscale imaging constructs, there are limitations, particularly with respect to controlling the particle size, which need to be overcome before these nanoparticles can be integrated into in vivo applications. In an effort to control the size, shape, and size distribution of Gd MOF nanoparticles, hydrotropes were incorporated into the reverse microemulsion synthesis used to produce these nanoparticles. A study of how hydrotropes influenced the mechanism of formation of reverse micelles offered a great deal of information with respect to the physical properties of the Gd MOF nanoparticles formed. Specifically, this study incorporated the hydrotropes, sodium salicylate (NaSal), 5-methyl salicylic acid, and salicylic acid into the reverse microemulsion. Results demonstrated that addition of each of the hydrotropes into the synthesis of Gd MOFs provided a simple route to control the nanoparticle size as a function of hydrotrope concentration. Specifically, Gd MOF nanoparticles synthesized with NaSal showed the best reduction in size distributions in both length and width with percent relative standard deviations being nearly 50% less than nanoparticles produced via the standard route from the literature. Finally, the effect of the size of the Gd MOF nanoparticles with respect to their MRI relaxation properties was evaluated. Initial results indicated a positive correlation between the surface areas of the Gd MOF nanoparticles with the longitudinal relaxivity in MRI. In particular, Gd MOF nanoparticles with an average size of 82 nm with the addition of NaSal, yielded a longitudinal relaxivity value of 83.9 mM⁻¹ [Gd³⁺] sec⁻¹, one of the highest reported values compared to other Gd-based nanoparticles in the literature to date.
Collapse
Affiliation(s)
- Wilasinee Hatakeyama
- Department of Chemistry and Geochemistry, Colorado School of Mines, Golden, Colorado 80401, USA
| | | | | | | | | | | |
Collapse
|
44
|
Soares DCF, de Oliveira MC, dos Santos RG, Andrade MS, Vilela JMC, Cardoso VN, Ramaldes GA. Liposomes radiolabeled with 159Gd-DTPA-BMA: Preparation, physicochemical characterization, release profile and in vitro cytotoxic evaluation. Eur J Pharm Sci 2011; 42:462-9. [DOI: 10.1016/j.ejps.2011.01.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 12/21/2010] [Accepted: 01/28/2011] [Indexed: 10/18/2022]
|
45
|
Duceppe N, Tabrizian M. Advances in using chitosan-based nanoparticles for in vitro and in vivo drug and gene delivery. Expert Opin Drug Deliv 2011; 7:1191-207. [PMID: 20836623 DOI: 10.1517/17425247.2010.514604] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD This review aims to provide an overview of state-of-the-art chitosan-based nanosized carriers for the delivery of therapeutic agents. Chitosan nanocarriers are smart delivery systems owing to the possibility of their property alterations with various approaches, which would confer them with the possibility of spatiotemporal delivery features. AREAS COVERED IN THIS REVIEW The focus of this review is principally on those aspects that have not often been addressed in other reviews. These include the influence of physicochemical properties of chitosan on delivery mechanisms and chitosan modification with a variety of ligand moieties specific for cell surface receptors to increase recognition and uptake of nanocarriers into cells through receptor-mediated endocytosis. Multiple examples that demonstrate the advantages of chitosan-based nanocarriers over other delivery systems of therapeutic agents are highlighted. Particular emphasis is given to the alteration of material properties by functionalization or combination with other polymers for their specific applications. Finally, structural and experimental parameters influencing transfection efficiency of chitosan-based nanocarriers are presented for both in vitro and in vivo gene delivery. WHAT THE READER WILL GAIN The readers will acquire knowledge of parameters influencing the properties of the chitosan-based nanocarriers for delivery of therapeutic agents (genetic material or drugs) in vitro and in vivo. They will get a better idea of the strategies to be adapted to tune the characteristics of chitosan and chitosan derivatives for specific delivery applications. TAKE HOME MESSAGE Chitosan is prone to chemical and physical modifications, and is very responsive to environmental stimuli such as temperature and pH. These features make chitosan a smart material with great potential for developing multifunctional nanocarrier systems to deliver large varieties of therapeutic agents administrated in multiple ways with reduced side effects.
Collapse
Affiliation(s)
- Nicolas Duceppe
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Duff Medical Science Building, 3775 University Street, Montréal, Québec, Canada
| | | |
Collapse
|
46
|
Hoffmann C, Faure AC, Vancaeyzeele C, Roux S, Tillement O, Pauthe E, Goubard F. Labeling of fibronectin by fluorescent and paramagnetic nanoprobes for exploring the extracellular matrix: bioconjugate synthesis optimization and biochemical characterization. Anal Bioanal Chem 2010; 399:1653-63. [PMID: 21153583 DOI: 10.1007/s00216-010-4476-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 11/03/2010] [Accepted: 11/25/2010] [Indexed: 01/01/2023]
Abstract
In this study, fibronectin-nanoparticles bioconjugates are developed and characterized. Multilabeled nanoparticles are composed of a core of the rare-earth oxide Gd(2)O(3):Tb(3+), capped with a set of Rhodamine B isothiocyanate encapsulated in a silica matrix and functionalized by a carboxylated polyethylene glycol shell. These nanoparticles are stabilized in aqueous solution and are found to contain about 400 carboxyl groups on their surface. Nanoparticle bioconjugation with highly purified human plasma fibronectin (Fn) is mediated by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-hydroxysuccinimide, resulting in an amide linkage between the carboxylic acid-terminated surface of the nanoparticle and the primary amine of Fn. The bioconjugation temperature and pH are optimized. The Local structure and global conformation of fibronectin-nanoparticle bioconjugates (FnNP*) are studied by fluorescence spectroscopy and enzymatic sites accessibility. Protein biochemical functionalities are globally conserved, and the protein is actually labeled. Elaboration of such complexes provides a promising bimodal contrasting agent for in vivo imaging.
Collapse
Affiliation(s)
- Céline Hoffmann
- Laboratoire de Physicochimie des Polymères et des Interfaces (LPPI-EA 2528), Institut des matériaux (I-MAT-FD 4122), Université de Cergy-Pontoise, 5 mail Gay-Lussac Neuville-sur-Oise, 95031 Cergy-Pontoise Cedex, France
| | | | | | | | | | | | | |
Collapse
|
47
|
Nanotechnology and its Relationship to Interventional Radiology. Part II: Drug Delivery, Thermotherapy, and Vascular Intervention. Cardiovasc Intervent Radiol 2010; 34:676-90. [DOI: 10.1007/s00270-010-9967-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Accepted: 07/22/2010] [Indexed: 01/26/2023]
|
48
|
Susa M, Milane L, Amiji MM, Hornicek FJ, Duan Z. Nanoparticles: A Promising Modality in the Treatment of Sarcomas. Pharm Res 2010; 28:260-72. [DOI: 10.1007/s11095-010-0173-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 05/13/2010] [Indexed: 12/27/2022]
|
49
|
Fujimoto T, Ichikawa H, Akisue T, Fujita I, Kishimoto K, Hara H, Imabori M, Kawamitsu H, Sharma P, Brown S, Moudgil B, Fujii M, Yamamoto T, Kurosaka M, Fukumori Y. Accumulation of MRI contrast agents in malignant fibrous histiocytoma for gadolinium neutron capture therapy. Appl Radiat Isot 2009; 67:S355-8. [DOI: 10.1016/j.apradiso.2009.03.063] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
50
|
Hamoudeh M, Kamleh MA, Diab R, Fessi H. Radionuclides delivery systems for nuclear imaging and radiotherapy of cancer. Adv Drug Deliv Rev 2008; 60:1329-46. [PMID: 18562040 DOI: 10.1016/j.addr.2008.04.013] [Citation(s) in RCA: 199] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 04/16/2008] [Indexed: 01/30/2023]
Abstract
The recent developments of nuclear medicine in oncology have involved numerous investigations of novel specific tumor-targeting radiopharmaceuticals as a major area of interest for both cancer imaging and therapy. The current progress in pharmaceutical nanotechnology field has been exploited in the design of tumor-targeting nanoscale and microscale carriers being able to deliver radionuclides in a selective manner to improve the outcome of cancer diagnosis and treatment. These carriers include chiefly, among others, liposomes, microparticles, nanoparticles, micelles, dendrimers and hydrogels. Furthermore, combining the more recent nuclear imaging multimodalities which provide high sensitivity and anatomical resolution such as PET/CT (positron emission tomography/computed tomography) and SPECT/CT (combined single photon emission computed tomography/computed tomography system) with the use of these specific tumor-targeting carriers constitutes a promising rally which will, hopefully in the near future, allow for earlier tumor detection, better treatment planning and more powerful therapy. In this review, we highlight the use, limitations, advantages and possible improvements of different nano- and microcarriers as potential vehicles for radionuclides delivery in cancer nuclear imaging and radiotherapy.
Collapse
Affiliation(s)
- Misara Hamoudeh
- Université de Lyon, 69622, France, Université Lyon1, CNRS, UMR 5007, LAGEP, Pharmacotechnical department, ISPB facuté de Pharmacie
| | | | | | | |
Collapse
|