1
|
He Q, Wang Z, Wang Y, Zhu M, Liang Z, Zhang K, Xu Y, Chen G. Characteristic changes in astrocyte properties during astrocyte-to-neuron conversion induced by NeuroD1/Ascl1/Dlx2. Neural Regen Res 2025; 20:1801-1815. [PMID: 39104117 PMCID: PMC11688565 DOI: 10.4103/nrr.nrr-d-23-01897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/04/2024] [Accepted: 03/25/2024] [Indexed: 08/07/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202506000-00030/figure1/v/2024-08-05T133530Z/r/image-tiff Direct in vivo conversion of astrocytes into functional new neurons induced by neural transcription factors has been recognized as a potential new therapeutic intervention for neural injury and degenerative disorders. However, a few recent studies have claimed that neural transcription factors cannot convert astrocytes into neurons, attributing the converted neurons to pre-existing neurons mis-expressing transgenes. In this study, we overexpressed three distinct neural transcription factors--NeuroD1, Ascl1, and Dlx2--in reactive astrocytes in mouse cortices subjected to stab injury, resulting in a series of significant changes in astrocyte properties. Initially, the three neural transcription factors were exclusively expressed in the nuclei of astrocytes. Over time, however, these astrocytes gradually adopted neuronal morphology, and the neural transcription factors was gradually observed in the nuclei of neuron-like cells instead of astrocytes. Furthermore, we noted that transcription factor-infected astrocytes showed a progressive decrease in the expression of astrocytic markers AQP4 (astrocyte endfeet signal), CX43 (gap junction signal), and S100β. Importantly, none of these changes could be attributed to transgene leakage into pre-existing neurons. Therefore, our findings suggest that neural transcription factors such as NeuroD1, Ascl1, and Dlx2 can effectively convert reactive astrocytes into neurons in the adult mammalian brain.
Collapse
Affiliation(s)
- Qing He
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhen Wang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuchen Wang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Mengjie Zhu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Zhile Liang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Kanghong Zhang
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Yuge Xu
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| | - Gong Chen
- GHM Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
2
|
Alfieri L, Montana A, Frisoni P, D'Errico S, Neri M. Application of Aquaporins as Markers in Forensic Pathology: A Systematic Review of the Literature. Int J Mol Sci 2024; 25:2664. [PMID: 38473914 DOI: 10.3390/ijms25052664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
The study of aquaporins (AQPs) in various forensic fields has offered a promising horizon in response to the need to have reliable elements for the identification of the manner of death and for the individuation of forensic markers for the timing of lesions and vitality of injury. In the literature, various tissues have been studied; the most investigated are the lungs, brain, kidneys, skin, and blood vessels. A systematic literature review on PubMed following PRISMA 2020 guidelines enabled the identification of 96 articles. In all, 34 of these were enrolled to identify Aquaporin-like (AQP-like) forensic markers. The analysis of the literature demonstrated that the most significant markers among the AQPs are as follows: for the brain, AQP4, which is very important in brain trauma and hypoxic damage; AQP3 in the skin lesions caused by various mechanisms; and AQP5 in the diagnosis of drowning. Other applications are in organ damage due to drug abuse and thrombus dating. The focus of this review is to collect all the data present in the literature about the forensic application of AQPs as forensic markers in the most important fields of application. In the current use, the individuation, validation, and application of markers in forensic investigation are very useful in real forensic applications in cases evaluated in court.
Collapse
Affiliation(s)
- Letizia Alfieri
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Angelo Montana
- Department of Biomedical Sciences and Public Health, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Paolo Frisoni
- Unit of Legal Medicine, AUSL Romagna, G.B. Morgagni-L. Pierantoni Hospital, 47100 Forlì, Italy
| | - Stefano D'Errico
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Margherita Neri
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
3
|
Szu JI, Binder DK. Mechanisms Underlying Aquaporin-4 Subcellular Mislocalization in Epilepsy. Front Cell Neurosci 2022; 16:900588. [PMID: 35734218 PMCID: PMC9207308 DOI: 10.3389/fncel.2022.900588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Epilepsy is a chronic brain disorder characterized by unprovoked seizures. Mechanisms underlying seizure activity have been intensely investigated. Alterations in astrocytic channels and transporters have shown to be a critical player in seizure generation and epileptogenesis. One key protein involved in such processes is the astrocyte water channel aquaporin-4 (AQP4). Studies have revealed that perivascular AQP4 redistributes away from astrocyte endfeet and toward the neuropil in both clinical and preclinical studies. This subcellular mislocalization significantly impacts neuronal hyperexcitability and understanding how AQP4 becomes dysregulated in epilepsy is beginning to emerge. In this review, we evaluate the role of AQP4 dysregulation and mislocalization in epilepsy.
Collapse
|
4
|
Yaïci R, Carzoli A, Bétis F, Geerling G, Guthoff R, Guthoff T. [Atypical optic neuritis: the importance of a comprehensive diagnostic work-up]. Ophthalmologe 2021; 118:593-596. [PMID: 32705325 PMCID: PMC8187178 DOI: 10.1007/s00347-020-01165-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A 65-year-old woman was referred for sudden bilateral loss of vision. She was vaccinated a few days earlier. The ophthalmological examination showed a massive optic disc swelling on both eyes. Magnetic resonance imaging (MRI) revealed suspected bilateral optic neuritis without cerebral involvement or transverse myelitis. After serological detection of anti-MOG (myelin oligodendrocyte glycoprotein) antibodies, the patient was treated with high-dose corticosteroid pulse therapy until vision recovered. Discussion: an atypical optic neuritis may indicate a neuromyelitis optica spectrum disorder (NMOSD), which should be further characterized by determination of Aquaporin 4(AQP4)-IgG and MOG-IgG.
Collapse
Affiliation(s)
- R Yaïci
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland.
| | - A Carzoli
- service d'ophtalmologie, CHPG, 1 avenue Princesse Grace, 98000, Monaco, Monaco
| | - F Bétis
- service d'ophtalmologie, CHPG, 1 avenue Princesse Grace, 98000, Monaco, Monaco
| | - G Geerling
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - R Guthoff
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| | - T Guthoff
- Klinik für Augenheilkunde, Universitätsklinikum Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Deutschland
| |
Collapse
|
5
|
Brod SA. Immune reconstitution therapy in NMOSD. Mult Scler Relat Disord 2021; 52:102971. [PMID: 33992916 DOI: 10.1016/j.msard.2021.102971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 11/17/2022]
Abstract
IMPORTANCE NMO spectrum disorders [NMOSD] is a relapsing autoimmune disorder with attacks of optic neuritis (ON) and transverse myelitis (TM). A large proportion of NMOSD patients have no or a partial recovery after relapse. OBSERVATIONS The neuro-immunological community now has a number of indicated agents for NMOSD therapy including eculizumab [Soliris®], inebilizumab (Uplizna®) and satralizumab (Enspryng®) with different mechanisms of action (MOA), rapidity of the onset of action (OOA) and issues of long-term safety. Autologous hematopoietic stem cell transplantation (AHSCT) may be another therapeutic option. CONCLUSIONS AND RELEVANCE The advantages of eculizumab are preservation of immunosurveillance, immediate onset of action and persistent efficacy but frequent IV administration and cost are important drawbacks. Inebilizumab allows a slight decrease in relapse free subjects over time but decreases B and plasmablast cell disease-inducing pathogenic antibody production. However, inebilizumab may cause immunosuppression. Satralizumab is immunomodulatory and self-administration but has delayed onset of action. AHSCT may be the best therapeutic option for the prevention and therefore the progression of NMO. In NMO, control the complement (eculizumab), reconstitute the immune system (AHSCT), transition to immunomodulation (satralizumab) and reserve immunosuppression (inebilizumab) as 4th line. AHSCT might also be used as rescue therapy for severe breakthrough disease after NMO-DMTs.
Collapse
Affiliation(s)
- Staley A Brod
- Department of Neurology, Medical College of Wisconsin, Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI 53226, United States.
| |
Collapse
|
6
|
Etemadifar M, Ashourizadeh H, Nouri H, Kargaran PK, Salari M, Rayani M, Aghababaee A, Abhari AP. MRI signs of CNS demyelinating diseases. Mult Scler Relat Disord 2020; 47:102665. [PMID: 33310421 DOI: 10.1016/j.msard.2020.102665] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 11/25/2020] [Accepted: 11/28/2020] [Indexed: 11/27/2022]
Abstract
The differential diagnosis of the central nervous system (CNS) demyelinating diseases can be greatly facilitated by visualization and appreciation of pathognomonic radiological signs, visualized on magnetic resonance imaging (MRI) sequences. Given the distinct therapeutic approaches for each of these diseases, a decisive and reliable diagnosis in patients presenting with demyelination-associated symptoms is of crucial value. Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) are major examples of such conditions, each possessing a number of MRI signs, closely associated with the disorder. This pictorial review aims to describe seventeen pathognomonic MRI signs associated with several CNS demyelinating disorders including MS, NMOSD, myelin oligodendrocyte glycoprotein-associated disease, Baló's concentric sclerosis, metachromatic leukodystrophy, progressive multifocal leukoencephalopathy, and neurosarcoidosis.
Collapse
Affiliation(s)
- Masoud Etemadifar
- Department of Neurosurgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Helia Ashourizadeh
- Functional Neurosurgery Research Center, Shohada Tajrish Neurosurgical Center of Excellence, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hosein Nouri
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran.
| | - Parisa K Kargaran
- Departments of Cardiovascular Medicine, Center for Regenerative Medicine, Mayo Clinic, Rochester, MN, USA
| | - Mehri Salari
- Department of Neurological Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Milad Rayani
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Aghababaee
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Parsa Abhari
- Alzahra Research Institute, Isfahan University of Medical Sciences, Isfahan, Iran; Network of Immunity in Infection, Malignancy, and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Isfahan, Iran
| |
Collapse
|
7
|
Review of approved NMO therapies based on mechanism of action, efficacy and long-term effects. Mult Scler Relat Disord 2020; 46:102538. [PMID: 33059216 PMCID: PMC7539063 DOI: 10.1016/j.msard.2020.102538] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023]
Abstract
Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Up until recently, there was no proven agent to treat to prevent relapses. We now have three agents indicated for the treatment of NMO. We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.
Importance Neuromyelitis optica (NMO - including NMO spectrum disorders [NMOSD]) is a devastating disease. Eighty-three percent of patients with transverse myelitic (TM) attacks and 67% of patients with optic neuritis (ON) attacks have no or a partial recovery. Observations Up until recently, there was no proven agent to treat to prevent relapses. The neuro-immunological community had a dearth of indicated agents for NMOSD. We now have three agents indicated for the treatment of NMO including (eculizumab [Soliris®]), an anti-C5 complement inhibitor, satralizumab (ENSRYNG®), a monoclonal antibody against the IL-6 receptor (IL-6R) that blocks B cell antibody production and inebilizumab (Uplinza®), a monoclonal antibody that binds to the B-cell surface antigen CD19 with subsequent B and plasmablast cell lymphocytolysis with decreasing antibody production. Autologous hematopoietic stem cell bone marrow transplantation (AHSCBMT) has also been used. How do we sequence NMO therapies with the understanding of the acuteness and severity of the disease, the individual mechanism of action (MOA) and rapidity of onset of action, onset of efficacy and long-term safety of each agent? Conclusions and Relevance We might suggest the following sequence – 1st line using eculizumab for rapid efficacy and stabilization without effect on the acquired immune system followed by satrilizumab (long term immunomodulation). Reserve inebilizumab (immunosuppressant) for breakthrough disease and salvage the severe with AHSCBMT. In NMO, control the complement, transition to modulation, and reserve suppression – and salvage the severe with AHSCBMT.
Collapse
|
8
|
Abstract
OBJECTIVES Mild traumatic brain injury (mTBI) is a major public health concern that has generated considerable scientific interest as a complex brain disorder that is associated with long-term neural consequences. This article reviews the literature on cerebrovascular dysfunction in chronic mTBI, with a focus on the long-term neural implications of such dysfunction. METHODS AND RESULTS Evidence is presented from human neuroimaging studies to support cerebrovascular involvement in long-term mTBI pathology. In addition, a pathway between mTBI and neurodegeneration via cerebrovascular dysfunction is explored. CONCLUSIONS Future work focused on identifying the neurobiological mechanisms underlying the neural consequences of mTBI will be important to guide therapeutic interventions and long-term care for patients with mTBI.
Collapse
|
9
|
Abstract
Aquaporins (AQPs) are transmembrane channel proteins that mainly facilitate the water translocation through the plasma cell membrane. For several years these proteins have been extensively examined for their biologic role in health and their potential implication in different diseases. Technological improvements associated with the methods employed to evaluate the functions of the AQPs have provided us with significant new knowledge. In this chapter, we will examine the role of AQPs in health and disease based on the latest currently available evidence.
Collapse
Affiliation(s)
- Dimitrios E Magouliotis
- Division of Surgery and Interventional Sciences, UCL, London, United Kingdom; Department of Surgery, University of Thessaly, Biopolis, Larissa, Greece.
| | | | - Alexis A Svokos
- Geisinger Lewisburg-Women's Health, Lewisburg, PA, United States
| | - Konstantina A Svokos
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
10
|
Kaolin-induced hydrocephalus causes acetylcholinesterase activity dysfunction following hypothalamic damage in infant rats. Brain Res 2019; 1724:146408. [PMID: 31465772 DOI: 10.1016/j.brainres.2019.146408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/08/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022]
Abstract
In hydrocephalus, the progressive accumulation of cerebrospinal fluid (CSF) causes dilatation of the lateral ventricles affecting the third ventricle and diencephalic structures such as the hypothalamus. These structures play a key role in the regulation of several neurovegetative functions by the production of the hormones. Since endocrine disturbances are commonly observed in hydrocephalic children, we investigated the impact of progressive ventricular dilation on the hypothalamus of infant rats submitted to kaolin-induced hydrocephalus. Seven-day-old infant rats were submitted to hydrocephalus induction by kaolin 20% injection method. After 14 days, the animals were decapitated and brain was collected to analyze mitochondrial function, neuronal activity by acetylcholinesterase (AChE) enzyme, oxidative damage, glial activation, and, neurotransmission-related proteins and anti-apoptotic processes in the hypothalamus. The hydrocephalic animals showed reduction in respiratory rates in the States of phosphorylation (P < 0.01) and non-phosphorylation (P < 0.05); increase in AChE activity in both the cytosol (P < 0.05) and the membrane (P < 0.01); decrease in synaptophysin (P < 0.05) and Bcl-2 (P < 0.05) contents and; increase in protein carbonyl (P < 0.01), GFAP (P < 0.01) and Iba-1 (P < 0.05) levels. The results demonstrate that ventricular dilation causes hypothalamic damage characterized by cholinergic dysfunction and suggests further investigation of the synthesis and secretion of hormones to generate new approaches and to assist in the treatment of hydrocephalic patients with hormonal alterations.
Collapse
|
11
|
Barrios-Anderson A, Chen X, Nakada S, Chen R, Lim YP, Stonestreet BS. Inter-alpha Inhibitor Proteins Modulate Neuroinflammatory Biomarkers After Hypoxia-Ischemia in Neonatal Rats. J Neuropathol Exp Neurol 2019; 78:742-755. [PMID: 31274164 PMCID: PMC6640908 DOI: 10.1093/jnen/nlz051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 05/22/2019] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation contributes to hypoxic-ischemic (HI) brain injury. Inter-alpha inhibitor proteins (IAIPs) have important immunomodulatory properties. Human (h) plasma-derived IAIPs reduce brain injury and improve neurobehavioral outcomes after HI. However, the effects of hIAIPs on neuroinflammatory biomarkers after HI have not been examined. We determined whether hIAIPs attenuated HI-related neuroinflammation. Postnatal day-7 rats exposed to sham-placebo, or right carotid ligation and 8% oxygen for 90 minutes with placebo, and hIAIP treatment were studied. hIAIPs (30 mg/kg) or PL was injected intraperitoneally immediately, 24, and 48 hours after HI. Rat complete blood counts and sex were determined. Brain tissue and peripheral blood were prepared for analysis 72 hours after HI. The effects of hIAIPs on HI-induced neuroinflammation were quantified by image analysis of positively stained astrocytic (glial fibrillary acid protein [GFAP]), microglial (ionized calcium binding adaptor molecule-1 [Iba-1]), neutrophilic (myeloperoxidase [MPO]), matrix metalloproteinase-9 (MMP9), and MMP9-MPO cellular markers in brain regions. hIAIPs reduced quantities of cortical GFAP, hippocampal Iba-1-positive microglia, corpus callosum MPO, and cortical MMP9-MPO cells and the percent of neutrophils in peripheral blood after HI in male, but not female rats. hIAIPs modulate neuroinflammatory biomarkers in the neonatal brain after HI and may exhibit sex-related differential effects.
Collapse
Affiliation(s)
- Adriel Barrios-Anderson
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Sakura Nakada
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Ray Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| | - Yow-Pin Lim
- ProThera Biologics, Inc
- Department of Pathology and Laboratory Medicine, The Alpert Medical School of Brown University, Providence, Rhode Island
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island
- Department of Pediatrics, The Warren Alpert Medical School of Brown University
| |
Collapse
|
12
|
Clément T, Rodriguez-Grande B, Badaut J. Aquaporins in brain edema. J Neurosci Res 2018; 98:9-18. [DOI: 10.1002/jnr.24354] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 10/15/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Tifenn Clément
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
| | | | - Jérôme Badaut
- CNRS UMR 5287, INCIA, University of Bordeaux; Bordeaux France
- Department of Basic Science; Loma Linda University School of Medicine; Loma Linda California
| |
Collapse
|
13
|
Avola R, Graziano ACE, Pannuzzo G, Albouchi F, Cardile V. New insights on Parkinson's disease from differentiation of SH-SY5Y into dopaminergic neurons: An involvement of aquaporin4 and 9. Mol Cell Neurosci 2018; 88:212-221. [PMID: 29428877 DOI: 10.1016/j.mcn.2018.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/16/2017] [Accepted: 02/07/2018] [Indexed: 12/30/2022] Open
Abstract
The purpose of this research was to explore the behavior of aquaporins (AQPs) in an in vitro model of Parkinson's disease that is a recurrent neurodegenerative disorder caused by the gradual, progressive loss of dopaminergic neurons in the substantia nigra pars compacta. Because of postmortem studies have provided evidences for oxidative damage and alteration of water flow and energy metabolism, we carried out an investigation about AQP4 and 9, demonstrated in the brain to maintain water and energy homeostasis. As an appropriate in vitro cell model, we used SH-SY5Y cultures and induced their differentiation into a mature dopaminergic neuron phenotype with retinoic acid (RA) alone or in association with phorbol-12-myristate-13-acetate (MPA). The association RA plus MPA provided the most complete and mature neuron phenotype, as demonstrated by high levels of β-Tubulin III, MAP-2, and tyrosine hydroxylase. After validation of cell differentiation, the neurotoxin 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) and H2O2 were applied to reproduce a Parkinson's-like stress. The results confirmed RA/MPA differentiated SH-SY5Y as a useful in vitro system for studying neurotoxicity and for using in a MPTP and H2O2-induced Parkinson's disease cell model. Moreover, the data demonstrated that neuronal differentiation, neurotoxicity, neuroinflammation, and oxidative stress are strongly correlated with dynamic changes of AQP4 and 9 transcription and transduction. New in vitro and in vivo experiments are needed to confirm these innovative outcomes.
Collapse
Affiliation(s)
- Rosanna Avola
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy.
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy
| | - Ferdaous Albouchi
- Laboratoire Materiaux Molecules et Applications, Institut Preparatoire au Etude Scientifique et Technique, Faculty of Sciences of Bizerte, University of Carthage, La Marsa, 2070 Tunis, Tunisia
| | - Venera Cardile
- Department of Biomedical and Biotechnological Science, Section of Physiology, University of Catania, Via Santa Sofia, 97-95123 Catania, Italy.
| |
Collapse
|
14
|
Rodriguez-Grande B, Ichkova A, Lemarchant S, Badaut J. Early to Long-Term Alterations of CNS Barriers After Traumatic Brain Injury: Considerations for Drug Development. AAPS JOURNAL 2017; 19:1615-1625. [PMID: 28905273 DOI: 10.1208/s12248-017-0123-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Accepted: 07/11/2017] [Indexed: 01/06/2023]
Abstract
Traumatic brain injury (TBI) is one of the leading causes of death and disability, particularly amongst the young and the elderly. The functions of the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB) are strongly impaired after TBI, thus affecting brain homeostasis. Following the primary mechanical injury that characterizes TBI, a secondary injury develops over time, including events such as edema formation, oxidative stress, neuroinflammation, and alterations in paracelullar and transcellular transport. To date, most therapeutic interventions for TBI have aimed at direct neuroprotection during the acute phase and have not been successful. Targeting the barriers of the central nervous system (CNS) could be a wider therapeutic approach, given that restoration of brain homeostasis would benefit all brain cells, including neurons. Importantly, BBB disregulation has been observed even years after TBI, concomitantly with neurological and psychosocial sequelae; however, treatments targeting the post-acute phase are scarce. Here, we review the mechanisms of primary and secondary injury of CNS barriers, the accumulating evidence showing long-term damage to these structures and some of the therapies that have targeted these mechanisms. Finally, we discuss how the injury characteristics (hemorrhagic vs non-hemorrhagic, involvement of head rotation, gray vs white matter), the sex, and the age of the patient need to be carefully considered to improve clinical trial design and outcome interpretation, and to improve future drug development.
Collapse
Affiliation(s)
| | - Aleksandra Ichkova
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Sighild Lemarchant
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France
| | - Jerome Badaut
- CNRS UMR5287, University of Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux Cedex, France. .,Basic Science Departments, Loma Linda University School of Medicine, Loma Linda, California, USA.
| |
Collapse
|
15
|
Yang X, Ransom BR, Ma JF. The role of AQP4 in neuromyelitis optica: More answers, more questions. J Neuroimmunol 2016; 298:63-70. [DOI: 10.1016/j.jneuroim.2016.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022]
|
16
|
Astrocyte Aquaporin Dynamics in Health and Disease. Int J Mol Sci 2016; 17:ijms17071121. [PMID: 27420057 PMCID: PMC4964496 DOI: 10.3390/ijms17071121] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/07/2016] [Accepted: 07/07/2016] [Indexed: 02/01/2023] Open
Abstract
The family of aquaporins (AQPs), membrane water channels, consists of diverse types of proteins that are mainly permeable to water; some are also permeable to small solutes, such as glycerol and urea. They have been identified in a wide range of organisms, from microbes to vertebrates and plants, and are expressed in various tissues. Here, we focus on AQP types and their isoforms in astrocytes, a major glial cell type in the central nervous system (CNS). Astrocytes have anatomical contact with the microvasculature, pia, and neurons. Of the many roles that astrocytes have in the CNS, they are key in maintaining water homeostasis. The processes involved in this regulation have been investigated intensively, in particular regulation of the permeability and expression patterns of different AQP types in astrocytes. Three aquaporin types have been described in astrocytes: aquaporins AQP1 and AQP4 and aquaglyceroporin AQP9. The aim here is to review their isoforms, subcellular localization, permeability regulation, and expression patterns in the CNS. In the human CNS, AQP4 is expressed in normal physiological and pathological conditions, but astrocytic expression of AQP1 and AQP9 is mainly associated with a pathological state.
Collapse
|
17
|
Hubbard JA, Hsu MS, Seldin MM, Binder DK. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain. ASN Neuro 2015; 7:7/5/1759091415605486. [PMID: 26489685 PMCID: PMC4623559 DOI: 10.1177/1759091415605486] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aquaporin-4 (AQP4) is a bidirectional water channel that is found on astrocytes throughout the central nervous system. Expression is particularly high around areas in contact with cerebrospinal fluid, suggesting that AQP4 plays a role in fluid exchange between the cerebrospinal fluid compartments and the brain. Despite its significant role in the brain, the overall spatial and region-specific distribution of AQP4 has yet to be fully characterized. In this study, we used Western blotting and immunohistochemical techniques to characterize AQP4 expression and localization throughout the mouse brain. We observed AQP4 expression throughout the forebrain, subcortical areas, and brainstem. AQP4 protein levels were highest in the cerebellum with lower expression in the cortex and hippocampus. We found that AQP4 immunoreactivity was profuse on glial cells bordering ventricles, blood vessels, and subarachnoid space. Throughout the brain, AQP4 was expressed on astrocytic end-feet surrounding blood vessels but was also heterogeneously expressed in brain tissue parenchyma and neuropil, often with striking laminar specificity. In the cerebellum, we showed that AQP4 colocalized with the proteoglycan brevican, which is synthesized by and expressed on cerebellar astrocytes. Despite the high abundance of AQP4 in the cerebellum, its functional significance has yet to be investigated. Given the known role of AQP4 in synaptic plasticity in the hippocampus, the widespread and region-specific expression pattern of AQP4 suggests involvement not only in fluid balance and ion homeostasis but also local synaptic plasticity and function in distinct brain circuits.
Collapse
Affiliation(s)
- Jacqueline A Hubbard
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Mike S Hsu
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| | - Marcus M Seldin
- Division of Cardiology, University of California, Los Angeles, CA, USA
| | - Devin K Binder
- Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, University of California, Riverside, CA, USA
| |
Collapse
|
18
|
|
19
|
V.M FDL, W H. Relevance of excitable media theory and retinal spreading depression experiments in preclinical pharmacological research. Curr Neuropharmacol 2014; 12:413-33. [PMID: 25426010 PMCID: PMC4243032 DOI: 10.2174/1570159x12666140630190800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/29/2014] [Accepted: 06/29/2014] [Indexed: 11/22/2022] Open
Abstract
In preclinical neuropharmacological research, molecular, cell-based, and systems using animals are well established. On the tissue level the situation is less comfortable, although during the last decades some effort went into establishing such systems, i.e. using slices of the vertebrate brain together with optical and electrophysiological techniques. However, these methods are neither fast, nor can they be automated or upscaled. By contrast, the chicken retina can be used as a suitable model. It is easy accessible and can be kept alive in vitro for hours up to days. Due to its structure, in addition the retina displays remarkable intrinsic optical signals, which can be easily used in experiments. Also to electrophysiological methods the retina is well accessible. In excitable tissue, to which the brain and the retina belong, propagating excitation waves can be expected, and the spreading depression is such a phenomenon. It has been first observed in the forties of the last century. Later, Martins-Ferreira established it in the chicken retina (retinal spreading depression or RSD). The electrophysiological characteristics of it are identical with those of the cortical SD. The metabolic differences are known and can be taken into account. The experimental advantage of the RSD compared to the cortical SD is the pronounced intrinsic optical signal (IOS) associated with the travelling wave. This is due to the maximum transparency of retinal tissue in the functional state; thus any physiological event will change it markedly and therefore can be easily seen even by naked eye. The theory can explain wave spread in one (action potentials), two (RSDs) and three dimensions (one heart beat). In this review we present the experimental and the excitable media context for the data interpretation using as example the cholinergic pharmacology in relation to functional syndromes. We also discuss the intrinsic optical signal and how to use it in pre-clinical research.
Collapse
Affiliation(s)
- Fernandes de Lima V.M
- Medical Faculty, Federal University São João Del Rei, CCO, Divinopolis, MG, Brazil LIM- 26 Medical Faculty, USP, Medical Faculty, Sao Paulo, Brazil
| | - Hanke W
- University of Hohenheim, Inst. Physiol., Stuttgart, Germany
| |
Collapse
|
20
|
Badaut J, Fukuda AM, Jullienne A, Petry KG. Aquaporin and brain diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:1554-65. [PMID: 24513456 PMCID: PMC3960327 DOI: 10.1016/j.bbagen.2013.10.032] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Revised: 10/09/2013] [Accepted: 10/17/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The presence of water channel proteins, aquaporins (AQPs), in the brain led to intense research in understanding the underlying roles of each of them under normal conditions and pathological conditions. SCOPE OF REVIEW In this review, we summarize some of the recent knowledge on the 3 main AQPs (AQP1, AQP4 and AQP9), with a special focus on AQP4, the most abundant AQP in the central nervous system. MAJOR CONCLUSIONS AQP4 was most studied in several brain pathological conditions ranging from acute brain injuries (stroke, traumatic brain injury) to the chronic brain disease with autoimmune neurodegenerative diseases. To date, no specific therapeutic agents have been developed to either inhibit or enhance water flux through these channels. However, experimental results strongly underline the importance of this topic for future investigation. Early inhibition of water channels may have positive effects in prevention of edema formation in brain injuries but at later time points during the course of a disease, AQP is critical for clearance of water from the brain into blood vessels. GENERAL SIGNIFICANCE Thus, AQPs, and in particular AQP4, have important roles both in the formation and resolution of edema after brain injury. The dual, complex function of these water channel proteins makes them an excellent therapeutic target. This article is part of a Special Issue entitled Aquaporins.
Collapse
Affiliation(s)
- Jérôme Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA; Univ Bordeaux, CNRS UMR 5287, 146 rue Leo Saignat33076 Bordeaux cedex.
| | - Andrew M Fukuda
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Amandine Jullienne
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | - Klaus G Petry
- INSERM U1049 Neuroinflammation, Imagerie et Thérapie de la Sclérose en Plaques, F-33076 Bordeaux, France
| |
Collapse
|
21
|
Sfera A, Osorio C. Water for thought: is there a role for aquaporin channels in delirium? Front Psychiatry 2014; 5:57. [PMID: 24904440 PMCID: PMC4033263 DOI: 10.3389/fpsyt.2014.00057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 05/12/2014] [Indexed: 12/14/2022] Open
Affiliation(s)
- Adonis Sfera
- Psychiatry, Patton State Hospital , Patton, CA , USA
| | | |
Collapse
|
22
|
Takata N, Nagai T, Ozawa K, Oe Y, Mikoshiba K, Hirase H. Cerebral blood flow modulation by Basal forebrain or whisker stimulation can occur independently of large cytosolic Ca2+ signaling in astrocytes. PLoS One 2013; 8:e66525. [PMID: 23785506 PMCID: PMC3681769 DOI: 10.1371/journal.pone.0066525] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/06/2013] [Indexed: 12/13/2022] Open
Abstract
We report that a brief electrical stimulation of the nucleus basalis of Meynert (NBM), the primary source of cholinergic projection to the cerebral cortex, induces a biphasic cerebral cortical blood flow (CBF) response in the somatosensory cortex of C57BL/6J mice. This CBF response, measured by laser Doppler flowmetry, was attenuated by the muscarinic type acetylcholine receptor antagonist atropine, suggesting a possible involvement of astrocytes in this type of CBF modulation. However, we find that IP3R2 knockout mice, which lack cytosolic Ca2+ surges in astrocytes, show similar CBF changes. Moreover, whisker stimulation resulted in similar degrees of CBF increase in IP3R2 knockout mice and the background strain C57BL/6J. Our results show that neural activity-driven CBF modulation could occur without large cytosolic increases of Ca2+ in astrocytes.
Collapse
Affiliation(s)
- Norio Takata
- Laboratory for Neuron-Glia Circuit, RIKEN Brain Science Institute, Wako, Saitama, Japan.
| | | | | | | | | | | |
Collapse
|
23
|
Potokar M, Vardjan N, Stenovec M, Gabrijel M, Trkov S, Jorgačevski J, Kreft M, Zorec R. Astrocytic vesicle mobility in health and disease. Int J Mol Sci 2013; 14:11238-58. [PMID: 23712361 PMCID: PMC3709730 DOI: 10.3390/ijms140611238] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022] Open
Abstract
Astrocytes are no longer considered subservient to neurons, and are, instead, now understood to play an active role in brain signaling. The intercellular communication of astrocytes with neurons and other non-neuronal cells involves the exchange of molecules by exocytotic and endocytotic processes through the trafficking of intracellular vesicles. Recent studies of single vesicle mobility in astrocytes have prompted new views of how astrocytes contribute to information processing in nervous tissue. Here, we review the trafficking of several types of membrane-bound vesicles that are specifically involved in the processes of (i) intercellular communication by gliotransmitters (glutamate, adenosine 5′-triphosphate, atrial natriuretic peptide), (ii) plasma membrane exchange of transporters and receptors (EAAT2, MHC-II), and (iii) the involvement of vesicle mobility carrying aquaporins (AQP4) in water homeostasis. The properties of vesicle traffic in astrocytes are discussed in respect to networking with neighboring cells in physiologic and pathologic conditions, such as amyotrophic lateral sclerosis, multiple sclerosis, and states in which astrocytes contribute to neuroinflammatory conditions.
Collapse
Affiliation(s)
- Maja Potokar
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Nina Vardjan
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Matjaž Stenovec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Mateja Gabrijel
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Saša Trkov
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Jernej Jorgačevski
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
| | - Marko Kreft
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Robert Zorec
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, Faculty of Medicine, University of Ljubljana, Zaloška 4, 1000 Ljubljana, Slovenia; E-Mails: (M.P.); (N.V.); (M.S.); (M.G.); (S.T.); (J.J.); (M.K.)
- Celica Biomedical Center, Tehnološki park 24, 1000 Ljubljana, Slovenia
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +386-1543-7020; Fax: +386-1543-7036
| |
Collapse
|
24
|
Potokar M, Stenovec M, Jorgačevski J, Holen T, Kreft M, Ottersen OP, Zorec R. Regulation of AQP4 surface expression via vesicle mobility in astrocytes. Glia 2013; 61:917-28. [DOI: 10.1002/glia.22485] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 01/28/2013] [Indexed: 11/05/2022]
Affiliation(s)
| | | | | | - Torgeir Holen
- Center for Molecular Biology and Neuroscience; University of Oslo; Oslo; Norway
| | | | - Ole Petter Ottersen
- Center for Molecular Biology and Neuroscience; University of Oslo; Oslo; Norway
| | | |
Collapse
|
25
|
Kleindienst A, Dunbar JG, Glisson R, Marmarou A. The role of vasopressin V1A receptors in cytotoxic brain edema formation following brain injury. Acta Neurochir (Wien) 2013. [PMID: 23188468 DOI: 10.1007/s00701-012-1558-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND The hormone and neuropeptide arginine-vasopressin is designated to the maintenance of osmotic homoeostasis and blood pressure regulation. While experimental data show vasopressin V(1A) receptors to regulate aquaporin (AQP)4 water channel dependent brain water movement, the specific role in vasogenic and cytotoxic edema formation remains unclear. The present study was designed to quantify the V(1A) receptor mediated regional brain edema formation in two clinically relevant experimental models, brain injury combined with secondary insult and focal ischemia. METHODS Male Sprague-Dawley rats were randomly assigned to a continuous infusion of vehicle (1 % DMSO) or the selective non-peptide V(1A) antagonist SR49059 (83nM = 1 mg/kg) starting before controlled cortical impact (CCI) injury plus hypoxia and hypotension (HH, 30 min), or middle cerebral artery (MCA) occlusion (2 h + 2 h reperfusion). RESULTS A global analysis of brain water content by the wet/dry weight method allowed optimizing the SR49059 dosage, and demonstrated the down-regulation of brain AQP4 expression by immunoblotting. Microgravimetrical quantification in 64 one mm(3) samples per animal (n = 6 per group) from bregma +2.7 to -6.3 mm analysis demonstrated brain edema to be reduced at 4 h by SR49059 treatment in the injured and contralateral cortex following CCI + HH (p = 0.007, p < 0.001) and in the infarct area following MCA occlusion (p = 0.013, p = 0.002, p = 0.004). CONCLUSIONS Our findings demonstrate that an early cytotoxic brain edema component following brain injury plus secondary insult or focal ischemia results from a vasopressin V(1A) receptor mediated response, and occurs most likely through AQP4 up-regulation. The V(1A) antagonist SR49059 offers a new avenue in brain edema treatment and prompts further study into the role of vasopressin following brain injury.
Collapse
Affiliation(s)
- Andrea Kleindienst
- Department of Neurosurgery, Virginia Commonwealth University, 1101 E. Marshall St., 23298, Richmond, VA, USA.
| | | | | | | |
Collapse
|
26
|
Fukuda AM, Badaut J. Aquaporin 4: a player in cerebral edema and neuroinflammation. J Neuroinflammation 2012; 9:279. [PMID: 23270503 PMCID: PMC3552817 DOI: 10.1186/1742-2094-9-279] [Citation(s) in RCA: 163] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 12/07/2012] [Indexed: 02/07/2023] Open
Abstract
Neuroinflammation is a common pathological event observed in many different brain diseases, frequently associated with blood brain barrier (BBB) dysfunction and followed by cerebral edema. Neuroinflammation is characterized with microglia activation and astrogliosis, which is a hypertrophy of the astrocytes. Astrocytes express aquaporin 4, the water channel protein, involved in water homeostasis and edema formation. Aside from its function in water homeostasis, recent studies started to show possible interrelations between aquaporin 4 and neuroinflammation. In this review the roles of aquaporin 4 in neuroinflammation associated with BBB disruption and cerebral edema will be discussed with recent studies in the field.
Collapse
Affiliation(s)
- Andrew M Fukuda
- Department of Physiology, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | |
Collapse
|
27
|
Endothelial cells and astrocytes: a concerto en duo in ischemic pathophysiology. Int J Cell Biol 2012; 2012:176287. [PMID: 22778741 PMCID: PMC3388591 DOI: 10.1155/2012/176287] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/30/2012] [Indexed: 11/17/2022] Open
Abstract
The neurovascular/gliovascular unit has recently gained increased attention in cerebral ischemic research, especially regarding the cellular and molecular changes that occur in astrocytes and endothelial cells. In this paper we summarize the recent knowledge of these changes in association with edema formation, interactions with the basal lamina, and blood-brain barrier dysfunctions. We also review the involvement of astrocytes and endothelial cells with recombinant tissue plasminogen activator, which is the only FDA-approved thrombolytic drug after stroke. However, it has a narrow therapeutic time window and serious clinical side effects. Lastly, we provide alternative therapeutic targets for future ischemia drug developments such as peroxisome proliferator- activated receptors and inhibitors of the c-Jun N-terminal kinase pathway. Targeting the neurovascular unit to protect the blood-brain barrier instead of a classical neuron-centric approach in the development of neuroprotective drugs may result in improved clinical outcomes after stroke.
Collapse
|
28
|
Aquaporin-4 expression is not elevated in mild hydrocephalus. Acta Neurochir (Wien) 2012; 154:753-9; discussion 759. [PMID: 22146847 DOI: 10.1007/s00701-011-1241-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 11/21/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Aquaporin-4 (aqp-4) is a member of water channel family proteins primarily expressed in the central nervous system. Physiologically it is the main channel providing water transport into the nervous system water compartments and across the blood-brain barrier. Several studies demonstrated its compensatory role in severe hydrocephalus. However, its role is not clear during the initial stages of hydrocephalus. OBJECTIVE This study was designed to investigate aqp-4 expression in less severe forms of hydrocephalus and to determine its role in disease progression. METHODS Twenty-five male Wistar-Hannover rats, were distributed into experimental (n = 20) and control (n = 5) groups. Hydrocephalus was induced in the experimental group by injection of 5 μl 25% kaolin suspension into the cisterna magna. Control animals received an injection of 5 μl normal saline. Eight weeks later, the animals were killed by the perfusion-fixation method. Immunohistochemical and Western blot analysis were performed. RESULTS Ventricular dilatations were noted in all experimental animals. Both groups demonstrated positive immunoreactive signals to aqp-4. Immunohistochemically there were no changes in aqp-4 pattern and expression intensity between experimental and control animals. Similarly, Western blot analysis revealed mean aqp-4 values in experimental and control groups as 0.3436 and 0.3917, respectively, and the difference did not reach statistical significance (p > 0.05). CONCLUSION Our results indicate that aqp-4 is not up-regulated during the initial stages of hydrocephalus. This implies that aqp-4 may not play a significant role in hydrocephalus compensation until severe ventricular dilatation occurs.
Collapse
|
29
|
Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy. Glia 2012; 60:1203-14. [DOI: 10.1002/glia.22317] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/09/2012] [Indexed: 12/17/2022]
|
30
|
Badaut J, Ashwal S, Obenaus A. Aquaporins in cerebrovascular disease: a target for treatment of brain edema? Cerebrovasc Dis 2011; 31:521-31. [PMID: 21487216 PMCID: PMC3085520 DOI: 10.1159/000324328] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 01/11/2011] [Indexed: 12/11/2022] Open
Abstract
In cerebrovascular disease, edema formation is frequently observed within the first 7 days and is characterized by molecular and cellular changes in the neurovascular unit. The presence of water channels, aquaporins (AQPs), within the neurovascular unit has led to intensive research in understanding the underlying roles of each of the AQPs under normal conditions and in different diseases. In this review, we summarize some of the recent knowledge on AQPs, focusing on AQP4, the most abundant AQP in the central nervous system. Several experimental models illustrate that AQPs have dual, complex regulatory roles in edema formation and resolution. To date, no specific therapeutic agents have been developed to inhibit water flux through these channels. However, experimental results strongly suggest that this is an important area for future investigation. In fact, early inhibition of water channels may have positive effects in the prevention of edema formation. At later time points during the course of disease, AQP is important for the clearance of water from the brain into blood vessels. Thus, AQPs, and in particular AQP4, have important roles in the resolution of edema after brain injury. The function of these water channel proteins makes them an excellent therapeutic target.
Collapse
Affiliation(s)
- J Badaut
- Department of Pediatrics, Loma Linda University School of Medicine, Calif., USA.
| | | | | |
Collapse
|
31
|
Arciénega II, Brunet JF, Bloch J, Badaut J. Cell locations for AQP1, AQP4 and 9 in the non-human primate brain. Neuroscience 2010; 167:1103-14. [PMID: 20226845 DOI: 10.1016/j.neuroscience.2010.02.059] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 02/20/2010] [Accepted: 02/22/2010] [Indexed: 11/26/2022]
Abstract
The presence of three water channels (aquaporins, AQP), AQP1, AQP4 and AQP9 were observed in normal brain and several rodent models of brain pathologies. Little is known about AQP distribution in the primate brain and its knowledge will be useful for future testing of drugs aimed at preventing brain edema formation. We studied the expression and cellular distribution of AQP1, 4 and 9 in the non-human primate brain. The distribution of AQP4 in the non-human primate brain was observed in perivascular astrocytes, comparable to the observation made in the rodent brain. In contrast with rodent, primate AQP1 is expressed in the processes and perivascular endfeet of a subtype of astrocytes mainly located in the white matter and the glia limitans, possibly involved in water homeostasis. AQP1 was also observed in neurons innervating the pial blood vessels, suggesting a possible role in cerebral blood flow regulation. As described in rodent, AQP9 mRNA and protein were detected in astrocytes and in catecholaminergic neurons. However additional locations were observed for AQP9 in populations of neurons located in several cortical areas of primate brains. This report describes a detailed study of AQP1, 4 and 9 distributions in the non-human primate brain, which adds to the data already published in rodent brains. This relevant species differences have to be considered carefully to assess potential drugs acting on AQPs non-human primate models before entering human clinical trials.
Collapse
Affiliation(s)
- I I Arciénega
- Neurosurgery Research Group, Lausanne Hospital University (CHUV), Pavillon 3, 1011 Lausanne, Switzerland
| | | | | | | |
Collapse
|
32
|
The modulation of aquaporin-4 by using PKC-activator (phorbol myristate acetate) and V1a receptor antagonist (SR49059) following middle cerebral artery occlusion/reperfusion in the rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2009; 102:431-6. [PMID: 19388361 DOI: 10.1007/978-3-211-85578-2_84] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
BACKGROUND We have pursued the concept that traumatic brain edema is predominantly cellular and that water entry is modulated in part by aquaporins. Aquaporin-4 (AQP4) has been shown to play a significant role in cellular edema formation. Phorbol myristate acetate (PMA) is a potent PKC activator; purportedly involved in modulation of AQP4 activity. Alternatively, AQP4 may be regulated by arginine-vasopressin. Administration of the vasopressin antagonist (SR49059) reduced brain water content and sodium shift following MCAo. To investigate if edema formation is affected by the reduction of AQP4 expression, we utilized PMA and SR49059 following middle cerebral artery occlusion model (MCAo), and measured AQP4 expression by Western-Blot (WB) techniques. METHODS Male Sprague Dawley rats were randomly assigned to sham (n=4) or MCAo groups (vehicle, PMA or SR49059 infusion; n=6 each). Each solution was infused for 5 hours, starting 1 hour before injury. After a two-hour period of ischemia and two-hour reperfusion, animals were sacrificed and brain regions of interest were processed by WB to quantify the effect of treatment on AQP4 expression. RESULTS These studies demonstrate that MCAo results in a significant up-regulation of AQP4 on the ischemic zone when compared to the contralateral un-injured hemisphere (p < 0.05) and that PMA and SR49059 treatment significantly down-regulated AQP4 expression compared to the vehicle group (p < 0.05). CONCLUSIONS These studies support the hypotheses that PMA and SR49059 may be useful in reducing cerebral water accumulation by modulating AQP4 expression and that pharmacological manipulation of AQP4 may emerge as a viable strategy for the reduction of fulminating edema following ischemic injury.
Collapse
|
33
|
Nakamura M, Misu T, Fujihara K, Miyazawa I, Nakashima I, Takahashi T, Watanabe S, Itoyama Y. Occurrence of acute large and edematous callosal lesions in neuromyelitis optica. Mult Scler 2009; 15:695-700. [PMID: 19435750 DOI: 10.1177/1352458509103301] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The corpus callosum is commonly involved in multiple sclerosis (MS), but the characteristics of callosal lesions in neuromyelitis optica (NMO) are unknown.ObjectiveTo reveal the features of callosal lesions in NMO in comparison to MS. METHODS We retrospectively reviewed the medical records and the brain magnetic resonance imaging films of 56 patients with MS and 22 patients with NMO. RESULTS In MS, 36 (64.3%) of 56 patients had callosal lesions, but only four patients had acute lesions. All such acute lesions were small, isolated and non-edematous, and the intensity was homotonic. Chronic lesions were observed in 34 patients with MS, and 32 (94%) of them presented small lesions located at the callosal lower margin ("hemi-oval pattern"). Meanwhile, four (18.2%) patients with NMO had callosal lesions, and three of them had acute lesions. Those acute lesions were multiple, large edematous ones with heterogeneous intensity ("marbled pattern"). In the chronic stage, the lesions shrank or disappeared. CONCLUSIONS Acute large, edematous callosal lesions occasionally occur in NMO. Similar to longitudinally extensive transverse myelitis, such callosal lesions may reflect severe edematous inflammation in NMO, and may provide additional evidence that the pathogenesis in NMO is different from that in MS.
Collapse
Affiliation(s)
- M Nakamura
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Neuronal dysfunction in the prefrontal cortex, limbic structures, nucleus accumbens and ventral tegmental area is considered to underlie the general physiopathological mechanisms for substance use disorders. Glutamatergic, dopaminergic and opioidoergic neuronal mechanisms in those brain areas have been targeted in the development of pharmacotherapies for drug abuse and dependence. However, despite the pivotal role of neurons in the mechanisms of addiction, these cells are not the only cell type in charge of sustaining and regulating neurotransmission. Glial cells, particularly astrocytes, play essential roles in the regulation of glutamatergic neurotransmission, neurotransmitter metabolism, and supply of energy substrates for synaptic transmission. In addition, astrocytes are markedly affected by exposure to ethanol and other substances of abuse. These features of astrocytes suggest that alterations in the function of astrocytes and other glial cells in reward circuits may contribute to drug addiction. Recent research has shown that the control of glutamate uptake and the release of neurotrophic factors by astrocytes influences behaviors of addiction and may play modulatory roles in psychostimulant, opiate, and alcohol abuse. Less is known about the contributions of microglia and oligodendrocytes to drug abuse, although, given the ability of these cells to produce growth factors and cytokines in response to alterations in synaptic transmission, further research should better define their role in drug addiction. The available knowledge on the involvement of glial cells in addictive behaviors suggests that regulation of glutamate transport and neurotrophins may constitute new avenues for the treatment of drug addiction.
Collapse
Affiliation(s)
- Jose Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
35
|
Abstract
The aquaporin channel family was first considered as a family of water channels, however it is now clear that some of these channels are also permeable to small solutes such glycerol, urea and monocarboxylates. In this review, we will consider AQP4 and AQP9 expressed in the rodent brain. AQP4 is present on astrocytic end-feet in contact with brain vessels and could be involved in ionic homeostasis. However, AQP4 may also be involved in cell adhesion. AQP4 expression is highly modified in several brain disorders and it can play a key role in the cerebral edema formation. However, the exact role of AQP4 in edema formation is still debated. Recently, AQP4 has been shown to be also involved in astrocyte migration during glial scar formation. AQP9 is expressed in astrocytes and in catecholaminergic neurons. Two isoforms of AQP9 are expressed in brain cells, the shortest isoform is localized in the inner membrane of mitochondria and the longest in the cell membrane. The level of expression of AQP9 is negatively regulated by high concentrations of insulin. Taken together, these results suggest that AQP9 could be involved in brain energy metabolism. The induction of AQP9 in astrocytes is observed with time after stroke onset suggesting participation in the clearance of excess lactate in the extracellular space. These recent exciting results suggest that AQPs may not only be involved in water homeostasis in the brain but could also participate in other important physiological functions.
Collapse
Affiliation(s)
- Jérôme Badaut
- Department of Neurosurgery, CHUV-UNIL, 1011, Lausanne, Switzerland.
| | | | | |
Collapse
|
36
|
Kleindienst A, Fazzina G, Dunbar JG, Glisson R, Marmarou A. Protective effect of the V1a receptor antagonist SR49059 on brain edema formation following middle cerebral artery occlusion in the rat. ACTA NEUROCHIRURGICA. SUPPLEMENT 2006; 96:303-6. [PMID: 16671476 DOI: 10.1007/3-211-30714-1_65] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
There exists no pharmacological treatment for fulminating brain edema. Since evidence indicates that brain aquaporin-4 (AQP4) water channels are modulated by vasopressin V1a receptors, we examined the edema-reducing properties of the selective V1a receptor antagonist, SR49059, following middle cerebral artery occlusion (MCAO). Male Sprague-Dawley rats were randomly assigned to sham procedure, vehicle, or SR49059 infusion at different dosages (each n = 6,480 microL/hr, 640 microL/hr, 720 microL/hr) and starting 60 minutes before or after MCAO. After a 2-hour period of ischemia and 2 hours of reperfusion, the animals were sacrificed for assessment of brain water content, sodium, and potassium concentration. Statistics were performed using an ANOVA followed by a Tukey post hoc analysis. SR049059 treatment reduced brain water content in the infarcted area given at 640 microL/hr (p = 0.036), 720 microL/hr 60 minutes before (p = 0.002) or 60 minutes after (p = 0.005) MCAO. The consecutive sodium shift into the brain was prevented (p = 0.001), while the potassium loss was inhibited only by pre-treatment (p = 0.003). These findings imply that in ischemia-induced brain edema, the selective V1a receptor-antagonist SR49059 inhibits brain edema and the subsequent sodium shift into brain. This substance offers a new avenue in brain edema treatment and prompts further study into AQP4 modulation.
Collapse
Affiliation(s)
- A Kleindienst
- Department of Neurosurgery, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA 23298-0508, USA
| | | | | | | | | |
Collapse
|
37
|
Abstract
It is now over 10 years ago that aquaporin 1 (AQP1) was discovered and cloned from the red blood cells, and in 2003 the Nobel price in Chemistry was awarded to Pr. Peter Agre for his work on AQPs, highlighting the importance of these proteins in life sciences. AQPs are water channels. To date this protein family is composed of 11 sub-types in mammalians. Three main AQPs described in the mammalian brain are AQP1, AQP4 and AQP9. Several recent studies have shown that these channels are implicated in numerous physiological functions. AQP1 has a role in cerebrospinal fluid formation, whereas AQP4 is involved in water homeostasis and extracellular osmotic pressure in brain parenchyma. AQP4 seems also to have an important function in oedema formation after brain trauma or brain ischemia. AQP9 is implicated in brain energy metabolism. The level of expression of each AQP is highly regulated. After a trauma or an ischemia perturbation of the central nervous system, the level of expression of each AQP is differentially modified, resulting in facilitating oedema formation. At present, the exact role of each AQP is not yet determined. A better understanding of the mechanisms of AQP regulation should permit the development of new pharmacological strategies to prevent oedema formation. AQP9 has been recently specifically detected in the catecholaminergic neurons of the brain. This new result strengthens the hypothesis that the AQPs are not only water channels, but that some AQPs may play a role in energy metabolism as metabolite channels.
Collapse
Affiliation(s)
- Céline F Guérin
- Groupe de recherche neurochirurgicale, Centre Hospitalier Universitaire Vaudois, Pavillon 3, Beaumont, 1011 Lausanne, Switzerland
| | | | | |
Collapse
|
38
|
Trinh-Trang-Tan MM, Cartron JP, Bankir L. Molecular basis for the dialysis disequilibrium syndrome: altered aquaporin and urea transporter expression in the brain. Nephrol Dial Transplant 2005; 20:1984-8. [PMID: 15985519 DOI: 10.1093/ndt/gfh877] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Cerebral disorders caused by brain oedema characterize the dialysis disequilibrium syndrome, a complication of rapid haemodialysis. Brain oedema is presumably caused by the 'reverse urea effect', i.e. the significant urea gradient between blood and brain after dialysis, with, as a result, an inflow of water into the brain. To assess the molecular basis of this effect, we examined the expression of urea transporter UT-B1 and aquaporin (AQP) 4 and AQP9 in the brain of uraemic rats. METHODS Brain, kidneys and one testis were collected from four sham-operated (control) and four uraemic rats, 10 weeks after 5/6 nephrectomy (Nx). Protein abundance was measured by semi-quantitave immunoblotting using affinity-purified rabbit anti-rat antibodies applied on tissue crude homogenates. RESULTS The results are expressed as means+/-SE of band density (arbitrary units). In Nx compared with control rats, the brain expression of UT-B1 was reduced by half (32+/-3 vs 62+/-8, P<0.01) whereas that of AQ4 was doubled (251+/-13 vs 135+/-5, P<0.001), and that of AQP9 increased by 65% (253+/-22 vs 154+/-10, P<0.01). UT-B1 expression was also lowered by Nx in kidney medulla (45+/-21 vs 141+/-4, P<0.01) but was unchanged in testis. CONCLUSIONS The conjunction of a reduced expression of UT-B and an increased expression of AQPs in brain cells may bring a new clue to understanding the DDS mechanism. Because of low UT-B abundance, urea exit from astrocytes is most probably delayed during rapid removal of extracellular urea through fast dialysis. This creates an osmotic driving force that promotes water entry into the cells (favoured by abundant AQPs) and subsequent brain swelling.
Collapse
|
39
|
Tomás-Camardiel M, Venero JL, Herrera AJ, De Pablos RM, Pintor-Toro JA, Machado A, Cano J. Blood-brain barrier disruption highly induces aquaporin-4 mRNA and protein in perivascular and parenchymal astrocytes: Protective effect by estradiol treatment in ovariectomized animals. J Neurosci Res 2005; 80:235-46. [PMID: 15772982 DOI: 10.1002/jnr.20443] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Strong evidence involves aquaporin-4 (AQP4) in the physiopathology of brain edema. Two major points remain unsolved: (1) the capacity of perivascular glial cells to regulate AQP4 in response to disruption of the blood-brain barrier (BBB); and (2) the potential beneficial role of AQP4 in the clearance of brain edema. We used intraparenchymal injection of lipopolysaccharide (LPS) as an efficient model to induce BBB disruption. This was monitored by IgG extravasation and AQP4 was studied at the mRNA and protein level. The first signs of BBB disruption coincided with strong induction of AQP4 mRNA in perivascular glial cells. At the early phase, estradiol treatment highly prevented the LPS-induced disruption of the BBB and the induction of AQP4. Efficient clearance of vasogenic edema is supposed to occur once BBB is restored. This phase coincided with high induction of AQP4 mRNA in parenchymal reactive astrocytes and perivascular glial processes. High levels of AQP4 mRNA may be beneficial under these conditions. Our data may clarify why estradiol treatment reduces mortality in conditions typically associated with edema formation, like stroke.
Collapse
Affiliation(s)
- M Tomás-Camardiel
- Departamento de Bioquímica, Bromatología, Toxicología y Medicina Legal, Facultad de Farmacia, Universidad de Sevilla, Sevilla, Spain
| | | | | | | | | | | | | |
Collapse
|
40
|
Badaut J, Lasbennes F, Magistretti PJ, Regli L. Aquaporins in brain: distribution, physiology, and pathophysiology. J Cereb Blood Flow Metab 2002; 22:367-78. [PMID: 11919508 DOI: 10.1097/00004647-200204000-00001] [Citation(s) in RCA: 396] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Water homeostasis in the brain is of central physiologic and clinical importance. Neuronal activity and ion water homeostasis are inextricably coupled. For example, the clearance of K+ from areas of high neuronal activity is associated with a concomitant water flux. Furthermore, cerebral edema, a final common pathway of numerous neurologic diseases, including stroke, may rapidly become life threatening because of the rigid encasement of the brain. A water channel family, the aquaporins, facilitates water flux through the plasma membrane of many cell types. In rodent brain, several recent studies have demonstrated the presence of different types of aquaporins. Aquaporin 1 (AQP1) was detected on epithelial cells in the choroid plexus whereas AQP4, AQP5 and AQP9 were localized on astrocytes and ependymal cells. In rodent brain, AQP4 is present on astrocytic end-feet in contact with brain vessels, and AQP9 is found on astrocytic processes and cell bodies. In basal physiologic conditions, AQP4 and AQP9 appear to be implicated in brain homeostasis and in central plasma osmolarity regulation. Aquaporin 4 may also play a role in pathophysiologic conditions, as shown by the reduced edema formation observed after water intoxication and focal cerebral ischemia in AQP4-knockout mice. Furthermore, pathophysiologic conditions may modulate AQP4 and AQP9 expression. For example, AQP4 and AQP9 were shown to be upregulated after ischemia or after traumatic injuries. Taken together, these recent reports suggest that water homeostasis in the brain is maintained by regulatory processes that, by control of aquaporin expression and distribution, induce and organize water movements. Facilitation of these movements may contribute to the development of edema formation after acute cerebral insults such as ischemia or traumatic injury.
Collapse
Affiliation(s)
- Jérôme Badaut
- Département de Neurochirurgie, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | | | |
Collapse
|
41
|
|
42
|
Badaut J, Hirt L, Granziera C, Bogousslavsky J, Magistretti PJ, Regli L. Astrocyte-specific expression of aquaporin-9 in mouse brain is increased after transient focal cerebral ischemia. J Cereb Blood Flow Metab 2001; 21:477-82. [PMID: 11333357 DOI: 10.1097/00004647-200105000-00001] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aquaporin-9 (AQP9) is a new member of the aquaporin family of water-selective channels mainly expressed in liver and testis, presenting the characteristic of also being permeable to various solutes, particularly lactate. Recent data have shown the presence of AQP9 on tanycytes in the rat brain. In the current study, the authors show the expression of AQP9 in astrocytes in the mouse brain and changes in its expression after cerebral ischemia. Indeed, in control mouse, the AQP9 immunolabeling is present on astrocytic processes bordering the subarachnoid space and ventricles. The labeling also is observed on astrocytes in the white matter, hippocampus, hypothalamus, and lateral septum. After focal transient ischemia, an increase of the immunolabeling is detected on astrocytes in periinfarct areas. This AQP9 distribution study in mouse brain suggests a role of AQP9 in water homeostasis in the central nervous system. Furthermore, the overexpression of AQP9 on astrocytes surrounding an ischemic lesion suggests that AQP9 may also play a role in the regulation of postischemia edema and, in view of its permeability to monocarboxylates, in the clearance of lactate from the ischemic focus.
Collapse
Affiliation(s)
- J Badaut
- Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|